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Abstract

Linear classifiers are a tool used by neuroscientists to quantify the
information content of neural population codes and the limits imposed by
correlations in neural activity. However, the most commonly used
classification methods are prone to overfitting on the high-dimensional,
noisy datasets produced by modern neuroimaging technologies. Here, we
introduce a novel classifier (also called “decoder” in the neuroscience
literature) to overcome these limitations. Our approach, the Gaussian
process multi-class decoder (GPMD), is well-suited to decoding a
continuous low-dimensional variable from high-dimensional population
activity, and provides a platform for assessing the importance of correlations
in neural population codes. The GPMD is a multinomial logistic regression
model with a Gaussian Process prior over the decoding weights. We provide
a spectral variational inference method for fitting the GPMD to data, which
scales to datasets with hundreds or thousands of neurons and performs
especially well in datasets with more neurons than trials. We apply the
GPMD to recordings from primary visual cortex in three different species:
monkey, ferret, and mouse. Our classifier achieves state-of-the-art accuracy
on all three datasets, and substantially outperforms independent Bayesian
decoding, showing that knowledge of the correlation structure is essential
for optimal decoding in all three species. We then use our classifier to
examine the problems of model mismatch, cortical microcolumn structure,
and how neural coding strategies are modulated in the presence of noise.
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