
Chrome OS ML Service 
THIS IS A PUBLIC DOCUMENT 

go/chromeos-ml-service 

Authors: kennetht, martis, renjieliu, claudiomagni, amoylan 

2018-Q4 status - Completed. See up-to-update docs in platform2/ml.​
See below for original design. 

See also subcomponent design docs: 

●​ Chrome OS ML Service: IPC Implementation 
●​ Chrome OS ML Service: Model Publishing 
●​ Chrome OS ML Service: Mojo API 

One-page overview 

Summary 
The goal is to create a new Machine Learning Component/Service which uses TFLite (and 
later TensorFlow) as a platform for client-side ML model inferencing.  This will provide a 
common ML runtime for personalization features for Chrome OS and lay the foundation 
for supporting on-device training in the future (Personalized and Federated Learning). 

Platforms 
Chrome OS. 

Team 
kennetht@google.com (emeritus), omrilio@google.com (PM), martis@google.com, 
renjieliu@google.com, claudiomagni@google.com, chromeos-ml@google.com, 
amoylan@google.com (TL) 

PRD 
Pending. 

Launch bug 
crbug.com/892495 
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Code affected 
See this doc for all code & model source locations, and installed paths on CrOS devices. 
The main source locations are: 

●​ Client library for accessing the learning service, in 
//chromeos/services/machine_learning in the Chromium codebase. 

●​ Daemon implementing the service, in /src/platform2/ml/ in the chromiumos repo. 
 

https://docs.google.com/document/d/1v-UWcTOY5fkMWAZ9gZmRi3OTh4PCAJ6ssTMgUimTA7A/edit?usp=sharing


Background 
A number of future features/use-cases were outlined at the Chrome OS Product Strategy 
review, which illustrate how using ML on the client/device can be used to power smart 
features and better personalize the experience for users.  Some features which are in 
active development are listed below. They will initially use existing ML facilities in Chrome 
(e.g. Assist Ranker) with the option to migrate to TensorFlow when it is available. 

●​ Chrome OS power management (design) 
●​ Chrome OS tab discarder (design) 
●​ Use-cases also being considered include palm rejection and adaptive screen 

brightness 

Design 
The design outlined in this document introduces a new Machine Learning Service, which 
wraps TensorFlow / TFLite and provides an API for performing prediction on pre-trained 
machine learning models.  Where possible, the approach will be to follow well-worn paths 
for Chrome OS and Tensorflow with regards to building, packaging and deploying the 
TensorFlow runtime and pre-trained models.  This will allow the engineering effort to be 
focused on the challenges of bringing a large third-party library like TensorFlow into 
Chrome and working through the architecture, security and system health requirements.  
 
In the future, the Machine Learning Service will be extended to support on-device training 
(Personalized and Federated Learning) by integrating the client library for the new 
Federated Computation Platform (FCP), which is the next major iteration of Brella and is 
being built from the beginning to have cross-platform support and be open sourced. 

Architecture  
The proposed developer flow is as follows (and illustrated below): 

●​ Client feature teams log training data which is used to train ML models using 
TensorFlow (server-side), which are checked into the chromium git repo uploaded to 
pantheon and subsequently installed on rootfs. 

●​ A Machine Learning Service which wraps a version of the TensorFlow Lite runtime 
which supports all of the published models is built using the chromiumos build 
system (ebuild packages). 

●​ The Machine Learning Service runs in a minijail sandbox. 
●​ Client features can perform inference on the pre-trained models through a new 

Prediction Mojo API. 
●​ Clients in Chromium can access the Mojo API (with automatic D-Bus-bootstrapped 

connection to the daemon process) using a small provided client library. 

https://docs.google.com/document/d/1_JOzF6hKf3pISYxPziEMt5RsT_c3CbnusJ0spZXwvKI/edit
https://docs.google.com/document/d/1AD14Dpqd_eytNJqr6SRXY8aYt6p1kRv3ufs1zwpp7fc/edit
https://docs.google.com/document/d/1GczBksyaRmc09zg_b71wppEBP_6iSDfUdvAm_pnG-88/edit
https://docs.google.com/document/d/1GczBksyaRmc09zg_b71wppEBP_6iSDfUdvAm_pnG-88/edit


 

 
 
The details for each part are discussed in the following sections.  Options and alternatives 
are also given for each, along with lines of thinking which led to each design decision.  See 
the Architectural Choices doc and ML Service Discussion notes for a summary of the 
discussions. 

Build and Infrastructure 
As our initial goal is to release only on Chrome OS for v1, the ML Service can be directly 
deployed via custom ebuild packages. 

