Fix Taker Private Key Handover Exploit

Name and Contact Information

NAME: ARUNABHA DHAL

EMAIL ID: arunabhadhal04@gmail.com

DISCORD: Tukan003

UNIVERSITY: INDIAN INSTITUTE OF TECHNOLOGY INDORE
COUNTRY: INDIA

GITHUB: https://github.com/arunabha003

LINKEDIN: https://www.linkedin.com/in/arunabha-dhal-23189624b/

Synopsis:

This project addresses a vulnerability in the Coinswap protocol where a taker can unfairly complete a
swap by withholding their private key from earlier makers, forcing honest makers to use on-chain
fallback transactions that increase fees and compromise privacy. The solution is to reverse the key
handover order: after the hash preimage is revealed, the taker must first send their private key to the
maker, who verifies its validity before sending their own key. This change ensures fairness, prevents
exploitation, and preserves the privacy and efficiency of the Coinswap protocol.

Project Plan:

1. Introduction and Motivation

In the current Coinswap protocol flow, there exists a critical vulnerability that undermines the fairness of the
system. After analyzing the protocol flow diagram and codebase, we've identified that the taker (Alice) can
complete a coinswap by only revealing the hash preimage to the last maker in the hop chain (Charlie),
thereby obtaining the multisig private keys for that final swap. However, Alice can then refuse to share her
own multisig private key with earlier makers like Bob.

This asymmetry creates a situation where:

e The taker receives the benefits of the swap (obtaining Charlie's private key).
e Earlier makers are forced to use on-chain contract transactions (HTLCs) to claim their funds

e These on-chain fallbacks incur additional mining fees

https://github.com/arunabha003
https://www.linkedin.com/in/arunabha-dhal-23189624b/

e Privacy is compromised by revealing the swap link on-chain.
e Honest makers are unfairly punished despite successful swap completion

The vulnerability exists because of the sequence in which keys are exchanged. Currently, after receiving
the hash preimage, makers send their private keys first, giving takers the ability to complete their portion
of the swap without fulfilling obligations to earlier participants.

2. Reversed Key Handover Solution

Goal: Ensure protocol fairness by modifying the private key handover sequence so takers must fulfill their
obligations before receiving the maker's private key.

Implementation Plan: We will modify the key handoff sequence in the protocol as follows:

1. Message Flow Revision:

Rather than having the maker send their private key first after receiving the hash preimage, we will
reverse the order:

e Taker sends hash preimage to maker
e Taker sends their private key to maker
e Maker verifies the private key is valid

e Only after successful verification does maker send their private key to taker

This ensures that takers cannot gain an unfair advantage without first providing their portion of the
multisig.

2. Protocol Message Types:

We will replace the generic RespPrivKeyHandover message with specific message types to clearly distinguish
the direction of key handover:

e TakerPrivKeyHandover (Taker — Maker)
e MakerPrivKeyHandover (Maker — Taker)

This distinction ensures clear separation of responsibilities and makes the protocol flow explicit.

3. Key Verification Process:

When the maker receives the taker's private key, they must verify:

e The private key is valid (properly formatted)
e The key corresponds to the expected public key previously shared
e The key can correctly derive the multisig address used in the funding transaction

Only if all verifications pass will the maker send their own private key. This prevents takers from sending

invalid keys.

4. Fallback Mechanism:

If verification fails or timeouts occur:

The maker will not send their private key

Both parties will fall back to on-chain HTLC contract transactions
The hash preimage will still allow claiming funds on-chain

An appropriate error message will be returned to the taker

This ensures protocol robustness even when a party attempts to cheat.

3. Code Implementation Details:

1. Message Protocol Updates (src/protocol/messages.rs):
This code modifies the protocol message types to support directional private key handover. We're
replacing the generic RespPrivKeyHandover message with two distinct messages:

e TakerPrivKeyHandover: Sent from taker to maker containing the taker's private key

e MakerPrivKeyHandover: Sent from maker to taker containing the maker's private key

This directional distinction is crucial for enforcing the correct order of key exchange. We also add a new
error type InvalidPrivateKey to the ErrorPayload enum which will be used when the maker detects that the
taker has provided an invalid key.

