
Oakhill College – Year 12 Mathematics Advanced  
 
 
 
 

YEAR 12 – MATHEMATICS   

HSC Topic 9 - The first and second derivatives C3.1 
                                                                          Applications of the derivative C3.2 
 

MATHEMATICS ADVANCED 

 

LEARNING PLAN 

Learning Intentions 
             Student is able to: 

Learning Experiences 
Implications, considerations and implementations: 

 
Success Criteria 

I can: 
 

Resources 

1.​ use the first derivative to 
investigate the shape of the graph 
of a function 

 

–​ deduce from the sign of the first derivative 
whether a function is increasing, decreasing or 
stationary at a given point or in a given interval 
 

–​ use the first derivative to find intervals over 
which a function is increasing or decreasing, 
and where its stationary points are located. 

 

–​ use the first derivative to investigate a 
stationary point of a function over a given 
domain, classifying it as a local maximum, 
local minimum or neither 

 

▪​ apply the geometrical significance of the 
sign of , including the determination 𝑓' 𝑥( )
of whether or not  is increasing or 𝑓 𝑥( )
decreasing.  

▪​ A stationary point of  is defined to be 𝑓 𝑥( )
a point on the curve  where the 𝑦 = 𝑓 𝑥( )
tangent is parallel to the -axis. At such a 𝑥
point, . A turning point of  is 𝑑𝑦

𝑑𝑥 = 0 𝑓 𝑥( )
a point where the curve  is 𝑦 = 𝑓 𝑥( )
locally a maximum or a minimum. 

▪​ By considering 
the sign of the 
first derivative, 
show that the 
function 

 is 𝑓 𝑥( ) = 1
3𝑥−2

decreasing 
throughout its 
domain. 

 

1 
​ ​ ​               
 



Oakhill College – Year 12 Mathematics Advanced  
 

 

For a max/min turning point, finding values of x 

for which  is sufficient for sketching most 

curves. However  does not always imply 
that there is a turning point; but in all cases of a 

turning point  must change sign for points 

before and after , while for some curves 

may not exist at :  yet the curve 
changes direction. 
 
–​ determine the greatest or least value of a 

function over a given domain (if the domain is 
not given, the natural domain of the function is 
assumed) and distinguish between local and 
global minima and maxima 

 

▪​ A useful way to represent and set out the first-derivative test is 
using a table.  

For example, determine the nature and position of the local 
maxima/minima of​

. 𝑓 𝑥( ) = 𝑥2 − 6𝑥 + 11
Solution:​ Given ,  𝑓 𝑥( ) = 𝑥2 − 6𝑥 + 11 𝑓' 𝑥( ) = 2𝑥 − 6

 at  𝑓' 𝑥( ) = 0 𝑥 = 3
Construct a gradient table: 

-value 𝑥 2.9 3 3.1 

 𝑑𝑦
𝑑𝑥 –0.2 0 0.2 

Direction of curve    

 
 

2.​ Understand the significance of 
the second derivative. 

 
 

Define and interpret the concept of the second 
derivative as the rate of change of the first 
derivative function in a variety of contexts, for 
example recognise acceleration as the second 
derivative of displacement with respect to time 
 
 
 
–​ understand the concepts of concavity and 

points of inflection and their relationship with 
the second derivative 

▪​ If  over an interval, the curve is 𝑑2𝑦

𝑑𝑥2 > 0

concave upwards over that interval, and if 

 over an interval, the curve is 𝑑2𝑦

𝑑𝑥2 < 0

concave downwards over that interval.  

▪​ At a point of inflection, the sign of  𝑑2𝑦

𝑑𝑥2

changes when passing through the point. 

▪​ Sketch the 
graph of the 
function 
𝑓 𝑥( ) = 𝑥3 + 3𝑥2

by identifying 
stationary 
points and 
determining 
their nature. 
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–​ use the second derivative to determine 
concavity and the nature of stationary points 

–​ understand that when the second derivative is 
equal to 0 this does not necessarily represent a 
point of inflection 

 is not a sufficient test for inflexion 

points, since  when  for both 

 and  but  has a minimum 

turning point at  while  has a 

horizontal inflexion point at . 
 