●​ The initial plan is to build the TensorFlow/Lite static or dynamic libraries and ML 
Service binary as Portage packages in Chrome OS. See Chrome OS TF build notes for 
further details. 

○​ ebuild is flexible and allows TensorFlow to be built using its Makefile or Bazel 
build targets, avoiding the complication of handcrafting BUILD.gn rules. 

https://docs.google.com/document/d/1WRzOiYI2KHn_edEKsm2vilkwiGwNlaPSMDnQ0N5zlrc/edit#heading=h.a3wgncp28wp0
https://docs.google.com/document/d/1kzJ8zcEd90EMh1dB8DGVP7ROGaPUTJ9Sev-xsVzg_WY/edit
https://docs.google.com/document/d/1-fn95QLqAXZIJUETIvOyvfUsNAH68D7MJ3Lb8MoE8YU/edit?usp=sharing


○​ Building the ML Service also as an ebuild means that it can have full access to 
the TensorFlow headers, as well as give the greatest control over compiler 
and link-time optimizations in order to minimize binary size. 

○​ The Mojo API for the ML Service is the bridge between the chromiumos and 
chromium repositories and has the benefit of being narrow, stable and 
maintainable. 

●​ Alternative(1): ebuild for TensorFlow, but ML Service as a Chrome Service. 
○​ TensorFlow would need to be wrapped by a narrower C++ API which does 

not directly include any TensorFlow headers (which contain inlined 
implementations).  This wrapped API implementation would be packaged 
with TensorFlow into a shared library and the headers would need to be 
mirrored between the chromiumos and chromium repos. 

○​ The ML Service in Chrome would dynamically load the wrapped TensorFlow 
shared library when it is initialized. 

○​ May be an easier developer workflow for client feature teams who could 
otherwise use the Simple Chrome build.  After building the TensorFlow .so 
once, it won’t likely be needed to be rebuilt until TensorFlow is up-rev’d. 

○​ Opens the opportunity for the ML Service to be tested with Browser tests. 
○​ Decision: Will keep this open as a viable Plan B. 

●​ Alternative(2): Manually create the BUILD.gn targets for TensorFlow and its deps, and 
build into Chrome (and not Chrome OS). This appears difficult; our initial attempts to 
resolve the impedance mismatch between Bazel and GN has led to expanding 
dimensions of complexity which would require significant effort to resolve at this 
stage (see Building TensorFlow in Chrome and Building TF Lite in Chrome for 
details). 

○​ Paves the way for the future launch of the ML Service in Chrome. 
○​ Requires that the build systems mismatch (GN vs Bazel) is resolved up-front, 

including looking into opportunities to automate this conversion process (or 
in part) to reduce the future maintenance burdens. 

○​ Decision: Will re-open investigations when considering v2 plans for making 
the ML Service available on Chrome platforms. 

 
The key consideration is the impact of binary size of building TensorFlow/Lite into Chrome, 
along with other system health requirements (see the Speed section for more discussion). 

●​ Experiment with Selective Registration of Ops when building TensorFlow to reduce 
binary size.  This can be run for each release over the set of published models. 

●​ For TensorFlow, we could follow process used by Brella for automatically 
determining the set of OPs used by the ML models shipped with the build.  The 
tensorflow.so and JNI bindings build for the Brella GMSCore module (Android) is less 
than 3MB, and is a good target to set for the ML Service. 

●​ TensorFlow Lite is smaller still, around 1.2 MB in most recent test. 
 

https://docs.google.com/document/d/1q2980HofVf9J1s3fwiF3rhWVnUzwsJ5bOybC2OdzSqU/edit#
https://docs.google.com/document/d/11UPVzwA5gJLPHkhS92CNmoM_tkMpjO19GUEl_2NxDHg/edit#
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/selective_registration.h
https://g3doc.corp.google.com/intelligence/micore/g3doc/native_build.md#tensorflow


Note, the Bazel build targets and Makefiles for TensorFlow (which are optimized for 
client-side runtimes) are assumed to used as part of either Android or iOS builds. It is likely 
that there will need to be some upstream changes to the TensorFlow build rules to either 
modify the mobile targets to make them more flexible, or add new light-weight targets for 
client runtimes.  These will need: 

●​ No RTTI 
●​ Disabling exceptions 
●​ Stripping debug strings and symbols 
●​ Compiling with protobuf lite-runtime 
●​ Using the tensorflow/core:framework_lite (instead of :framework) 
●​ Removing GPU/CUDA support (i.e. CPU only) 
●​ Supporting CPU instruction sets for math acceleration (e.g. SSE4) 

ML Model Publishing 
See: Chrome OS ML Service Model Publishing 
 
Summary of the ML model publishing flow: 

●​ Training and publishing ML models 
○​ [Client team responsibility] Log training samples 
○​ [Client team responsibility] Pipeline for training ML Models with TensorFlow 

in google3 on Borg 
○​ [ML Service responsible for upload instructions] Snapshot models and 

upload them to the designated location 
○​ [ML Service responsibility] Need to limit ML model check-ins to Google 

engineers 
■​ If installing into rootfs, models are uploaded to the ChromeOS file 

mirror, which can be accessed by Google engineers only. 
Furthermore, actual installation of models is gated by changes to the 
ML Service ebuild file, which is protected by the usual code review 
process. 