Code Template :

/
pub enum Message {
RespPrivKeyHandover (PrivateKeyData),

pub enum Message {
TakerPrivKeyHandover(PrivateKeyData),
MakerPrivKeyHandover(PrivateKeyData),

2. Key Verification Implementation (src/protocol/verification.rs):
This code implements a new KeyVerifier class that handles the critical security verification of the taker's
private key. The verification happens in two parts:

1. verify_public_key_match: This method confirms that the provided private key actually
corresponds to the public key that the taker previously shared during the protocol handshake.
This ensures the taker isn't providing a different key.

2. verify_multisig_capability: This method checks that the private key, when combined with the maker's
public key, correctly recreates the multisig address used in the funding transaction. This verifies that
the key can actually be used to spend from the multisig address.

3. create_multisig_address: This helper function implements the Bitcoin-specific logic for creating a
2-of-2 multisig address from two public keys. This follows the same pattern used elsewhere in
the codebase to ensure consistent address generation.

Code Template :

pub struct KeyVerifier {

}

impl KeyVerifier {
pub fn new(expected_pk: PublicKey, ms_addr: Address) -> Self { }
pub fn verify public_key match(&self, sk: &SecretKey) -> bool { }
pub fn verify multisig capability(&self, sk: &SecretKey, mpk: &PublicKey) -> bool {
pub fn verify(&self, sk: &SecretKey, mpk: &PublicKey) -> bool {
self.verify public_key match(sk) && self.verify multisig capability(sk, mpk)

}
}

fn create_multisig address(kl: &PublicKey, k2: &PublicKey) -> Address {

3. Taker Protocol Modifications (src/taker/protocol.rs):
This code modifies the taker's protocol implementation to use the new key handover sequence. The key
changes are:

1. send_private_key: Now uses the specific TakerPrivKkeyHandover message type instead of the generic
one, making the protocol flow explicit.

2. receive_maker_private_key: Modified to expect the specific MakerPrivKeyHandover message type from
the maker.

3.complete_swap: The most important change - this method implements the new sequence where the
taker sends their private key first, then waits for the maker's key. This is the reverse of the original
sequence and prevents the exploit.

Code Template :

impl TakerProtocol {
pub fn send_hash_preimage(&self, x: HashPreimage) -> Result<(), ProtocolError> {
pub fn send_private_key(&self, key: PrivateKeyData) -> Result<(), ProtocolError> {

pub fn receive_maker_private_key(&self) -> Result<PrivateKeyData, ProtocolError> {

pub fn complete swap(&self, hop_index: usize) -> Result<(), ProtocolError> {

Ok(())

4. Maker Protocol Modifications (src/maker/protocol.rs):

This code modifies the maker's protocol implementation to:

1. receive_taker_private_key: Expect and process the new TakerPrivkeyHandover message type from the
taker.

2. send_private_key: Use the new MakerPrivKeyHandover message type when sending the maker's
private key to the taker.

3. handle_private_key_handover: This is the critical method that implements the new secure flow:

First, receive and verify the hash preimage

Then, receive the taker's private key

Verify that the taker's key is valid for the multisig address

Only after successful verification, send the maker's private key

If verification fails, send an error message and do not reveal the maker's key

The verification step is crucial - it uses the KeyVerifier class we defined earlier to ensure that the taker has
provided a valid private key that corresponds to their public key and can be used for the multisig address.
Code Template :

impl MakerProtocol {
pub fn receive_hash_preimage(&self) -> Result<HashPreimage, ProtocolError> {
pub fn receive_taker_private_key(&self) -> Result<PrivateKeyData, ProtocolError> {

pub fn send_private_key(&self, key: PrivateKeyData) -> Result<(), ProtocolError> {

pub fn handle_private_key handover(&self) -> Result<(), ProtocolError> {

Ok(())

4. Testing Strategy

Our testing approach will validate both the cryptographic correctness of the key verification and the protocol
flow changes:

1. Unit Tests:

1.Private Key Verification Tests:

These unit tests validate the core cryptographic verification functionality:

e test_valid_private_key_verification: Tests that a legitimate private key is correctly verified. This
ensures that our verification logic accepts valid keys that match the expected public key and can be
used for the multisig address.

e test_invalid_private_key_verification: Tests that a wrong private key is rejected. This ensures that
our verification logic correctly detects when an invalid key is provided that doesn't match the
expected public key.

e test_public_key_match_only: Tests a specific edge case where a key matches the public key but isn't
valid for the multisig address when paired with a different maker key. This ensures our verification is
comprehensive and checks both aspects correctly.

