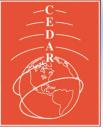


September 24, 2025
Dr. Joe Westlake
Director, Heliophysics Division
NASA Headquarters
Subject: Urgent Request to Sustain TIMED Operations

Dear Director Westlake,

On behalf of the Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) community, I am writing to express our deep concern regarding the planned termination of the TIMED mission in the President's Budget Request. For over two decades, TIMED has provided the backbone of satellite observational data for the mesosphere and lower thermosphere through its suite of instruments: SABER, GUVI, TIDI, and SEE. These datasets are foundational—not only for heliophysics but also for atmospheric and space weather research across disciplines.


The TIMED datasets are unmatched in scope and impact. They have underpinned thousands of peer-reviewed studies, trained two generations of scientists, and supported NASA's mission to advance both fundamental science and applied forecasting. The primary mission cost the nation over \$250M in the early 2000s and it is not a prudent use of taxpayers' dollars to discontinue a mission that is generating valuable science at minimal operational expense. Continued support, even at modest levels, will ensure that the U.S. maintains leadership in understanding a key geospace region and avoids creating an irreparable observational gap.

The simple fact is this: without TIMED, the community loses its only continuous, global view of the mesosphere and lower thermosphere. We will be flying blind in a critical region of geospace that connects terrestrial weather with space weather in the near-Earth space environment and at a time when the number of LEO and VLEO satellites is increasing exponentially. Such a loss would have profound implications for numerical model development and validation, for the prediction of space weather effects on technology and society, and for increased understanding of the drivers of variability in the middle and upper atmosphere.

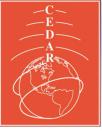
We fully recognize the difficult budgetary environment and the constraints posed by the President's Budget Request and the possibility of a Continuing Resolution that reflects those funding levels. Nevertheless, we urge you to consider the irreversible impact on science of deorbiting or terminating a healthy satellite and instrument suite that is still operating with excellent performance. Even a minimal level of funding, sufficient to sustain basic operations, would preserve the nation's ability to continue receiving critical data should resources become available in the future. With an operating budget of around \$2M/year, discontinuing the mission is not cost-effective especially considering that if GDC and/or DYNAMIC eventually are funded to fly, or an ITM MidEx is selected in the next round, it will be about 10 years before NASA ITM data become available.

We respectfully but urgently ask NASA to preserve the TIMED mission in the hope that either a public/private partnership can be developed to continue operations or the current, draconian cuts are ameliorated allowing for continued data collection. The scientific, societal,

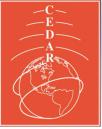
CSSC Chair: V. Lynn Harvey, University of Colorado Boulder. Email: lynn.harvey@lasp.colorado.edu


and strategic costs of losing this mission far outweigh the modest investment needed to maintain it.

Thank you for your leadership and for considering the voice of the CEDAR community in this decision.


Sincerely,
V. Lynn Harvey
Chair, CEDAR Science Steering Committee (CSSC)

Signatories (Name, Affiliation and/or City & State)


