ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «ГАЗПРОМ»

Общество с ограниченной ответственностью «Научно-исследовательский институт природных газов и газовых технологий-ВНИИГАЗ»

Общество с ограниченной ответственностью «Информационно-рекламный центр газовой промышленности»

СТАНДАРТ ОРГАНИЗАЦИИ

ДОКУМЕНТЫ НОРМАТИВНЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ, СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ ОБЪЕКТОВ ОАО «ГАЗПРОМ»

ИНСТРУКЦИЯ ПО ПРОВЕДЕНИЮ КОНТРОЛЬНЫХ ИЗМЕРЕНИЙ ВРЕДНЫХ ВЫБРОСОВ ГАЗОТУРБИННЫХ УСТАНОВОК НА КОМПРЕССОРНЫХ СТАНЦИЯХ

СТО ГАЗПРОМ 2-3.5-038-2005

Дата введения - 2005-12-15

г. Челябинск

ПРЕДИСЛОВИЕ

- 1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Научно-исследовательский институт природных газов и газовых технологий ВНИИГАЗ»
- 2 ВНЕСЕН Департаментом по транспортировке, подземному хранению и использованию газа OAO «Газпром»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Распоряжением ОАО «Газпром» от 30 августа 2005 г. № 205
- 4 ВВОДИТСЯ ВЗАМЕН РД 51-164-92 «Временная инструкция по проведению контрольных измерений вредных выбросов газотурбинных установок на компрессорных станциях»

ВВЕДЕНИЕ

Инструкция является переработанным и дополненным изданием РД 51-164-92 «Временная инструкция по проведению контрольных измерений вредных выбросов газотурбинных установок на компрессорных станциях» с учетом:

- многолетнего опыта использования РД 51-164-92;
- требований ГОСТ Р ИСО 11042-1-2001. Установки газотурбинные.

Методы определения выбросов вредных веществ;

- современной номенклатуры газотурбинных газоперекачивающих агрегатов.

Стандарт разработан авторским коллективом ООО «ВНИИГАЗ» в составе:

к.т.н. В.А. Щуровский, к.т.н. Ю.Н. Синицын, А.В. Черемин, В.И. Корнеев, Г.С. Степанова (лаборатория газотурбинной техники и технологии);

к.т.н. Г.С. Акопова, Л.В. Шарихина, Н.Ю. Круглова (лаборатория защиты окружающей среды).

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт предназначен для определения показателей выброса вредных (загрязняющих) веществ, содержащихся в отработавших (выхлопных) газах газотурбинных установок (ГТУ), и оценки их соответствия требованиям нормативных документов.

Стандарт предназначен для организации и проведения периодических экологических испытаний газотурбинных установок на объектах дочерних обществ и организаций ОАО «Газпром». Стандарт рекомендуется использовать при проведении приемочных испытаний новых типов газотурбинных установок, а также оценки эффективности модернизаций газотурбинных установок в целях снижения выбросов загрязняющих веществ.

Примечание - Технические условия (ТУ) по перечню ГПА и ГТУ (двигателей) данного СТО находятся в ООО «ВНИИГАЗ».

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем документе использованы ссылки на следующие стандарты:

<u>ГОСТ 5542-87</u> Газы горючие природные для промышленного и коммунально-бытового хозяйства. Технические условия.

<u>ГОСТ 28775-90</u> Агрегаты газоперекачивающие с газотурбинным приводом. Общие технические условия.

ГОСТ Р ИСО 11042-1-2001 Установки газотурбинные. Методы определения выбросов вредных веществ.

<u>СТО ГАЗПРОМ-2005</u> Каталог удельных выбросов вредных веществ газотурбинных газоперекачивающих агрегатов.

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и по соответствующим указателям, составленным на 1 января текущего года, и информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И СОКРАЩЕНИЯ

В настоящем стандарте применены следующие термины с соответствующими определениями, условные обозначения основных расчетных параметров и сокращения.

3.1 Термины и определения

- 3.1.1 концентрация C_i мг/м³: Масса компонента i, содержащаяся в 1 м³ сухого отработавшего газа при 0 °С и 0,1013 МПа (ГОСТ Р ИСО 11042-1).
- 3.1.2 приведенная концентрация i, мг/м³: Приведенная к 15 % содержания кислорода (по объему) масса компонента i, содержащаяся в 1 м³ сухого отработавшего газа при 0 °C и 0,1013 МПа и вычисляемая по формуле

$$C_i^{15} = C_i \cdot \frac{20,95 - 15}{20,95 - O_2},\tag{3.1}$$

где ${\rm O_2}$ - объемная концентрация кислорода в осушенном отработавшем газе, %.