These tests use the Bitcoin secp256k1 library to generate actual cryptographic keys and test the
verification logic with real cryptographic operations, ensuring that our implementation is cryptographically
sound.

Code Template :

#[cfg(test)]

mod tests {
use bitcoin::secp256kl::{Secp256kl, SecretKey, PublicKey};
use crate::protocol::verification::KeyVerifier;

#[test]

fn test_valid_private_key verification() {

#[test]
fn test_invalid_private_key verification() {

#[test]
fn test public key match_only() {

2. Protocol Message Tests:
These tests validate the protocol message serialization and deserialization:

e test_taker_privkey_handover_message_serialization: Tests that the new TakerPrivKeyHandover
message type can be correctly serialized to bytes and then deserialized back to the original
message. This ensures that our message protocol changes are correctly implemented and can be
used for network communication.

e test_maker_privkey_handover_message_serialization: Similarly tests the new
MakerPrivKeyHandover message type, ensuring bidirectional message handling works
correctly.

e test_invalid_private_key_error_serialization: Tests the new InvalidPrivateKey error type, ensuring that
error messages can be correctly transmitted when verification fails.

These tests ensure that the protocol changes we've made will work correctly at the network
communication level, preventing issues when the updated protocol is deployed.

Code Template:

#[cfg(test)]
mod tests {
use crate::protocol::messages::{Message, ErrorPayload, PrivateKeyData};

#[test]
fn test taker privkey handover_serialization() {

#[test]
fn test_maker_privkey handover_serialization() {

#[test]

fn test_invalid_private_key error_serialization() {

3. Integration Tests:
These integration tests validate the complete protocol flow with the new key handover sequence:

1. test_successful_coinswap_with_new_key_handover: Tests the successful case where all parties
follow the protocol correctly. It sets up a complete multi-hop swap and verifies that:

a. The swap completes successfully
b. All parties receive the expected funds
c. The swap is completed off-chain (no contract transactions needed)
2. test_taker_provides_invalid_key: Tests what happens when a taker tries to provide an invalid

private key. It verifies that:

a. The maker correctly detects the invalid key
b. The protocol fails with the appropriate error
c. The maker falls back to the contract transaction
d. The maker can still claim their funds via the contract
3. test_multi_hop_swap_with_malicious_taker: Tests a more complex scenario where a taker is honest

with one maker but malicious with another. This tests that:

a. The honest maker receives their funds off-chain
b. The maker who received an invalid key falls back to the contract transaction.

c. Both makers can still claim their funds, just through different mechanisms

Code Template:

#[cfg(test)]
#[cfg(feature = "integration-test")]
mod tests {
use crate::test utils::{TestEnvironment};

#[test]
fn test_successful coinswap_with_new_key handover() {

#[test]
fn test taker provides invalid key() {

#[test]
fn test _multi hop swap with _malicious_taker() {

5. Flow Diagrams

Alice BOB CHARLIE

RespHashPreimage

TakerPrivKkeyHandover(O

MakerPrivKkeyHandover(1)

RespHashPreimage

TakerPrivkeyHandover(1)

MakerPrivKkeyHandover(2)

6. Timeline:

Weeks 0-1 (Community Bonding):

e Finalize technical design with mentor
e Explore existing Coinswap protocol implementation
e Set up local development environment with Bitcoin regtest node

Weeks 1-2 (Protocol Message Updates):

e Update message types in protocol to support directional key handover.
e Implement error handling for invalid private keys
e Create unit tests for message serialization/deserialization

Weeks 3-4 (Key Verification Implementation):

e Implement the private key verification module
e Create unit tests for key verification
e Integrate verification into the protocol flow

Weeks 5-6 (Taker Protocol Updates):

e Modify taker protocol to send private key first
e Update taker's handling of key exchange sequence
e Create integration tests for taker protocol

Week 6 (Midterm Evaluation):

e Demonstrate working taker-side implementation
e Review progress with mentor
e Plan adjustments for second half

Weeks 7-8 (Maker Protocol Updates):

e Modify maker protocol to verify keys before responding
e Update maker's key handover sequence
e Create integration tests for maker protocol

Weeks 9-10 (End-to-End Testing):

e Implement full integration tests for multi-hop swaps
e Test adversarial scenarios (invalid keys, timeouts)
e Fix edge cases and improve error handling

Week 11 (Documentation and Diagrams):

e Create detailed flow diagrams for the protocol
e \Write comprehensive documentation
e Prepare final demonstration

Week 12 (Final Submission):

e Submit final code with all tests passing
e Complete project documentation
e Present solution to Coinswap team

Future Deliverables :

| want to work on the issues for v0.1.2. Also want to get done with the issue “Fee rate negotiation” as I'm already
working on it.