- 1. V. Lynn Harvey, University of Colorado Boulder, CO
- 2. Dogacan S. Ozturk, University of Alaska, Fairbanks, AK
- 3. Steven M. Smith, Boston University, Boston, MA
- 4. Nilesh Chauhan, NCPOR, Goa, India
- 5. Maosheng He, Chinese Academy of Sciences, Beijing, China
- 6. Mark Conde, University of Alaska Fairbanks, AK
- 7. Ildiko Horvath, University of Queensland, Brisbane, Australia
- 8. Zishun Qiao, NSF NCAR High Altitude Observatory, CO
- 9. Robin Wing, Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany
- 10. Thierry Dudok de Wit, Univ. of Orléans, France & ISSI, Switzerland
- 11. Takanori Nishiyama, National Institute of Polar Research, Tokyo, Japan
- 12. Gunter Stober, University of Bern, Bern, Switzerland
- 13. Fred Sigernes, University Centre in Svalbard, Norway
- 14. Jaroslav Urbář, Institute of Atmospheric Physics, Czech Academy of Sciences, Czechia
- 15. Samadrita Basu, National Atmospheric Research Laboratory, India
- 16. Martin Grosjean, Oeschger Centre for Climate Change Research, University of Bern, Switzerland
- 17. Astrid Maute, Leibniz Institute of Atmospheric Physics at University of Rostock, Germany.
- 18. David G. McGaw, Dartmouth College, Hanover, NH
- 19. Ingrid Cnossen, British Antarctic Survey, Cambridge, United Kingdom
- 20. Qihou Zhou, Miami University, Oxford, OH
- 21. Xueling Shi, Clemson University, Clemson, SC
- 22. John Meriwether, New Jersey Institute of Technology, Newark, NJ
- 23. Scott England, Virginia Polytechnic Institute and State University, Blacksburg, VA
- 24. Susan Nossal, University of Wisconsin Madison, Madison, WI
- 25. Nicholas Dietrich, U.S. Naval Research Laboratory Washington, D.C.
- 26. Alan Liu, Embry-Riddle Aeronautical University, Daytona Beach, FL
- 27. Scott Palo, University of Colorado Boulder, CO
- 28. William Ward, University of New Brunswick, Fredericton, Canada
- 29. Brentha Thurairajah, Virginia Tech, Blacksburg, VA
- 30. Federico Gasperini, Orion Space Solutions, Louisville, CO
- 31. Daniel Brandt, Michigan Tech Research Institute, Ann Arbor, MI

- 32. Brian Harding, Space Sciences Laboratory, Univ of California Berkeley, CA
- 33. J. Michael Ruohoniemi, Virginia Tech, Blacksburg, VA
- 34. Cheng Sheng, University of Texas at Arlington, Arlington, Texas
- 35. Yue Deng, University of Texas at Arlington, Arlington, TX
- 36. Gang Lu, National Center for Atmospheric Research, Boulder, CO
- 37. Matthew Young, University of New Hampshire, Durham, NH
- 38. Philip Richards, The University of Alabama in Huntsville, AL
- 39. Jeffrey P. Thayer, University of Colorado, Boulder, CO
- 40. Rolando Garcia, National Center for Atmospheric Research, Boulder, CO
- 41. Victor Pasko, Penn State University, University Park, PA
- 42. Thomas Ulich, Sodankylä Geophysical Observatory, University of Oulu, Finland
- 43. Colin Triplett, Space Sciences Laboratory, University of California Berkeley, CA
- 44. L. Claire Gasque, Space Sciences Laboratory, University of California Berkeley, CA
- 45. K. R. Greer, Laboratory for Atmospheric and Space Physics, Univ of Colorado Boulder
- 46. Katrina Bossert, School of Earth and Space Exploration, Arizona State University
- 47. Sharon Vadas, NorthWest Research Associates, CO
- 48. Marcio Muella, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
- 49. Md Nazmus Sakib, George Mason University, Fairfax, VA, USA
- 50. Igo Paulino, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
- 51. Evans Callis, University of Alaska, Fairbanks, AK
- 52. Xian Lu, Clemson University, Clemson, SC, USA
- 53. Cesar Valladares, Boston College, USA
- 54. Qingyu Zhu, University of Texas at Dallas, Richardson, TX
- 55. Marie Bals, Embry-Riddle Aeronautical University, Daytona Beach, FL
- 56. Levan Lomidze, University of Calgary, Calgary, Alberta, Canada
- 57. Ruth Lieberman, Clemson University, Clemson, SC, USA
- 58. José Augusto Pereira, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
- 59. Siyuan Wu, Southampton University, Southampton, UK
- 60. Jia Jia, Finnish Meteorological Institute, Helsinki, Finland
- 61. Valery Yudin, The Catholic University of America, DC, USA
- 62. Hisao Takahashi, Instituto Nacional de pesquisas Espaciais, S. J. Campos, SP, Brasil
- 63. Luis Navarro, University of Colorado, Boulder, CO, USA
- 64. Eric Sutton, University of Colorado, Boulder, CO, USA
- 65. Pavel Inchin, Computational Physics, Inc., VA, USA
- 66. Richard Collins, University of Alaska Fairbanks, AK, USA
- 67. Oluwasegun M. Adebayo, Instituto Nacional de pesquisas Espaciais, S. J. Campos, SP, Brasil.
- 68. Matthias Förster, GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
- 69. Ingo Müller-Wodarg, Imperial College London, UK
- 70. Huixin Liu, Kyushu University, Japan
- 71. Konstantinos Kalogerakis, SRI International, Menlo Park, CA, USA
- 72. Jianqi Qin, Peking University, Beijing, China