3.1.3 мощность выброса M_i , г/с: Массовое количество выброса компонента i с отработавшими газами в единицу времени, вычисляемое по формуле

$$M_i = C_i \cdot Q_2 \cdot 10^{-3}, \tag{3.2}$$

где Q_2 - объемный расход сухих отработавших газов газотурбинной установки при 0 °C и 0,1013 МПа, м³/с

3.1.4 параметры номинального режима газотурбинных газоперекачивающих агрегатов: Параметры при номинальной мощности по ТУ и стандартных станционных условиях: температуре воздуха на входе в двигатель +15 °C, барометрическом давлении 0,1013 МПа, относительной влажности 60 %, с учетом гидравлических сопротивлений входного и выходного трактов, без

технологических отборов воздуха, при отсутствии утилизационного теплообменника (Γ OCT <u>28775</u>).

Примечания:

- 1. Параметры номинального режима газотурбинных газоперекачивающих агрегатов приведены в таблице А.1 (Приложение А), СТО ГАЗПРОМ, 2005.
- 2. Для других типоразмеров газотурбинных установок, а также при их модернизации параметры номинального режима определяются технической документацией (техническим заданием, техническими условиями, техническими спецификациями и др.), утвержденной в установленном порядке.

3.2 Сокращения

В(3)В - вредное (загрязняющее) вещество;

ГПА - газоперекачивающий агрегат;

ГТУ - газотурбинная установка;

КПД - коэффициент полезного действия;

КС - камера сгорания;

НД - нормативный документ

СТ - силовая турбина;

ТВД - турбина высокого давления.

4 ОСНОВНЫЕ ПОЛОЖЕНИЯ

- 4.1 Стандарт разработан применительно к использованию переносных газоанализаторов типа «Testo», «IMR», «ДАГ» [1] и других газоанализаторов, а также при использовании методов анализа проб продуктов сгорания, обеспечивающих требования ГОСТ Р ИСО 11042-1.
- $4.2~\mathrm{B}$ качестве топливного газа ГТУ используют природный газ, перекачиваемый по газопроводам и подаваемый потребителям по <u>ГОСТ 5542</u>, который практически не содержит соединений серы. Поэтому при измерении концентрации ангидрида серы (SO_2) получают значения, близкие к нулю, и данный компонент не является предметом контроля и учета в номенклатуре B(3)B.
- 4.3 Камеры сгорания современных ГТУ (КПД 98,5-99,5 %) обеспечивают высокий уровень полноты сгорания топлива. Поэтому содержание несгоревших углеводородов (в частности, метана), как правило, находится в пределах точности средств измерения. Концентрацию несгоревших углеводородов в отработавших газах определяют по ПНД Ф 13.1:2.26-99 [2] либо по другой методике количественного химического анализа, утвержденной в установленном порядке.
- 4.4 Основными компонентами продуктов сгорания для контроля являются оксиды азота и оксид углерода.

Концентрацию оксидов азота NO_x определяют как сумму оксида азота NO_2 в пересчете на NO_2 (ГОСТ Р ИСО 11042-1).

Допускается принимать содержание диоксида азота NO_2 в сумме оксидов азота NO_x в отработавших газах на срезе выхлопной трубы (шахты) 10% для регенеративных ГТУ и 5% для безрегенеративных ГТУ.

- 4.5 Номинальные значения концентраций и мощности выбросов оксидов азота NO_x близки (в пределах 5 %) к максимальным значениям этих параметров на всех возможных эксплуатационных режимах.
- 4.6 Номинальные значения концентрации и мощности выброса оксида углерода установлены таким образом, чтобы они были близки к максимальным значениям этих параметров в диапазоне эксплуатационных нагрузок от 70 до 100 %.

5 ОРГАНИЗАЦИЯ ИЗМЕРЕНИЙ

- 5.1 Подготовку мест для отбора проб отработавших газов производят на остановленном газоперекачивающем агрегате.
- 5.2 Отбор проб продуктов сгорания производят через отверстия диаметром 12 мм в выхлопной трубе (шахте) ГТУ.
 - 5.3 Сечение отбора проб должно удовлетворять следующим требованиям ГОСТ Р ИСО 11042-1:
- представительность отбора проб (как правило, обеспечивают измерением поля концентраций для данного типа ГТУ);

- удобство и безопасность проведения отбора проб;
- отсутствие эжекции воздуха в отработавших газах.

Эксплуатируемый парк ГТУ в основном оснащен местами отбора

отработавших газов в соответствии с РД 51-164-92 [3]. Новые агрегаты поставляются со штатным местом отбора проб отработавших газов. Представительная точка отбора, как правило, соответствует глубине размещения зонда от 300 до 500 мм.

