

Beam Protobuf Schema (Java)

self-link: https://s.apache.org/beam-protobuf

Authors: baeminbo@google.com

Contributors:

Reviewers:

Status: Review

Last revised: 2025-06-05

Visibility: Public

Objective
This proposal aims to correctly align nullability between Protobuf and Apache Beam Schemas.
Currently, optional fields in both Proto2 and Proto3 are converted to non-nullable field types
within Beam's ProtoSchemaTranslator. We'll update this conversion rule to ensure proper
nullability is maintained.

Conversion Rules

Scalar Value Types

Scalar value types are primitive types in Protobuf.

Proto Type Java Type (Protobuf) Field Type (Beam) Java Type (Beam)

double double FieldType.DOUBLE double

float float FieldType.FLOAT float

https://s.apache.org/beam-protobuf
https://protobuf.dev/programming-guides/
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/Schema.java
https://protobuf.dev/programming-guides/proto3/#scalar

Protobuf

int32 int FieldType.INT32 int

int64 long FieldType.INT64 long

uint32 int[1] ProtoSchemaLogicalTypes.UInt32 int

uint64 long[1] ProtoSchemaLogicalTypes.UInt64 long

sint32 int ProtoSchemaLogicalTypes.SInt32 int

sint64 long ProtoSchemaLogicalTypes.SInt64 long

fixed32 int[1] ProtoSchemaLogicalTypes.Fixed32 int

fixed64 long[1] ProtoSchemaLogicalTypes.Fixed64 long

sfixed32 int ProtoSchemaLogicalTypes.SFixed32 int

sfixed64 long ProtoSchemaLogicalTypes.SFixed64 long

bool boolean FieldType.BOOLEAN boolean

string String FieldType.String String

bytes ByteString FieldType.BYTES byte[]

Field Cardinality

●​ required (proto2) and implicit (proto3): converted to non-null field type in Beam
●​ optional: converted to nullable field type in Beam.
●​ repeated <type>: converted to a non-null FieldType.ARRAY with the non-null element

type for the protobuf type <type>.

For example,

int64 id = 2;

https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L64
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L100
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L73
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L109-L115
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L82
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L118
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L91
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L127
https://protobuf.dev/programming-guides/proto2/#field-labels
https://protobuf.dev/programming-guides/proto3/#field-labels

None

Protobuf

None

optional string title = 3;
repeated string messages = 4;

id [INT64 NOT_NULL]
title [STRING NULLABLE]
messages [ARRAY NULLABLE]:
 <element_type> [STRING NOT_NULL]

OneOf

Protobuf fields contained in an oneof are converted to nested nullable fields in a nullable
logical type OneOfType.

For example,

oneof user {
 int32 id = 3;
 string name = 7;
}

user [OneOfType NULLABLE]:
 id [INT32 NULLABLE] // case enum: 3
 name [STRING NULLABLE] // case enum: 7

Map

A Map field in Protobuf is converted to a non-null FieldType.Map with non-null key and value
types. The key type can be integral or string type. Thus, any scala value types except double,
float and bytes.

https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/OneOfType.java
https://protobuf.dev/programming-guides/proto3/#maps

Protobuf

None

Protobuf

None

For example,

map<int32, string> metadata = 3;

metadata [MAP NULLABLE]:
 <key> [INT32 NOT_NULL]
 <value> [STRING NOT_NULL]

Enum

An enum value is converted to EnumerationType and it's nullable if optional.

For example,

enum ErrorCode {
 OK = 0;
 INVALID = 4;
 INTERNAL = 5;
}

ErrorCode code = 1;

code [ENUM NOT_NULL]:
 OK = 0
 INVALID = 4
 INTERNAL = 5

Message

A message type is converted to a nullable FieldType.ROW.

https://protobuf.dev/programming-guides/proto2/#enum
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/EnumerationType.java#L4

Well-Known Messages

Certain messages in google.protobuf package are handled uniquely; they aren't converted to
FieldType.ROW.