- 73. Yoshihiro Tomikawa, National Institute of Polar Research, Tokyo, Japan
- 74. Masaru Kogure, Yonsei University, Seoul, South Korea
- 75. Tikemani Bag, National Institute of Polar Research, Tokyo, Japan
- 76. Md Golam Mostafa, Military Institute of Science and Technology, Bangladesh
- 77. Sovit Khadka, Orion Space Solutions, Louisville, Colorado, USA
- 78. Amitava Guharay, Physical Research Laboratory, Ahmedabad, India
- 79. Meenakshi S, National Atmospheric Research Laboratory, Gadanki, Tirupati, India
- 80. K Siba Kiran Guru, Indian Institute of Geomagnetism, India
- 81. Maxime Grandin, Finnish Meteorological Institute, Helsinki, Finland
- 82. Gourav Mitra, Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany
- 83. Spencer Hatch, University of Bergen, Bergen, Norway
- 84. Claudia Borries, German Aerospace Center, Neustrelitz, Germany
- 85. Petr Šácha, Charles University, Prague, Czech Republic
- 86. Dupinder Singh, Haystack Observatory, MA, USA
- 87. Paulo Prado Batista, National Institute for Space Research (INPE), S. J. Campos, SP, Brazil
- 88. Emilia Correia, National Institute for Space Research (INPE), S. J. dos Campos, SP, Brazil
- 89. Vania F. Andrioli, National Institute for Space Research (INPE), S. J. dos Campos, SP, Brazil
- 90. Ângela Santos, National Institute for Space Research (INPE), S. J. dos Campos, SP, Brazil
- 91. Ana Roberta Paulino, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
- 92. Seebany Datta-Barua, Illinois Institute of Technology, Chicago, USA
- 93. Alexander Kutepov, The Catholic University of America, Washington, DC, USA
- 94. Jessica Norrell, School of Earth and Space Exploration, Arizona State University
- 95. Lindsay Goodwin, New Jersey Institute of Technology, NJ, USA
- 96. Joe McInerney, NSF National Center for Atmospheric Research, Boulder, CO
- 97. Anne-Marie Schmoltner, NSF, retired, Alexandria, VA
- 98. W. Dean Pesnell, NASA, retired, Annapolis, MD
- 99. Lakshmi Narayanan Viswanathan, Krea University, Sri City, India
- 100. G. Kishore Kumar, University of Hyderabad, Hyderabad, India
- 101. Fredson Conceição dos Santos, Instituto Federal do Maranhão, Açailândia, Brazil.
- 102. Mark B. Moldwin, University of Michigan, Ann Arbor MI
- 103. Sivakandan Mani, Leibniz Institute of Atmospheric Physics, Kühlunsborn, Germany
- 104. Priyanka Ghosh, Leibniz Institute of Atmospheric Physics, Kühlunsborn, Germany
- 105. Evgeny V. Mishin, Boston College Institute of Scientific Research
- 106. Stephen R. Kaeppler, Clemson University, Clemson, SC, USA
- 107. Stephan Buchert, Swedish Institute of Space Physics, Uppsala, Sweden
- 108. Jeong-Han Kim, Korea Polar Research Institute, South Korea
- 109. Sovan Saha, Institute of Atmospheric Physics, Czech Academy of Sciences, Czechia
- 110. Gilles Wautelet, Laboratory for Planetary and Atmospheric Science, Liège University, Liège, Belgium
- 111. Young-Bae Ham, Korea Polar Research Institute, Incheon, South Korea
- 112. Cora Randall (ret), University of Colorado Boulder
- 113. Theodore Beach, Boston College, USA

- 114. Jennifer A, Indian Institute of Geomagnetism, India
- 115. Fabio Egito, Universidade Federal de Campina Grande, Brazil.
- 116. Deepak Kumar Karan, Laboratory for Atmospheric and Space Physics, CO, USA
- 117. Marcos Vinicius Dias Silveira, Brazil.
- 118. Aurélie Marchaudon, Institut de Recherche en Astrophysique et Planétologie, France
- 119.