■​ If using DLC, models become ChromeOS components that need to be 
authorized by the DLC team beforehand. Details TBD. 

●​  Installing published ML models 
○​ ebuild package for copying the library of published ML models into rootfs in 

the board image (/opt/google/chrome/ml_models/) 
○​ Since rootfs is verified we can assume that the ML models have not been 

modified or tampered with on disk. 
●​ Experiments and model variants are managed by their respective feature teams. 

○​ Feature teams can ship multiple models for which the ML Service has no 
understanding of how they are related to one another. 

○​ The feature code chooses which model to load for predictions based upon 
experiment flags that it has configured. 

https://docs.google.com/document/d/1LD8sn8rMOX8y6CUGKsF9-0ieTbl97xZORZ2D2MjZeMI/edit#


○​ In the future we could support automatically switching to the right model file 
based on fieldtrials. 

○​ Alternative: When requesting a model to be loaded, an optional 
variant/version could be supplied and if it is not available it could fallback to 
the official version (and log an error). 

Prediction API (Mojo) 
See: Chrome OS ML Service Mojo API.  
 
Summary of key design decisions for the Mojo API: 

●​ An async API to avoid features accidentally blocking the main/UI thread (e.g. I/O 
strict mode violations on Android). 

○​ Will make servicification easier (if/when needed). 
○​ Allows the Session Scheduler to queue requests to regulate resource usage. 

●​ ModelProvider API to load the given model (as specified by ModelSpec). 
●​ Model API to create predictor (the same model can be shared by different clients). 

○​ The loaded model life cycle is controlled by the Model mojo interface pipe. 
●​ Predictor takes client feature inputs (doing their own batching if necessary) and 

make predictions (In Tensor format). 

Client library (Chromium) 
See: ML Service Client Library 
A thin client library for feature teams to access the Mojo API from within Chromium. 

●​ Effectively just provides a wrapped version of the top-level 
MachineLearningServicePtr Mojo handle. 

●​ Takes care of performing Mojo-over-D-Bus bootstrapping as needed. 

Machine Learning Service daemon 
See: Chrome ML Service IPC Implementation 
 
Key considerations for the Machine Learning Service implementation and execution. 

●​ ebuild package to build a binary and deploy to /usr/bin/ 
●​ Statically links the TensorFlow library (from its ebuild) and applies compiler and 

linker optimizations to reduce binary size. 
●​ Start/Stop for each user session through Upstart script (Boot documentation) 

○​ Initialize the ML Service on-demand when first requested via D-Bus by a 
client (Chrome or System UI) (“D-Bus service activation”). 

○​ Alternative(1): Wait until after boot-complete and initialize with the System 
Services since the current use-cases (e.g. Tab Discarding, Screen dimming) 
are not critical during startup.  

https://docs.google.com/document/d/1pMXTG-OIhkNifR2DCPa2bCF0X3jrAM-U6UK230pBv5I/edit#
https://cs.chromium.org/chromium/src/chromeos/services/machine_learning/public/cpp/service_connection.h?q=MachineLearning+ServiceConnection&sq=package:chromium&dr=CSs&l=18
https://docs.google.com/document/d/1EzBKLotvspe75GUB0Tdk_Namstyjm6rJHKvNmRCCAdM/edit#
https://www.chromium.org/chromium-os/chromiumos-design-docs/boot-design


○​ Alternative(2): Need to start as part of the System Application phase, which 
starts Chrome and also the System Power Management service 

●​ Run in a minijail sandbox 
○​ Limit the capabilities, namespaces and system API calls (seccomp-bpf) 

 

TensorFlow Lite vs TensorFlow 
Update 2018-09: We decided to switch to TF Lite simply because several potential early 
clients of ML Service are training TF Lite models. Full TensorFlow will likely still be required 
to support future training (e.g. federated learning by integrating FCP). 
Original discussion below. 
 