Benefits to Community :

This project enhances the security and fairness of the Coinswap protocol, ensuring that all participants are
protected from exploitation and that honest makers are not penalized by unnecessary fees or privacy loss. By
closing this vulnerability, the protocol becomes more trustworthy and attractive for both makers and takers,
encouraging greater adoption and participation. Ultimately, this strengthens Bitcoin’s privacy ecosystem,
empowering users with more robust, reliable tools for confidential transactions.

Biographical Information :

I’'m a 3rd-year undergrad at IIT Indore, and I've been actively working in the EVM ecosystem as a Solidity
developer and security researcher, with backend experience in JavaScript and Python, plus DevOps. I've spent a
lot of time in DeFi on EVM, and I've always wanted to explore its scope on the Bitcoin network. In the past, I've

worked with Ordinals and Runes, and I'm currently involved in a Bitcoin—TON bridging project.

When | looked into past SOB organizations, Coinswap immediately caught my eye. After running the demo, | was
hooked—I dove into the codebase and decided to contribute. | believe I’'m an ideal candidate because I'm
genuinely committed to getting Coinswap production-ready. I've worked with Move (a Rust-like language)
before.Still | consider myself as a rust beginner, and on a continuous process of learning more. Working across
different domains allows me to pick up a new tech stack, learn it, and implement it very quickly. When I’'m stuck on

a problem, | work for hours straight until | get it solved—something | think really sets me apart.

To date, I've had two PRs merged into the Coinswap codebase and another PR is up for review.
1.https://github.com/citadel-tech/coinswap/pull/455 (merged)
2.https://github.com/citadel-tech/coinswap/pull/452 (merged)

3.https://qgithub.com/citadel-tech/coinswap/pull/486 (open PR)

Competency Test:
1.Compiling the Coinswap project, and running all tests.

https://github.com/citadel-tech/coinswap/pull/455
https://github.com/citadel-tech/coinswap/pull/452
https://github.com/citadel-tech/coinswap/pull/486

2. Setting up a local Bitcoin Core node in regtest mode. Creating a wallet, receiving funds,
and sending transactions using bitcoin-cli

g 7aeu:c13d1f51837baba1%2-131735:17f91ffaff5cbsesscualbbnf%ua"
16578110814

1266763758059 F4c 24T 1e9hse.51nsf15463a3n" L o bitcoin-cli getbl o
] 1afboe; . { i
"236419bSa2b7]JGdbzaaada:{fBa7cba7216563255fF5643A4f7d62937ﬁ:839tﬂ" "chain": "regtest",
*67a2d0fb4841922¢7 40576 ce2557766", "blocks": 25672,

"39c2515€444056T1d811798 fad74b07a9892fd67bses8b5a6b27ch5bdSbdaac , “headers":

"195d86ab2631d40e@17d7d47974172a795707550930523e94b03b454c 2558 C" “bestblockhash” 1b11FF 1949066477727€a: 3
"2f39af45158245F64c ' "difficulty": 4.656542373906925e-10,

"5d3a34f 950cfdf635e8ca97", "time: 1743518531,

6ebldal4a7al:

e “mediantime": 1743518381,
“verificationprogress
"initialblockdownload:

bds: 152add31£991621861c3e9659369b"
6db2171cd80389d06e1cb668365bcab5a79b4c280fbale87c468c86d24c88b:

"BBLZbd}SbSSBi31'?77az:ae21h36969926563137536d3ek256cdf1e8:3dbeéd3b“ “chai K": "
6 14508c9" “chainwork®: * ca",
“6420079390601£7abest 1e48b15c95" , size_on_disk": 7769084,

"pruned*: false,

"1d1f£98beb79038748cd21de6bF31ad3b7c813fbbof5at4634f7afabceb18808" , 5
"warnings": [
1