- 5.4 Не допускается отбор проб в сечении выброса отработавшего газа в атмосферу, так как при этом возможно подмешивание к пробе атмосферного воздуха (ГОСТ Р ИСО 11042-1).
- 5.5 Допускается отбор проб в сечениях до или после регенераторов (рекуператоров) и (или) котлов-утилизаторов при их наличии в составе ГТУ.
- 5.6 При двухпоточной выхлопной системе (агрегаты типа ГТ-700-5, ГТК-5, ГТ-750-6, ГТК-10, ГТНР-16, ГТК-25ИР, ГТНР-25И) измерения проводятся в каждом выхлопном газоходе, а результаты измерений осредняются.
- 5.7 Используемый газоанализатор должен иметь действующее свидетельство о поверке и документ, подтверждающий его соответствие требованиям безопасности.

6 ОБЪЕМ И УСЛОВИЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ; ИЗМЕРЯЕМЫЕ ПАРАМЕТРЫ

- 6.1 Для оценки соответствия данных содержания B(3)В сухого отработавшего газа нормативным данным должна быть обеспечена возможность работы ГТУ (нагрузка) на рабочих режимах в пределах ограничений, предусмотренных инструкцией по эксплуатации или по условиям работы газопровода.
 - 6.2 В отработавших газах ГТУ проводят измерения концентраций:
 - оксидов азота NO_x (включая определение соотношения оксида азота и диоксида);
 - оксида углерода СО;
 - кислорода О₂;
 - диоксида углерода СО₂.

Одновременно на режимах испытаний проводят регистрацию основных теплотехнических параметров ГТУ.

Типовой перечень измеряемых параметров приведен в таблице Б.1 (Приложение Б).

- 6.3 Измерения концентраций B(3)В в отработавших газах осуществляют согласно инструкции по эксплуатации используемого газоанализатора.
- 6.4 Измерения параметров, как правило, проводят на нескольких режимах (не менее трех) в диапазоне нагрузок от 70 % до максимальной, определяемой условиями испытаний.

Для оценки текущих параметров выброса В(3)В измерения проводят на штатном эксплуатационном режиме.

- 6.5 Допускается проведение экстраполяции полученных результатов до номинального режима (испытания при отрицательных температурах и/или незначительном изменении загрузки) с помощью типовой экологической характеристики агрегата.
- 6.6 Измерения проводят на установившихся режимах, т.е. когда отклонения основных параметров (температуры отработавшего газа и воздуха, частоты вращения) не превышают 1 %, концентрации NO, NO₂, CO не превышают ± 2 ppm, O₂, CO₂ не превышают ± 0.1 %.
- 6.7 При незначительных отклонениях измеренных концентраций B(3)В от средних значений замеры на одном режиме повторяют не менее трех раз, принимая для дальнейших расчетов их среднеарифметическую величину. В противном случае число необходимых замеров увеличивают (в соответствии с правилами статистической обработки результатов) и случайно выпавшие значения отбрасывают.

7 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 7.1 Для каждого режима испытаний результаты измерений концентраций B(3)B приводят к основной единице измерений $M\Gamma/M^3$ по соотношениям:
 - диоксид азота NO_2 : 1 ppm (объемные доли на миллион) = $1 \cdot 10^{-4}$ % = 2,053 мг/м³:
 - оксид азота NO: 1 ppm = $1 \cdot 10^{-4}$ % = 1,339 мг/м³;
 - оксид углерода CO: 1 ppm = $1 \cdot 10^{-4}$ % = 1,250 мг/м³.

7.3 Определяют мощность выбросов В(3)В.

7.3.1 Вычисляют коэффициент соотношения сухих и влажных продуктов сгорания

$$K_e = \frac{89.5}{110.5 - O_2},\tag{7.1}$$

где О₂ - измеренная концентрация кислорода в пробе, %.