Wrapper messages for scala value types:

●​ BoolValue → nullable FieldType.BOOLEAN
●​ BytesValue → nullable FieldType.BYTES
●​ DoubleValue → nullable FieldType.DOUBLE
●​ FloatValue → nullable FieldType.FLOAT
●​ Int32Value → nullable FieldType.INT32
●​ Int64Value → nullable FieldType.INT64
●​ StringValue → nullable FieldType.STRING
●​ UInt32Value → nullable ProtoSchemaLogicalTypes.UInt32
●​ UInt64Value → nullable ProtoSchemaLogicalTypes.UInt64

Other messages:

●​ Any → Not supported.
●​ Duration → nullable logicaltypes.NanosDuration
●​ Timestamp → nullable logicaltypes.NanosInstant

Extension (proto2)

As of version 2.65.0, Protobuf extension fields are not supported in Beam's Protobuf Schema.
This is because extensions are not part of Protobuf descriptor, which our schema inference
relies on. Implementing support would be a significant and breaking change. Support for
extensions will not be included as part of this work. The extensions in Protobuf Descriptor and
messages are discarded during the conversion process.

Custom Default Scala Values (proto2)

The default keyword option to override default scala values is ignored.

Unknown Fields

If a Protobuf message has unknown fields, the field values are discarded when converted to a
Beam Row.

https://protobuf.dev/reference/protobuf/google.protobuf/
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L64
https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaLogicalTypes.java#L100
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/NanosDuration.java
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/NanosInstant.java
https://protobuf.dev/programming-guides/proto2/#explicit-default

Breaking Changes from v2.65.0
1.​ optional fields in Protobuf will be converted to nullable fields. Previously, they were

converted to non-null fields. Due to this change, a single nullable field type in Beam can
represent two different Protobuf types. For example, nullable FieldType.INT32 in Beam
can be optional int32 or google.protobuf.Int32Value in Protobuf.

2.​ The OneOfType field for Protobuf oneof will be nullable. Previously, they were non-null.
There's no change to the nested types within OneOfType; they will remain nullable, as
they were before.

Implementation
Three existing classes need to be changed.

ProtoSchemaTranslator

The getSchema should be modified to apply the changes.

ProtoDynamicMessageSchema

This is a class to convert between Beam Row and Protobuf DynamicMessage.

Currently, ProtoDynamicMessageSchema converts between Protobuf messages and Beam
Rows using Beam Schema only. However, as a single Beam field type can represent two
Protobuf types, it needs Protofile descriptor information for correct conversion.

Conversion from Protobuf Message to Beam Row:

1.​ Non-null Beam fields get their value from the Protobuf value or the default value of the
scalar type (e.g., 0 for int32, "" for string, false for bool)

2.​ Nullable Beam fields get null if the Protobuf value is not present (e.g., an unset set
optional field, map, repeated or message type). Otherwise, nullable Beam fields get their
value from the Protobuf value

Conversion from Beam Row to Protobuf Message:

1.​ Protobuf fields without presence (e.g., a required or implicit) get their value from the
Beam value or the default value if the Beam value is null.

2.​ Protobuf fields with presence (e.g., an optional, map, repeated, message type)gets their
value from the Beam value or null if the Beam value is null.

Java

Since ProtoDynamicMessageSchema is used to parse Protobuf options within
ProtoSchemaTranslator, any updates to the ProtoDynamicMessageSchema constructor will
need a corresponding change in ProtoSchemaTranslator.

For backward-compatibility of ProtoDynamicMessageSchema, currently relying on Beam
Schema only for conversion, we might need to implement a method in
ProtoSchemaTranslator.getDescriptor(Schema) for generating Protobuf Descriptor from
Beam Schema. This will be based on the conversion rule in v2.65.0 for backward-compatibility.
The generated Descriptor will be used for ProtoDynamicMessageSchema.forSchema(Schema)
The ProtoDynamicMessageSchema.forSchema(Schema) will be removed as its only use was
for parsing Protobuf options within ProtoSchemaTranslator.getSchema(Descriptor). Thus,
we can use Protobuf Descriptor and Beam Schema together for conversion.

Due to the class complexity, a new class ProtoBeamConverter is created, and this class will be
deprecated. The getToRowFunction() and getFromRowFunction() in
ProtoDynamicMessageSchema are routed to toRow and toProto in ProtoBeamConverter.

ProtoMessageSchema

This is a class to convert between Beam Row and a specific Protobuf Message class, using
ByteBuddy technology intensively.

Since ProtoMessageSchema already contains the necessary Protobuf Message class details,
implementing this within ProtoMessageSchema would require fewer changes than with
ProtoDynamicMessageSchema.