With the release of the TF Lite developer preview (v1.5.0) there is also an option of using 
this for ML inference in the client and should come with smaller binary size impact (< 300 
KB), as well as support more compact models for faster evaluation and smaller 
memory/storage requirements. 
 
At this stage TF Lite does not fully support sparse feature vectors, which for example would 
be useful for URL strings as input to the Tab Discarder, and does not support all of the 
TensorFlow Ops.  Also, focusing initially on releasing only for Chrome OS there is less 
pressure on binary size and appears it will be acceptable to ship a full version TensorFlow 
(with Selective Registration of Ops). 
 
The TF Lite source has a much smaller overall footprint and has a potentially more 
manageable set of external deps. 
Shipping TF Lite will be kept as an option though and reconsidered if issues are 
encountered with building and packaging full TensorFlow in Bazel (or cmake).   
 

TensorFlow Versioning 
Need to be mindful of potential Issues with forward and backward compatibility: 

●​ Ops required by the model were not compiled into the runtime (Selective 
Registration set of Ops changes over releases) 

●​ It is also not uncommon that the (undocumented) behavior for a particular 
TensorFlow OP may change, causing a breakage for existing models. 

●​ Server-side training vs client-side runtime skew of TensorFlow versions (built at 
different CLs/revisions) 

 
The plan is to check the ML models (or source URIs to fetch them from static storage) into 
the chromiumos repository, which avoids issues of forward compatibility (i.e. evaluating 

https://developers.googleblog.com/2017/11/announcing-tensorflow-lite.html
https://github.com/tensorflow/tensorflow/releases/tag/v1.5.0-rc0


new ML models on old runtimes) and verifies backward compatibility through integration 
tests for each of the published ML models. 

●​ ebuild package for installing the ML models into a folder in rootfs of the system 
image. 

●​ All Ops required by the published ML models will be kept by the Selective 
Registration process. 

●​ Avoid forward compatibility issues by ensuring that the TensorFlow revision of the 
runtime in Chrome OS is up-rev’d to be equal to or ahead of the TensorFlow revision 
used for training on the server (google3). 

●​ Define a test framework for verifying that: 
○​ the published models can be loaded (without error) by the TensorFlow 

runtime library in Chrome OS. 
○​ The models predict correctly using golden inputs/outputs. 
○​ This will catch any cases of Ops erroneously dropped during Selective 

Registration and adds some protection against undocumented changes in 
behavior for existing Ops. 

 
Alternative: Design a versioning scheme which creates a digest of supported Ops for each 
binary (Chrome OS release)  

●​ Which is checked against the set of required Ops for each model prior to loading. 
This would guard against potential crashes due to missing Ops. 

●​ Integration tests for forward and backward compatibility could be added to also 
check for subtle/undocumented behavior changes for existing Ops. 

●​ This would open the opportunity to ship the models independent of the runtime 
binary 

○​ Which could allow for faster experiment cycles for assessing new models. 
○​ Would need to also need to design the model download mechanism, 

including signing/verification of models which are loaded from disk. 
●​ Decision: This option can be reopened in the future if the flexibility of evaluating 

models over the broadest set of runtimes is considered worth the engineering 
effort. 

Metrics 

Success metrics 
Events: (by model/version) 

●​ Model loaded 
●​ Inference started 
●​ Inference completed (or failed) 

 
Performance Timers: (by model/version, bucketed) 



●​ Model load time and session initialization time 
○​ Time to first inference (from cold start) 

●​ Inference time (per eval) 
 
System health impact: 

●​ Process stats for the ml_service 
●​ Memory used by model/version (model + session size) (When there are multiple 

models) 

Regression metrics 
At launch, no features will be using the Learning Component, so it will be mainly: 

●​ The overall system health/stability metrics that will need to be monitored for 
anomalies (crash reports, app start latency). 

●​ It will also be worth keeping an eye on the system update rates (and failures) for 
Chrome OS to see if they are affected by the increase in binary size.  

 
In the future, features which use the Learning Component will need to watch for any 
regressions: 

●​ for their specific performance metrics (baseline vs new ML model), 
●​ and consider any system health impacts. 

Experiments 
N/A - each client feature will have its own experiments setup to choose from the set of 
models available on the device. 

Rollout plan 
Waterfall. 

Core principle considerations 

Speed 
●​ Assess binary size impact 

○​ Estimated <3 MB for TF runtime using Selective Registration of Ops 
●​ Measure any Chrome OS startup cost 

○​ May be impacted by when the ML Service is initialized 
●​ Assess memory-use for a trivial session 

○​ ML Service initialized 
○​ Load a toy model (e.g. add 2 scalars), or model from a feature team and eval 



■​ Possibly use early versions of the power management or tab discarder 
models if available. 