Students must test for a change on concavity about 
a point of inflection. 
 
 
 
 

▪​ Consider the curve  𝑦 = 1
4 𝑥4 − 𝑥3

(a)​ Find any stationary points and 
determine their nature. 

(b)​ Find any points of inflection. 

(c)​ Sketch the curve for , − 1. 5≤𝑥≤4. 5
indicating where the curve crosses the 
x-axis. 

(d)​ For what values of  is the curve 𝑥
concave down? 

 

3.​Sketch a function: 
use calculus to determine and verify 
the nature of stationary points, find 
local and global maxima and minima 
and points of inflection (horizontal or 
vertical), examine behaviour of a 
function as  and  and 𝑥→∞ 𝑥→ − ∞
hence sketch the graph of the 
function. This can be applied to 
exponential, trigonometric and 
logarithmic functions. 

Eg. sketch , . 
 
Curves may also have inflexion points where the 

tangent is vertical – consider .  

There is still a change in y" before and after . 
 

Consider curves such as and  for 

Further Exam Style Question 

Consider   

(i)​ Show  and 

  
(ii)​ Show that there is one stationary 

point and determine its nature. 
(iii)​ Find the coordinates of the point of 

inflexion 

 

3 
​ ​ ​               
 



Oakhill College – Year 12 Mathematics Advanced  
 

which the gradient functions do not exist at their 
max/min turning points. 

 
 
 
 
 

(iv)​ Examine the behaviour as 

  
(v)​  Sketch the curve 

 
Note: always check for asymptotes 
when sketching Exponential functions 

5.Solve optimisation problems: 
Include topics of  displacement, 
velocity, acceleration, area, volume, 
business, finance and growth and 
decay 

–​ define variables and construct functions to 
represent the relationships between variables 
related to contexts involving optimisation, 
sketching diagrams or completing diagrams if 
necessary 

–​ use calculus to establish the location of local 
and global maxima and minima, including 
checking endpoints of an interval if required 

–​ evaluate solutions and their reasonableness 
given the constraints of the domain and 
formulate appropriate conclusions to 
optimisation problems. 
 

Eg.1: Constructing various containers or 
enclosures to maximise/minimise areas, 
volumes, costs etc. given fixed perimeters, 
surface areas etc. 

 
Prove that a closed cylinder of fixed surface 

▪​ A box without a lid is made by cutting out 
four equal squares from the corners of a 
sheet of heavy card, then folding up the 
sides. If the card has dimensions 20 cm by ​
10 cm, what are the dimensions of the box 
with largest volume that can be 
constructed in this way? 

▪​ A right circular cone is inscribed in a 
sphere of radius , centred at . The 𝑎 𝑂
distance from the base of the cone to the 
top of the sphere is  and the radius of the 𝑥
base is , as shown in the diagram. 𝑟

(a)​ Show that the volume, , of the cone 𝑉
is given by . 𝑉 = 1

3 π 2𝑎𝑥2 − 𝑥3( )
(b)​ Find the value of  for which the 𝑥

volume of the cone is a maximum. 
Give reasons why this value of  𝑥
gives the maximum volume. 
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area has maximum volume when its 
diameter equals its height. 

 
 
Eg.2: Given the hourly running cost of a ship as a 

function of its velocity, find the most 
economical running speed. 

 
Students need to pay particular attention to 
restrictions on variables and their explanation of 
why there is a local as well as an absolute 
max./min. for the values under consideration. 
 
* Consider problems in which more than one case 
needs to be analysed – HSC 1988 Q7b 
 

▪​ Investigate functions of the form 

   , , and 𝑓 𝑡( ) = 𝐴𝑒−𝑎𝑡 − 𝐵𝑒−𝑏𝑡 𝑡≥0
,  which may both be 𝑓 𝑡( ) = 𝐴𝑡𝑒−𝑘𝑡 𝑡≥0

used to model the amount of a drug in the 
bloodstream after a dose of the drug has 
been taken. Where are the maximum 
turning points in each case? Where are any 
inflection points? 

 

 
 

 

Established Goals(Syllabus Outcomes): MA12-3, MA12-6, MA12-7, MA12-9, MA12-10​
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