"49e82adc25fd264Fdcaece477d597b914b149b6bc2c5d9a9e3bodf2cafa774d7"
o 1uc96e1543c257c4uaf1f945n451.ufé5543ca9dzaa2u3caeza2ea9uuFaaczdl"
f4a2d658f36af066230886664a9F103ad" ,

. 438b21fk738654752béecSABA7EalaZae972997b6517f97c5dzaaad52dfacc51"
30f

Arunabhas-MacBook-Air:~ arunabha@@3$ bitcoin-cli createwallet "arunabha@@3"

10d1 539f31ebff2897d6a36c3" “name": "arunabha@@3"

9.
+39d529F1bc4474a3ddBbT
"7aaee@e6 bafsceaelelﬂ d5a3f A1bsu467e3haa9f3ca7e7e"
"467937146F11 b752f 187856282e1!
1709F8bC6374B9b5A 103423090 7bFL4392084600249 £2122607b 0 FeF7 FdoFab!

1

Arunabhas-MacBook-Air:~ arunabha@@3$ bitcoin-cli createwallet "alice"

“"name": “"alice"

e LN o y
=538 L LCRaL Te e s el Arunabhas-MacBook-Air:~ arunabha@@3$ bitcoin-cli -rpcwallet=arunabha@@3 getnewaddress

50.00000000

bitcoin-cli —rpcwallet=bob getnewaddress

cr fy nrzxyk3g
bertlawsxl ipsytndvefovtafu Arunabhas-MacBook-Air:~ arunabha0@3$ bitcoin-cli -rpcwal: gener. 102 bert: fy
(AT bitcoin-cli —rpcwallet=alice bertiqwsxl: térnzgjpsytndvefovtafus 1 3
9b7f9d827a06c480: 73fc0571¢ f "397b321 16cce3725e9: .
(Ar ir:~ ar bitcoin-cli ~rpcwallet=bob generatetoaddress 1 bcrtlgwsxl2kavmékhvaxtérnzgipsytndvefovtafus "3dasf: 5cfole3fd518d1ab2 f138f74b7ef o
"516f730f 74f; 70",

“7db735ae: fdbcfb3B34b19acésfebac: 737055658f5F02" "77¢fdf6b42ab66fefdsaellfodedtsbb2385a4357807d597a2fa37f9379blade",
"177c283b2af95¢07 f5faaelf4c57796bc147fa9f3073db4OcabBafd2960 ebo9"
"28b4f4alf6e91af151ad54bd3fb159b96804dc35976c7adf11441e89Fabfe50",

1f6257cc: 1eedffad22chd2",
47 7eal 5e55b",

"ZAB‘HEEZesabsaduékaaabhéde7bf7f236048137siaaeccaﬂ7?3adcebSthcc .
7e1a5:

bitcoin-cli —rpcwallet=bob getbalances

: 1.00000000,
ending": ©.00000000,

oo L5 543a£907b957b83c71eb"

1 £18ed236891ccfb854d"

.‘lastpwcessedbluk‘.: { 1128ef2317a88b0089 2313330514587 1£99ad",

shr 737055658F5F02", "Asshnafbas:A750aa1bf5c2aashbf5bmuwcnscevsbabzwou?mbcaeenh"
14561ce1522e7 1

£03d658bdf bak5ed: 7léeeaéf6cb516"

. 85faedes8f7488e10e2aaf9b7305b"

ir:~ ar bitcoin-cli -rpewallet=alice getbalances "Scica 131709e7f B

. 10490f ‘80sed",

"38998ae11f 11fcc9",

"trusted”:
ntrusted,
"immature":

98.99998590,
nding": ©.00000000,
4950.00000000

"51b5cd577ff698f3a6af302e242cab2e]114c564F24F659a7aec539df501435¢6"
"61c3087d275¢ fe0@fd7111e4e889a8C7c3bBC6026dd92104c456157a92b91c2"
"7b36f: 1. 1a39ef7",

bbb9d19dad3 6f8c iy

"lastprocessedblock": {
sh: "7db735ae1db9b6059adfdbefb3B34b19ace8fcbacl99B2936873705665875F02",
"height": 162

3. Syncing a Testnet4 node locally. (as of 16th April, 16:04)

[Arunabhas-MacBook-Air:~ arunabha@e3$
{

bitcoin-cli getblockchaininfo

"chain": "testnet4",

"blocks": 77721,

"headers": 77721,

"bestblockhash": "00000000ac9ebcl96aealb7890661dla46e0300e18d3974fbbe889242ed9e91f",
"difficulty": 1,