7.3.2 Вычисляют расход сухих отработавших газов на срезе выхлопной шахты (трубы) Q_2 , м³/с:

- для всех типов ГТУ с нерегулируемой силовой турбиной

$$Q_{2} = Q_{2}^{0} \left(\frac{P_{4}}{P_{4}^{0}} \right)^{0.8} \cdot \left(\frac{288}{T_{3}} \right)^{0.5} \cdot \frac{P_{\alpha}}{0,1013} \cdot K_{e}; \tag{7.2}$$

- для ГТУ с регулируемой силовой турбиной (ГТК-10И, ГТК-10ИР, РGТ-10, ГТК-25И, ГТК-25ИР, ГТНР-25И (В), ГТНР-25И (С))

$$Q_2 = 0.97 \cdot Q_2^0 \cdot \overline{n}_{TBJ} \cdot \frac{288}{T_3} \cdot \frac{P_{\alpha}}{0.1013} \cdot K_e; \tag{7.3}$$

где \bigcirc^0_2 (м³/с) и \bigcirc^{-0}_4 (МПа) - соответственно, расход отработавших газов и абсолютное давление за осевым компрессором ГТУ на номинальном режиме;

 T_3 - температура перед компрессором ГТУ на режиме испытаний, K;

 P_{α} - барометрическое давление, МПа;

 P_4 - абсолютное давление за компрессором ГТУ, МПа;

 $K_{\rm B}$ - коэффициент соотношения объемных расходов сухого и влажного отработавшего газа;

⁷⁷ - относительная частота вращения осевого компрессора ГТУ (отношение фактической частоты вращения компрессора к ее номинальной величине);

0,97 - поправка на техническое состояние ГТУ.

Погрешность определения расхода отработавших газов по формулам (7.2), (7.3) составляет $\pm (4 \div 6)\%$.

- 7.3.3 Вычисляют мощность выброса оксидов азота и оксида углерода согласно формуле (3.2).
- 7.4 Производят оценку соответствия показателей выбросов требованиям НД.
- 7.4.1 Строят графические зависимости концентраций оксидов азота ($^{C}_{NO}$, и $^{C}_{NO}$) и оксида углерода ($^{C}_{CO}$) от температуры отработавших газов, используемой в качестве штатного измерения.

Примечание - При необходимости проводят экстраполяцию графиков до температуры, соответствующей номинальной температуре отработавших газов для данного типа ГТУ. Значения номинальных температур отработавших газов $\frac{70}{2}$ отработавших газов $\frac{7}{2}$ по типам агрегатов приведены в таблице A.1 (Приложение A).

7.4.2 По графикам $C_{NO_{A}} = f\left(T_{\text{MM}}\right)$ по величине номинальной температуры отработавших газов T_{MM}^{0} , вычисляют физическую $C_{NO_{A}}^{0}$ и приведенную $C_{NO_{A}}^{15}$ концентрацию оксидов азота на номинальном режиме.

По графику $C_{00} = f(T_{\text{мм}})$ определяют среднее арифметическое значение концентраций C_{000} и C_{000}^{15} (по трем точкам при максимальном, минимальном и среднем значениях температур отработавших газов в измеренном диапазоне).

7.4.3 Определяется соответствие приведенных концентраций $C_{NO_A}^{15}$ и C_{CO}^{15} (по <u>7.3.2</u>) на номинальном режиме нормативным данным, %, по формуле

$$K_i = \left(\frac{C_{i_0}^{15}}{C_i^{15^0}} - 1\right) \cdot 100,\tag{7.4}$$

где $C_{i_0}^{15}$ - приведенная фактическая концентрация на номинальном режиме;

і - приведенная номинальная концентрация в соответствии с нормативной документацией данного типа ГТУ (принимается по таблице A.1).

Если K_i не превышает ± 10 %, то концентрация компонента i-го вредного вещества агрегата соответствует нормам НД и принимается за номинал для данной ГТУ впредь до очередных контрольных испытаний.

Если K_i превышает ± 10 %, то при проведении вычислений согласно действующим инструкциям по учету валовых выбросов B(3)В вносят соответствующую корректировку для данного ГПА (или усредненно для цеха).

7.5 Алгоритм и пример обработки измеренных параметров приведены в <u>таблице В.1</u> и на рисунках <u>В.1</u> и <u>В.2</u> (Приложение В) по результатам испытаний агрегата ГПА-Ц-18 на четырех режимах (первый режим в данном случае является текущим штатным режимом).

ПРИЛОЖЕНИЕ А (СПРАВОЧНОЕ)