ProtoBeamConverter

A new ProtoBeamConverter is created to replace ProtoDynamicSchema, which has two
static methods: toProto and toRow

Class ProtoBeamConverter {
 /** Returns a conversion method from Beam Row to Protobuf Message. */
 public static SerializableFunction<@NonNull Row, @NonNull Message>
toProto(Descriptors.Descriptor descriptor);

 /** Returns a conversion method from Protobuf Message to Beam Row. */
 public static SerializableFunction<@NonNull Message, @NonNull Row>
toRow(Schema schema);
}

https://bytebuddy.net/#/

Protobuf

The toProto nullability rule:

Protobuf Presence Beam Value Proto Value

Yes (optional, message, etc.) null null

Yes non-null non-null

No (implicit, required) null default

No non-null non-null

The toRow nullability rule:

Beam FieldType Proto Value Beam Value

Nullable null null

Nullable non-null null

Non-null null default[4]

Non-null non-null non-null

The conversion methods match source and destination fields based on their names. The
Protobuf tag number option (beam:option:proto:meta:number) in each Beam field is not
used in this matching process. This fixes the bug where the field order is shuffled in Beam
Schema. See A Bug when Schema Field Order is Changed.

As mentioned at Extension (proto2) and Unknown Fields, the fields not listed in Proto Descriptor
and Beam Schema are discarded in toProto(Descriptor) and toRow(Schema), respectively.
If the value type is invalid (e.g., Integer → Long), it will throw an exception in building the
Protobuf Message and Beam Row.

The enum names are not used in conversion. The value can be an unrecognized value in
Protobuf and Beam. However, this is allowed in Protobuf and Beam. For example, consider the
following Enum with two elements: ZERO(0) and ONE(1). The enum value 10 is not recognized in
the enum, but valid value in Protobuf and Beam.

enum Enum {
 ZERO = 0;
 ONE = 1;

https://github.com/apache/beam/blob/v2.65.0/sdks/java/extensions/protobuf/src/main/java/org/apache/beam/sdk/extensions/protobuf/ProtoSchemaTranslator.java#L135

None

}

message EnumMessage {
 Enum enum = 1;
}

Message: { enum: 10 }
<==>
Row: { enum: 10 }

Appendix

BigQuery to Beam Schema

See BigQueryIO for conversion between BigQuery types and Java types, and BigQueryUtils
between BigQuery types and Beam field types. BigQuery fields whose mode is NULLABLE are
converted to nullable Beam field types.

BigQuery Standard SQL Avro Type Java Type Field Type (Beam)

BOOLEAN boolean Boolean FieldType.BOOLEAN

INT64 long Long FieldType.INT64

FLOAT64 double Double FieldType.DOUBLE

BYTES bytes java.nio.ByteBuffer FieldType.BYTES

STRING string CharSequence FieldType.STRING

DATE int Integer SqlTypes.Date (= logicaltypes.Date)

DATETIME string CharSequence SqlTypes.DateTime (= logicaltypes.DateTime)

TIMESTAMP long Long SqlTypes.Timetamp (= logicaltypes.MicroInstant)

TIME long Long SqlTypes.Time (= logicaltypes.Time)

NUMERIC bytes java.nio.ByteBuffer FieldType.DECIMAL

https://beam.apache.org/releases/javadoc/2.65.0/org/apache/beam/sdk/io/gcp/bigquery/BigQueryIO.html
https://github.com/apache/beam/blob/v2.65.0/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryUtils.java
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/Date.java#L4
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/DateTime.java
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/NanosInstant.java
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/Time.java

BigQuery Standard SQL Avro Type Java Type Field Type (Beam)

GEOGRAPHY string CharSequence FieldType.STRING

ARRAY[2] array java.util.Collection non-null FieldType.ARRAY

STRUCT record org.apache.avro.GenericRecord FieldType.ROW[3]

Icerberg to Beam Schema

See IcebergIO and IcebergUtils for conversion between Iceberg types and Beam field types.

Iceberg Type Field Type (Beam)

BINARY FieldType.BYTES

BOOLEAN FieldType.BOOLEAN

STRING FieldType.STRING

INTEGER FieldType.INT32

LONG FieldType.INT64

STRING FieldType.STRING

FLOAT FieldType.FLOAT

DOUBLE FieldType.DOUBLE

TIMESTAMP SqlTypes.DATETIME, if TimestampType.shouldAdjustToUTC() is false
FieldType.DATETIME, otherwise

DATE SqlTypes.Date (= logicaltypes.Date)

TIME SqlTypes.Time (= logicaltypes.Time)