"time": 1744806411,

"mediantime": 1744801606,

"verificationprogress": 1,

"initialblockdownload": false,

"chainwork": "90000000000000PPR0NPPLPARRRNPPO0APRRNRRORRRR229b52T27cT44393ebc",
"size_on_disk": 6333319256,

"pruned": false,

"warnings": [

]

}
Arunabhas-MacBook-Air:~ arunabha@e3$ [J

4.Successful Coinswap

2025-04-10721:06:43.891350+05:30 INFO coinswap api - Connecting to ewaexd2es2uzr34wp26cj5zgph7bug?znmmxolvwzmoeedbiyfgz3wgd.onion:8202 | Send Sigs Init Next Hop
2025-04-10T21:06:45.589807+05:30 INFO coinswap api - > ProofOfFunding | ewaexd2es2uzr34wp26cj5zgph7bug7znmmxolvwzmoeedbiyfgz3wgd.onion:8262
2025-04-10T21:06:45.589849+05:30 INFO coinswap i:apl - Fundix Txids: [79eedbf3aedb59fcdcas563acfe7beldf9cesf28fe930e683bea22399171F211]
2025-04-10T21:06:47.169611+05:30 INFO coinswap iiroutines - Maker Received = ©.80020000 BTC | Maker is Forwarding = ©.00019540 BTC | Coinswap Fees = 0.00000168 BTC | Miner Fees paid by us = 300
2025-04-10T21:06:47.169714+85:30 INFO coinswap :tapi ReqContractSigsAsRecvrAndSender | ewaexd2es2uzr34wp26cj5zgph7bugZznmmxolvwzmoeedbiyfgz3wqd.onion:8202
2025-04-10T21:06:47.791852+05:30 INFO coinswap > ReqContractSigsForSender | m3qn53qt3wukwgvbx4yhq7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:8302
2025-04-10T721:06:50.834898+05:38 INFO coinswap RespContractSigsForSender | m3qn53gt3wukwqvbx4yhq7v2qrsvf2oiddtisqigwktzuuot33hmmuad. onion:8302
2025-04-10T721:06:50.835057+85:30 INFO coinswap Taker is previous peer. Signing Receivers Contract Txs
2025-04-10721:06:50.835435+05:30 INFO coinswap ::api > RespContractSigsForRecvrAndSender | ewaexd2es2uzr34wp26cj5zgph7bug7znmmxolvwzmoeedbiyfgz3wqd.onion:8202
2025-04-10T21:06:50.835541+05:30 INFO coinswap al Waiting for funding transaction confirmation. Txids : [a98726196daef4225ca@588e4b31924999e7eee@eb71c9c2b97503¢9c514698d]
2025-04-10721:06:50.837215+05:30 INFO coinswap i - Waiting for funding tx to appear in mempool | @ secs
2025-04-10T21:07:20.843892+05:30 INFO coinswap H Funding tx Seen in Mempool. Waiting for confirmation for 36 secs
2025-04-10T21:07:21.527506+85:3@ INFO coinswap :tapi > WaitingFundingConfirmation | ewaexd2es2uzr34wp26ci5zgph7bug7znmmxolvwzmoeedbiyfgz3wqd.onion:8202
2025-04-10T21:07:22.057544+05:30 INFO coinswap > WaitingFundingConfirmation | m3gn53qt3wukwqvbx4yhq7v2qrsvf2oiddtisqigwktzuuot33hmmuad.onion:8302
2025-04-10T21:07:52.065813+05:30 INFO coinswap H i Funding tx Seen in Mempool. Waiting for confirmation for 61 secs
2025-04-10T21:07:52.478080+85:30 INFO coinswap > WaitingFundingConfirmation | ewaexd2es2uzr34wp2é6cj5zgph7bug7znmmxolvwzmoeedbiyfgz3wqd.onion:8202
2025-04-10721:07:52.937897+05:30 INFO coinswap i > WaitingFundingConfirmation | m3an53gt3wukwqvbx4yha7v2qrsvf2oiddtisqigwktzuuot33hmmuad.onion:8302
2025-04-10T21:08:22.947142+05:30 INFO coinswap H ol Funding tx Seen in Mempool. Waiting for confirmation for 92 secs