Таблица А.1 - Номинальные значения показателей ГПА

	Абсолютно е давление			ература по Приведенная концентрац ГТУ Тиж В(3)В			Мощнос		
Тип ГПА (тип двигателя)	Гип ГПА компрессор (тип ом высокого давления том давления давлени	газов на срезе выхлопн ой трубы C_2^0 , m^3/C	штатная точка измерен ия	значение К	оксидов азота С <i>NO</i> _A , мг/м ³	оксида углерода С ¹⁵ 0 мг/м ³	оксидов азота $M_{NO_{x_1}}^0$ г/с	оксида углерода $M^0_{{ m CO},\ { m r/c}}$	Концент рация кислоро да О ₂ , %
«Центавр Т-3002»	0,87	12,9	Перед СТ	883	195	70	1,67	0,60	16,8
«Центавр Т-4500»	0,99	14,3	Перед СТ	948	150	70	1,45	0,68	16,7
«Центавр Т-4700»	1,01	14,5	Перед СТ	949	90	70	0,91	0,71	16,6
«Taypyc-60 S»	1,21	17,0	После СТ	761	50	30	0,69	0,41	15,9
ГПА-4РМ	1,21	17,2	Перед СТ	860	130	130	1,35	1,35	17,2
ГТ-700-5	0,39	35,4	Перед ТВД	973	490	180	6,93	2,55	18,5
ГТК-5	0,39	35,4	Перед ТВД	973	490	180	6,90	2,53	18,6
ГТ-750-6	0,46	45,7	Перед ТВД	1023	180	110	3,33	2,03	18,5

ГТ-750-6М («Дон» 1-3)	0,46	45,6	Перед ТВД	1023	290	90	4,83	1,50	18,8
ГТ-6-750	0,57	37,1	После СТ	688	135	100	2,81	2,08	17,5
ГТН-6	0,57	37,1	После СТ	688	150	245	3,28	5,35	17,3
ГТН-6У	1,21	25,4	После СТ	683	150	150	2,58	2,58	16,8
ГПА-Ц-6,3 (НК-12СТ)	0,89	46,7	Перед СТ	753	140	300	3,06	6,55	18,0
ГПА-Ц-6,3 А (Д-336)	1,60	25,3	Перед СТ	883	150	300	2,62	5,24	16,7
ГПА-Ц-6,3 С (ДТ-71)	1,34	23,6	Перед СТ	917	150	300	2,58	5,16	16,4
ГПА-Ц-6,3Б (НК-14СТ)	0,97	28,2	Перед СТ	913	150	300	2,71	5,42	16,8
ГПА-Ц-8Б (НК-14СТ)	1,06	29,1	Перед СТ	988	150	300	3,33	6,66	16,2
ГПА-Ц-10Б (НК-14СТ-1 0)	1,06	29,2	Перед СТ	780	150	300	3,78	7,56	15,5
ГТК-10, ГТК-10М ¹⁾	0,44	66,5	ПередТ ВД После СТ	1053 813	180/60	60/180	5,16/1,7	1,72/5,1	18,3
ГПУ-10(ДР- 59)	1,01	67,6	После ТВД	833	145	60	4,37	1,81	18,1
ГТК-10И(М S-3002)	0,71	40,6	После СТ	806	230	60	7,61	1,91	15,8
ГТК-10ИР(MS-3002)	0,73	40,7	После СТ	816	230	150	5,51	3,59	17,3
PGT-10	1,40	33,2	После СТ	745	150	100	3,97	2,64	16,0
ГПА-10«Ур ал», ГПА-10ПХ Г «Урал»(ПС- 90ГП-3)	1,44	34,4	Перед СТ	953	100	100	2,65	2,65	16,1
ГПА-12«Ур ал», ГПА-12Р «Урал», ГПА-Ц-12Р «Урал» (ПС-90ГП-1	1,55	36,8	Перед СТ	1010	150	100	4,40	2,94	16,0

«Коберра» 182 («Эйвон»)	0,90	60,7	Перед СТ	898	200	210	7,81	8,20	17,0
ГТН-16	1,15	67,4	После СТ	681	250	280	11,80	12,85	16,7
ГТН-16М-1	1,16	66,4	После СТ	693	150	300	6,44	12,88	16,9
ГПУ-16, ГПА-16-М Ж (ДЖ-59)	1,27	76,2	Перед СТ	913	150	80	6,66	3,55	17,4
ГПА-Ц-16(НК-16СТ)	0,98	80,5	Перед СТ	823	150	300	7,26	14,52	17,2
«Коберра - 16МГ» ГПА-16МГ(ДГ-90)	1,90	54,8	После ТВД	893	150	300	5,87	11,75	16,5
ГПА-Ц-16С , ГПА-16ДГ «Урал» ²¹ (Д Г-90)	1,90	54,8	После ТВД	893	150/80	300/150	5,87/3,13	11,75/5,87	16,5
ГПА-16«Ур ал», ГПА-16Р «Урал», ГПА-Ц-16Р «Урал», ГПУ-16Р «Урал» (ПС-90ГП-2	2,01	47,3	После СТ	782	150	100	5,50	3,67	16,1
ГПА-Ц-16Н К38, ГПА-16 «Волга» (НК-38СТ)	2,60	42,8	Перед СТ	1033	150	150	5,47	5,47	15,6
ГПА-Ц-16А Л ГПА-16Р«У фа» PGT-21S, ГПА-16«Не ва», ГПА-16АЛ «Урал» ²⁾ (АЛ-31СТ)	1,76	51,2	Перед СТ	1043	150/110	300/300	5,62/4,12	11,25/11,25	16,4
ГТНР-16	0,71	72,2	После СТ	823	80	100	3,29	4,17	17,4
ГПА-Ц-18, ГПА-18НК «Урал» (НК-16-18С Т)	0,95	79,1	Перед СТ	863	140	100	7,13	5,09	17,0