LIST FieldType.ITERABLE

MAP FieldType.MAP

STRUCT FieldType.ROW

https://beam.apache.org/releases/javadoc/2.65.0/org/apache/beam/sdk/io/iceberg/IcebergIO.html
https://github.com/apache/beam/blob/v2.65.0/sdks/java/io/iceberg/src/main/java/org/apache/beam/sdk/io/iceberg/IcebergUtils.java
https://github.com/apache/beam/blob/v2.65.0/sdks/java/io/iceberg/src/main/java/org/apache/beam/sdk/io/iceberg/IcebergUtils.java#L89-L91
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/Date.java#L4
https://github.com/apache/beam/blob/v2.65.0/sdks/java/core/src/main/java/org/apache/beam/sdk/schemas/logicaltypes/Time.java

Protobuf

Java

None

A Bug when Schema Field Order is Changed

In version 2.65.0, ProtoDynamicMessageSchema.getFromRowFunction() has a bug that
occurs when processing Beam Rows whose schema field order does not match the Protobuf
descriptor.

For example, consider a Protobuf message named Address with two fields, city and street, in
the order. Using a schema having street and city in the order, a row is created with street as
"fake street" and city as "seattle". Then, the result message of getFromRowFunction has the
city as "fake street" and street as "seattle", incorrectly.

message Address {
 string street = 1;
 string city = 2;
}

Descriptors.Descriptor descriptor = Proto3Messages.Address.getDescriptor();
SerializableFunction<Row, DynamicMessage> fromRow = ProtoDynamicMessageSchema
 .forDescriptor(ProtoDomain.buildFrom(descriptor), descriptor)
 .getFromRowFunction();

// Schema with different field order
Schema schema = Schema.builder()
 .addField("city", Schema.FieldType.STRING)
 .addField("street", Schema.FieldType.STRING)
 .build();

Row row = Row.withSchema(schema)
 .addValue("seattle")
 .addValue("fake street")
 .build();

DynamicMessage message = fromRow.apply(row);
System.out.println(message);

street: "seattle"
city: "fake street"

Because ProtoDynamicMessageSchema retrieves Beam Row values by field ID (position) rather
than by name, it fails when the Row's schema order doesn't match the Protobuf descriptor. This
mismatch leads to runtime troubles, such as type exceptions or incorrectly populated fields.
This is the root cause of new unit test failures in ProtoByteUtilsTest and
PubsubLiteDlqTest that appeared after the changes in this document were applied.

[1] In Java, unsigned 32-bit and 64-bit integers are represented using their signed counterparts,
with the top bit simply being stored in the sign bit.

[2] For BigQuery, an ARRAY is a field whose mode is set to REPEATED.

[3] BigQuery STRUCT fields are converted to FieldType.MAP if SchemaConversionOptions has
inferMaps as true and the STRUCT only has "key" and "value" fields. However, this conversion
doesn't happen in Apache Beam because the inferMaps setting is always false.

[4] The default value is 0 for numeric values, empty string, empty bytes, empty list, empty map
and empty row.

If a Beam FieldType is non-null OneOfType, it cannot convert to a Beam value in
ProtoBeamConverter.toRow if the source Protobuf message has null for all the proto fields
contained in the Oneof, because it cannot decide the default value. This will throw a runtime
exception. However, this case doesn't happen in real life because OneOfType must be nullable.
See OneOf.

http://protobyteutilstest.testrowtoprotoschemawithpackagefunction
https://github.com/apache/beam/blob/v2.65.0/sdks/java/io/google-cloud-platform/src/test/java/org/apache/beam/sdk/io/gcp/pubsublite/internal/PubsubLiteDlqTest.java#L538
https://cloud.google.com/bigquery/docs/nested-repeated#define_nested_and_repeated_columns
https://github.com/apache/beam/blob/v2.65.0/sdks/java/io/google-cloud-platform/src/main/java/org/apache/beam/sdk/io/gcp/bigquery/BigQueryUtils.java#L355-L364

	
	
	Beam Protobuf Schema (Java)
	Objective
	Conversion Rules
	Scalar Value Types
	Field Cardinality
	OneOf
	Map
	Enum
	Message
	Well-Known Messages
	Extension (proto2)
	Custom Default Scala Values (proto2)
	Unknown Fields

	Breaking Changes from v2.65.0
	Implementation
	ProtoSchemaTranslator
	ProtoDynamicMessageSchema
	ProtoMessageSchema
	ProtoBeamConverter

	Appendix
	BigQuery to Beam Schema
	Icerberg to Beam Schema
	A Bug when Schema Field Order is Changed