0 INFO coinswap i > WaitingFundingConfirmation | ewaexd2es2uzr34wp26ci5zgph7bug7znmmxolvwzmoeedbiyfgzawad.onion:8202
2025-04-10T21:08:24.132959+05:30 INFO coinswap H > WaitingFundingConfirmation | m3qn53gt3wukwqvbx4yhg7v2qrsvf2oiddtisgigwktzuuot33hmmuad.onion:8302
20825-04-10T721:08:54.142618+0! @ INFO coinswap : i Tx a98726196daef4225ca@588e4b31924999e7eee@eb?1c9c2b97503c9c514690d | Confirmed at 1
2025-04-10T21:08:54.143370+05:30 INFO coinswap Connecting to m3qn53qt3wukwqvbx4yhq7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:8302 | Send Sigs Init Next Hop
2025-04-10T721:08:55.147991+05:38 INFO coinswap i > ProofOfFunding | m3gn53qt3wukwgvbx4yhq7v2qrsvf2oiddtisqigwktzuuot33hmmuad.onion:8382
2025-04-10721:08:55.148087+05:30 INFO coinswap H Fundix Txids: [a98726196daef4225ca0588e4b31924999e7eee@eb71c?c2b97603c9c514690d]
2025-04-10T721:08:56.948155+0! @ INFO coinswap routines - Maker Received = 0.0001954@ BTC | Maker is Forwarding 00019160 BTC | Coinswap Fees = 0.60000140 BTC | Miner Fees paid by us = 360
2025-04-10T21:08:56.948282+05:30 INFO coinswap RegContractSigsAsRecvrAndSender | m3qn53qt3wukwgvbx4yhq7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:8302
2025-04-10T21:08:56.948376+05:3@ INFO coinswap i Taker is next peer. Signing Sender's Contract Txs
2025-04-10T21:08:57.617763+0 INFO coinswap H > ReqContractSigsForRecvr | ewaexd2es2uzr34wp26cjSzgph7bug7znmmxolvwzmoeedbiyfgz3wqd.onion:8202
2025-04-10T21:09:02. 544088+0! INFO coinswap i RespContractSigsForRecvr | ewaexd2es2uzr34wp2éci5zgph7bug?znmmxolvwzmoeedbiyfgz3wqd.cnion: 8202
2025-04-10T21:09:02.544193+05:30 INFO coinswap : > RespContractSigsForRecvrAndSender | m3qn53qt3wukwqubx4yhq7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:8302
20825-04-10T721:09 .544287+0 INFO coinswap i Waiting for funding transaction confirmation. Txids : [8le3faabcd3384d2cb59e82f2427a9504fd8f7f5b6b131561Ff@e@7bcested14b]
2025-04-10T721:09:02.545635+0! INFO coinswap i Waiting for funding tx to appear in mempool | @ secs
2025-04-10T21:09:32.551022+05:30 INFO coinswap H i Funding tx Seen in Mempool. Waiting for confirmation for 3@ secs
2025-04-10T721:09:33. 256850+0! INFO coinswap i > WaitingFundingConfirmation | m3qn53qt3wukwqvbx4yhq7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:8302
2025 10T21:09:33.764786+0 INFO coinswap i > WaitingFundingConfirmation | ewaexd2es2uzr34wp26ci5zgph7bug7znmmxolvwzmoeedbiyfgzawad.onion:8202
2025-04-10T21:10:03.772424+05:30 INFO coinswap Funding tx Seen in Mempool. Waiting for confirmation for 61 secs
2025-04-10T21:16 8 INFO coinswap ::api > WaitingFundingConfirmation | m3qn53qt3wukwqvbx4yhq7v2qrsvf2oiddtisqigwktzuuot33hmmuad.onion:8302
2025-04-10T21:10:84.880774+85:38 INFO coinswap > WaitingFundingConfirmation | ewaexd2es2uzr34wp26cjiSzgph7bug7znmmxolvwzmoeedbiyfgz3wqd.onion:8202

@ INFO coinswap i — Funding tx Seen in Mempool. Waiting for confirmation for 92 secs

@ INFO coinswap i > WaitingFundingConfirmation | m3qn53qt3wukwqvbx4yhq7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:8302