ГТН-25-1	1,30	80,2	После СТ	773	400	500	26,65	33,31	15,7
ГТН-25	1,12	117,4	После СТ	701	180	480	14,66	39,08	16,6
ГПА-25/76- ДН80Л, ГПА-25ДН «Урал» ⁴⁾ (Д Н-80)	2,18	68,1/68,3	Перед СТ	1033	150/80	300/150	9,04/4,7 5	18,09/8, 91	15,4/15,
ГПА-Ц-25, ГПА-25 НК, ГПА-«Нева 25»(НК-36С Т)	2,31	79,2	Перед СТ	973	150	300	9,04	18,08	16,2
ГТК-25Н(М S 5002)	0,82	92,5	После СТ	764	175	50	12,56	3,59	16,1
ГТК-25ИР (MS 5002), ГТНР-25И (B) (MS5322R(B))	0,85	89,0	После СТ	775	230	130	12,31	6,96	17,2
ГТНР-25И (C) (MS5322 R(C))	0,87	93,2	После СТ	795	235	130	13,59	6,92	17,1

 $^{^{1)}}$ - модернизированная камера сгорания (ОАО «ОРМА», НПП «ЭСТ» / НПФ «Теплофизика») $^{2)}$ - штатная/малоэмиссионная камера сгорания $^{3)}$ и $^{4)}$ - штатная/малоэмиссионная камера сгорания

ПРИЛОЖЕНИЕ Б (ОБЯЗАТЕЛЬНОЕ)

Таблица Б.1 - Типовой перечень измеряемых параметров

Параметры	Обозначения	Единица измерения	Примечание
Барометрическое давление	P_{a}	МПа	Данные метеостанции или барометр-анероид
Температура атмосферного воздуха	t_{a}	°C	САУ агрегата
Относительная влажность атмосферного воздуха	φ	%	Данные метеостанции
Температура воздуха на входе в компрессор	t_3	°C	САУ агрегата. При отсутствии замера рассчитывается по формуле $t_3 = t_a + 2.5$ °C
Температура отработавших газов в штатной точке измерения (<u>табл. А.1</u>)	$t_{ ext{\tiny IIIT}}$	°C	САУ агрегата
Частота вращения компрессора высокого давления	$n_{B\!I\!\!I}$	об/мин	Тоже
Частота вращения компрессора низкого давления	$n_{H\!J\!\!\!/}$	об/мин	"_"

Частота вращения силовой турбины	n_{CT}	об/мин	"_"				
Избыточное давление воздуха за компрессором высокого давления	P_4 МПа		"_"				
Объемные доли или процентное содержание компонентов и В(3)В:							
Оксид азота	NO	ppm	Переносной газоанализатор				
Диоксид азота	NO_2	ppm	Тоже				
Оксид углерода	СО	ppm					
Кислород	O_2	%					
Диоксид углерода	CO_2	%					

Примечание - В качестве штатной точки измерения температуры отработавших газов могут быть использованы сечения перед ТВД, перед или после СТ и др.

ПРИЛОЖЕНИЕ В (СПРАВОЧНОЕ)

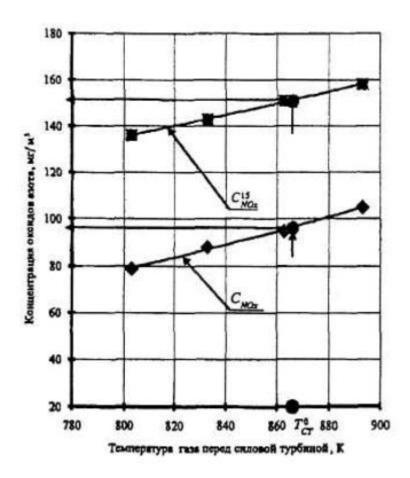
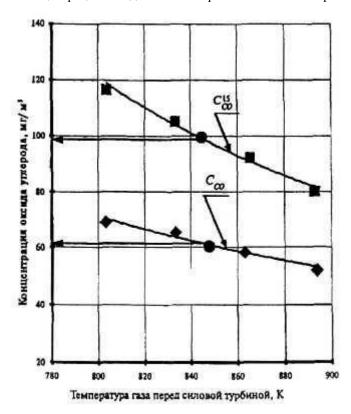