●​ Battery use, CPU/GPU execution time 
○​ Interrupt/Cancel model evals which overuse of CPU (most likely bugs) and log 

an error event. 
○​ E.g. session running for longer than X minutes, or continuous spamming of 

small requests (over max_count per minute/hour/day). 
 
Out of scope: 

●​ May need to support in-process/synchronous inferencing for use-cases in the future 
requiring very low-latency evals (e.g. stylus on ChromeOS) and future 
high-bandwidth use-cases for images, video and audio streams.  Not considering 
this for v1.  Feature teams may be able to use either the Chrome Assist Ranker or 
code-generation frameworks (Neurosis, tf.native) in the interim if latency is a 
concern. 

Security 
Main security issues to consider are: 

●​ Size and complexity of TensorFlow as a third-party library, especially since it has a 
parser for model graphs/snapshots. 

○​ Sandbox the Machine Learning Service by running it under minijail 
(kerrnel@). 

○​ See Chrome OS Sandboxing documentation 
●​ Executing of TensorFlow models which have been downloaded (either as part of 

rootfs or via DLC or component updater) and stored on the client would present a 
potential attack surface. 

○​ Sophisticated ML models are essentially programs which we load and run 
with the TensorFlow runtime. 

○​ By installing models in rootfs when building the system image, they will be 
protected by the system integrity checks on startup. 

○​ The policy will be that only Google engineers can be authors of ML models 
which are checked into the chromiumos repo and subsequently installed on 
rootfs. At a minimum, this can be enforced through the normal code-review 
process. 

■​ Update: The steps (only possible for Google engineers) for adding a 
model that will be deployed to rootfs for use by ML Service is 
documented here. 

Privacy considerations 

https://www.chromium.org/chromium-os/developer-guide/chromium-os-sandboxing
https://chromium.git.corp.google.com/chromiumos/platform2/+/ce087c3b1fa4c31e18202e9a17c18bd3712de8d3/ml/docs/publish_model.md


Teams which use the Machine Learning Component/Service will be responsible for the 
privacy reviews for their individual feature launches. 
 
For the Machine Learning Service v1: 

●​ All metrics regarding the performance and stability of the system will be aggregated 
through UMA. 

●​ No user data passed to the Machine Learning Service API will be logged, sent to a 
server or stored on device. 

Testing plan 
Integration tests: 

●​ Model integration/regression tests: Need to verify that the correct set of OPs has 
been included in the TensorFlow build (via Selective Registration), as trying to load a 
model which uses a missing OP will cause an error. 

○​ Each model author will need to add an integration/golden test for the ML 
Service which verifies that their model loads and is successfully evaluated by 
the TensorFlow runtime it is bundled with.  Run during the test phase when 
building releases. 

●​ Test that the D-Bus -> Mojo IPC bootstrap succeeds. 
●​ Tests to verify graceful failure (i.e. appropriate Mojo error) when: 

○​ A requested model is not available (not present in the archive) 
○​ Errors during model evaluation 

 
Unit tests: 

●​ Coverage at >70% for the ML Service. 

Follow up work 
Which of these is the first priority is TBD depending on prospective clients: 
 

●​ Federated Learning in Chrome using a cross-platform implementation of go/brella 
○​ Supports on-device learning which has a stronger privacy story and would 

allow training ML models using a broader spectrum of user data. 
●​ Expand support to TensorFlow 

○​ Assess the supported Ops (Sparse tensors, gradient Ops) 
●​ Take advantage of any dedicated ML hardware that may be present on devices 
●​ Look at making the Machine Learning Service available more generally in Chrome 

and across its other platforms. 

http://go/brella


Appendix 
Working/discussion docs [Google-internal links]: 

●​ Chrome Learning Component - Working Doc (early thoughts) 
●​ Chrome On-device Learning (proposal) 
●​ Privacy: On-device Learning in Chrome 
●​ Tracker: ML Service Tasks tab in go/ck-ml-tracker 

Document history 
Date Author Description 

2017-11 kennetht Initial draft design (original plans for Chrome-wide service) 

2018-01 kennetht, 
renjieliu 

First draft for review (redesigned as Chrome OS service) 

2018-03 kennetht, 
martis 

First approved design (crbug.com/811014) 

2018-08 amoylan Add client library 

2018-09 amoylan TFLite not TF for V1. Update testing outline. 
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https://docs.google.com/document/d/1Lq-PfoTkschIkA8ue7yp78qhfBexQuOJSPOjjNnvtb8/edit#heading=h.2f4baxoea3os
http://go/ck-ml-tracker
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