® INFO coinswap i > WaitingFundingConfirmation | ewaexd2es2uzr34wp26ci5zgph7bug7znmmxolvwzmoeedbiyfgz3wad.onion:8202

@ INFO coinswap H i Tx 8le3faabcd3384d2cb59e@2f2427a95041d8T7f5b6b131561ff@e@7bce4edlsb | Confirmed at 1

@ INFO coinswap i ReqContractSigsForRecvr | m3gn53qt3wukwavbx4yhq7v2qrsvf2oiddtjsgigwktzuuot33hmmuad.onion:8302
2025-04-10T21:11:10.672015+05:30 INFO coinswap RespContractSigsForRecvr | m3qn53qt3wukwqvbx4yhg7v2qrsvf2oiddtisqigwktzuuot33hmmuad.onion: 8302
2025-04-10T21:11:13.097064+05:30 INFO coinswap ::api HashPreimage | ewaexd2es2uzr34wp2éci5zgph7bug7znmmxolvwzmoeedbiyfgz3wqd.onion:8
2025-04-10T21:11:13.658045+05:30 INFO coinswap PrivateKeyHandover | ewaexd2es2uzr34wp26cj5zgph7bug7znmmxolvwzmoeedbiyfgz3wqgd.onio

@ INFO coinswap i PrivateKeyHandover | ewaexd2es2uzr34wp26cj5zgph7bug7znmmxolvwzmoeedbiyfgz3wad.oniol

@ INFO coinswap i HashPreimage | m3qn53qt3wukwqvbx4yhg7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:8302

® INFO coinswap ::api PrivateKeyHandover | m3gn53qt3wukwavbx4yhq7v2qrsvf2oiddt]sqigwktzuuot33hmmuad.onio

@ INFO coinswap i PrivateKeyHandover | m3qn53qt3wukwgvbxéyhq7v2qrsvf2oiddtjsqigwktzuuot33hmmuad.onion:

0 INFO coi i - Initializing Sync and Save.

@ INFO Completed Sync and Save.

@ INFO i i Successfully Completed Coinswa
2025-04-10T21:11:15.803446+0 @ INFO i Shutting down taker.
20825-04-10T721:11:15.803484+0! @ INFO i i offerbook data saved to disk.
2025-04-10T721:11:15.803522+05: INFO i i Wallet data saved to disk.
Arunabhas-MacBook-Air:coinswap arunabhaee3s [|

2025-04-10T21:11:15. 448554+0!
2025-04-10721:11:15.448713+0!
2025-04-10T21:11:15.803433+0
2025-04-10T721:11:15.8083439+0!

	Fix Taker Private Key Handover Exploit
	Name and Contact Information
	Synopsis:
	Project Plan:
	Future Deliverables :
	Benefits to Community :
	This project enhances the security and fairness of the Coinswap protocol, ensuring that all participants are protected from exploitation and that honest makers are not penalized by unnecessary fees or privacy loss. By closing this vulnerability, the protocol becomes more trustworthy and attractive for both makers and takers, encouraging greater adoption and participation. Ultimately, this strengthens Bitcoin’s privacy ecosystem, empowering users with more robust, reliable tools for confidential transactions.
	I’m a 3rd‑year undergrad at IIT Indore, and I’ve been actively working in the EVM ecosystem as a Solidity developer and security researcher, with backend experience in JavaScript and Python, plus DevOps. I’ve spent a lot of time in DeFi on EVM, and I’ve always wanted to explore its scope on the Bitcoin network. In the past, I’ve worked with Ordinals and Runes, and I’m currently involved in a Bitcoin–TON bridging project.
	When I looked into past SOB organizations, Coinswap immediately caught my eye. After running the demo, I was hooked—I dove into the codebase and decided to contribute. I believe I’m an ideal candidate because I’m genuinely committed to getting Coinswap production‑ready. I’ve worked with Move (a Rust‑like language) before.Still I consider myself as a rust beginner, and on a continuous process of learning more. Working across different domains allows me to pick up a new tech stack, learn it, and implement it very quickly. When I’m stuck on a problem, I work for hours straight until I get it solved—something I think really sets me apart.​​To date, I’ve had two PRs merged into the Coinswap codebase and another PR is up for review.​1.https://github.com/citadel-tech/coinswap/pull/455 (merged)​2.https://github.com/citadel-tech/coinswap/pull/452 (merged)