АЛГОРИТМ И ПРИМЕР ОБРАБОТКИ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ ГАЗОТУРБИННОГО АГРЕГАТА ГПА-Ц-18

Таблица В.1 - Результаты испытаний газотурбинного агрегата ГПА-Ц-18


П	05	Размерност	Δ	Режимы				
Параметр	Обозначение	Ь	Формула или источник	1	2	3	4	
Барометрическое давление воздуха	P_a	МПа	Замер		0,0	998		
Температура атмосферного воздуха	$t_{ m a} \ T_{ m a}$	°C <i>K</i>	Тоже t _a + 273	22,1 295,1	22,1 295,1	22,3 295,3	22,3 295,3	
Относительная влажность	φ	%	Замер	50,9	51,4	52,3	52,8	
Температура воздуха на входе в компрессор	t_3 T_3	°C K	Тоже t ₃ + 273	21,7 294,7	21,8 294,8	22,0 295,0	21,9 294,9	
Температура отработавших газов перед СТ	$egin{array}{c} t_2 \ T_2 \end{array}$	°C K	Замер $t_2 + 273$	590 863	620 893	560 833	530 803	
Частота вращения силовой турбины	n_{CT}	об/мин	Замер	5109	5301	4895	4672	
Частота вращения компрессора низкого давления	n _{КНД}	об/мин	Тоже	5316	5428	5189	5060	
Частота вращения компрессора высокого давления	$n_{\mathit{KB}\!\mathit{\square}}$	об/мин	-«-	6844	6951	6726	6612	
Давление воздуха за компрессором:								
- избыточное	P_4	МПа	Замер	0,868	0,915 0	0,817 9	0,769 8	
- абсолютное	P_4	МПа	$P_4 + P_{\alpha}$	0,968 7	1,014 8	0,917 7	0,869 6	

Концентрация в сухих отработавших газах:							
- оксида азота	NO	ppm	Замер	43	48	39	34
- диоксида азота	NO_2	ppm	То же	3,3	3,1	3,8	4,5
- оксида углерода	CO	ppm		38	34	44	47
- диоксида углерода	CO_2	%	-«-	2,2	2,3	2,1	2,0
- кислорода	O_2	%	-«-	17,2	17,0	17,3	17,5
- оксидов азота	$C_{NO,}$	$M\Gamma/M^3$	2,053(NO+NO ₂)	95	105	88	79
- оксида углерода	C _{MO,} C _{co}	MΓ/M ³	1,250·CO	59	53	65	68
Приведенная концентрация (при 0 °C, $0,1013~\text{M}\Pi a$ и $15\%~\text{O}_2$) в сухих отработавших газах:							
- оксидов азота	$C_{NO_{\!\scriptscriptstyle A}}^{15}$	$M\Gamma/M^3$	20,95-15 · C,00,	151	158	143	136
- оксида углерода	$C_{ m co}^{ m 15}$	$M\Gamma/M^3$	$\frac{20,95-15}{20,95-O_2} \cdot C_{co}$	94	80	106	117
Коэффициент соотношения объемных расходов сухого и влажного отработавших газов	$K_{\scriptscriptstyle m B}$	-	89,5 110,5 -O₂	0,958	0,957	0,960	0,962
Расход сухих отработавших газов	Q_2	м ³ /С	$Q_2 = Q_2^0 \left(\frac{P_4}{P_4^0} \right)^{0.8} \cdot \left(\frac{288}{T_3} \right)^{0.5} \cdot \frac{P_a}{0.1013} \cdot K_r;$	74,9	77,6	71,8	68,9
Мощность выброса:							
- оксидов азота	$M_{no_{\gamma}}$	г/с	$C_{\scriptscriptstyle MO_{\scriptstyle m v}}\cdot Q_{\scriptstyle 2}\cdot 10^{-3}$	7,1	8,1	6,3	5,4
- оксида углерода	M_{CO}	г/с	$C_{_{m{OO}_{_{m{v}}}}}\cdot Q_{2}\cdot 10^{-3}$ $C_{_{m{CO}}}\cdot Q_{2}\cdot 10^{-3}$	4,4	4,1	4,7	4,7
Номинальные значения параметров:							
- абсолютное давление за компрессором высокого давления	P_{+}^{0}	МПа	<u>Таблица А.1</u>		0,	95	
- температура отработавших газов перед СТ	T_{on}^0	K	Тоже		80	63	
- расход отработавших газов	Q_2^0	м³/с	-«-		79	9,1	
Концентрация B(3)В в сухих отработавших газах:							

- оксидов азота	$C_{NO_{r_0}}$	MΓ/M ³	<u>п. 7.3.2,</u> рисунок В.1	96
- оксида углерода	$C_{NO_{n_0}}$ C_{CO_0}	$M\Gamma/M^3$	<u>п. 7.3.2,</u> рисунок В.2	61
Приведенная концентрация в сухих отработавших газах:				
- оксидов азота	$C_{NO_{n_0}}^{15}$ $C_{CO_0}^{15}$	мг/м³	<u>п. 7.3.2,</u> рисунок В.1	151
- оксида углерода	C CO ₆	MΓ/M ³	<u>п. 7.3.2,</u> рисунок В.2	99
Величина нормативной приведенной концентрации:				
- оксидов азота	$C^{15_0}_{NO_{\lambda}}$	MΓ/M ³	<u>Таблица А.1</u>	140
- оксида углерода	$C^{1S_0}_{NO_{\lambda}} = C^{1S_0}_{OO}$	MΓ/M ³	Таблица А.1	100
Коэффициент соответствия нормативной концентрации:				
- оксидов азота	$K_{NO_{\lambda}}$	%	$\left(\frac{C_{M\mathcal{O}_{V_b}}^{13}}{C_{M\mathcal{O}_{V}}^{13_b}} - 1\right) \cdot 100$	+7,9
- оксида углерода	K_{co}	%	$\left(\frac{C_{CO_b}^{15}}{C_{CO}^{15_b}} - 1\right) \cdot 100$	-1,0

 $C_{
m NO}$ -измеренная, $C_{
m NO}^{15}$ -приведенная Рисунок В.1 - Концентрация оксидов азота в отработавших газах агрегата ГПА-Ц-18

 $C_{\rm CO}$ - измеренная, $C_{\rm CO}$ - приведенная Рисунок В.2 - Концентрация оксида углерода в отработавших газах агрегата ГПА-Ц-18 Пример - Обработка результатов испытаний газотурбинного агрегата ГПА-Ц-18.

Алгоритм и пример обработки измеренных параметров приведены в <u>таблице В.1</u> и на рисунках В.1 и В.2 по результатам испытаний агрегата ГПА-Ц-18 на четырех режимах (первый режим в данном случае является текущим штатным режимом).

Результаты испытаний показывают, что у обследованного агрегата номинальные значения концентраций оксидов азота (рисунок B.1) и оксида углерода (рисунок B.2) составляют, соответственно, 151 и 99 мг/м³.

Сравнивая эти значения с данными таблицы А.1 (Приложение А), получаем

$$K_{NO_{\lambda}} = \left(\frac{151}{140} - 1\right) \cdot 100 = 7,9\%;$$

$$K_{CO} = \left(\frac{99}{100} - 1\right) \cdot 100 = -1\%;$$

т.е. обследованный агрегат по приведенным концентрациям оксидов азота и углерода в отработавших газах соответствует показателям НД, приведенным в таблице А.1 (Приложение А). Таким образом, при проведении вычислений выбросов В(3)В номинальные значения оксидов азота и углерода допускается принимать по данным таблицы А.1 (Приложение А).

Согласно результатам испытаний газотурбинного агрегата ГПА-Ц-18, приведенным в таблице В.1, мощность выброса на текущем штатном режиме составляет по оксидам азота $M_{\rm NO}$ = 7,1 г/с и оксиду углерода $M_{\rm CO}$ = 4,4 г/с.

БИБЛИОГРАФИЯ

- [1] Инструкции по эксплуатации газоанализаторов типа «Testo», «IMR», «ДАГ».
- [2] Перечень методик выполнения измерений концентраций загрязняющих веществ в выбросах промышленных предприятий. НИИ «Атмосфера» МПР России, 2001 (в т.ч. ПНД Ф 13.1:2.26-99 «Методика выполнения измерений массовой концентрации предельных углеводородов C_1 - C_5 , C_6 и выше (суммарно), в воздухе рабочей зоны и промышленных выбросах методом газовой хромотографии»).
- [3] РД 51-164-92 «Временная инструкция по проведению контрольных измерений вредных выбросов газотурбинных установок на компрессорных станциях, ВНИИГАЗ».

Ключевые слова: инструкция, выбросы, контрольные измерения, вредные (загрязняющие) вещества, отработавшие (выхлопные) газы, газотурбинные установки ГПА