
Implementing Software Citation

Force11 Workshop on Data Citation Implementation
Montreal, October 10, 2018
Adopted from
https://docs.google.com/document/d/1ze2Bh0pZXCy7_bHcC7CumQRmBAv8qP6reao4yU4JTo
Y/edit?ts=5b8e056c#

A. Flowchart draft:
1. Citing software (author)

1.1. Has it been cited before?
1.1.1. Check for a CITATION file or README; if this says how to cite the

software itself, do that
1.1.2. Find other locations for this citation, e.g. Bibtex file

1.2. If not, follow these principles:
1.2.1. List the authors: if the software developers declare who the authors are,

list them; otherwise, just name the project (Project X for open source
software, Company Y for commercial software) as the authors

1.2.2. Add a Global Unique Identifier: Include a method for identification that is
machine actionable, globally unique, interoperable – perhaps a URL to a
release, a company product number

1.2.3. Add metadata: If there’s a landing page that includes metadata, point to
that, not directly to the software (e.g. the GitHub repo URL)

1.2.4. Add version/release info: Include specific version/release information

2. Making 'your software’ citable (developer):1

2.1. Publish it
2.1.1. If it’s on GitHub, follow steps in

https://guides.github.com/activities/citable-code/
2.1.2. Otherwise, submit it to Zenodo or Figshare, or a suitable domain

repository, with appropriate metadata (including authors, title, citations of,
& software that you uce)

1 What is ‘your’ software? A few scenarios:
● Fork software and contribute to it: this is your software
● To existing software you have added a wrapper that adds features/functionalities: this is your

software
● [Not your software] Pull request to other software, which you modify: this is someone else’s

software, that you have made a contribution to and is incorporated into original software: cite
original creators

https://docs.google.com/document/d/1ze2Bh0pZXCy7_bHcC7CumQRmBAv8qP6reao4yU4JToY/edit?ts=5b8e056c#
https://docs.google.com/document/d/1ze2Bh0pZXCy7_bHcC7CumQRmBAv8qP6reao4yU4JToY/edit?ts=5b8e056c#
https://guides.github.com/activities/citable-code/


2.1.2.1. Metadata: should follow CodeMeta and the Citation File Format,
e.g through universal software archive Software Heritage

2.2. Get a DOI (by doing A, B, C…)
2.3. Create a CITATION file, update your README, tell people how to cite it

B. Software typology
There are many types of software, including source code, containers, executables, etc. We
make the following distinctions (see Figure for a summary):2

● open source or closed source.
● a concept (all versions of the software) or a set of individual versions.
● published and archived (e.g. on Zenodo) or unpublished (e.g. shared on GitHub). [Note

that Github is not archive or publisher, it makes no promise about longevity of itself or the
material it holds; it also does not generate identifiers for the material it holds.] >>> Need
more here, why is Github not a publication?

● different versions of open source software can be published, and that those versions
(and their corresponding DOIs) should then be cited

2 These different types of software are often used together and have explicit and implicit dependencies.
Konrad Hinsen describes four layers of scientific software that are composed in a stack when used,
starting with 1) project-specific software like scientific workflows and scripts (SWS), that depend on 2)
discipline-specific software libraries and applications, such as shared community models. These in turn
depend on 3) general scientific software infrastructure, such as numerical libraries like LAPACK and
NumPy, and all of this depends on 4) general purpose, commodity software such as operating systems
and programming languages like python. While layers 2, 3, and 4 are generally written as re-usable
software packages that should be independently citable, the project-specific software in layer 1 is
generally not written explicitly for reuse, and when archived it is typically in mixed-type data packages. In
addition, these research grade scripts and workflows often are implicit about their specific dependencies
and their versions from layers 2-4. For example, the Chlorophyll R script from the Gentry data package
above explicitly depends on 10 open source R packages (ggplot2, maps, sp, maptools, scales, mapproj,
RColorBrewer, rworldmap, matrixStats, data.table), but does not specify the specific versions needed,
and implicitly depends on the recursive dependencies of those imported packages as well as unspecified
versions of the R language (OSC) as well as all of the underlying layers described by Hinsen.

https://codemeta.github.io/
https://citation-file-format.github.io/
https://archive.softwareheritage.org/
http://blog.khinsen.net/posts/2017/01/13/sustainable-software-and-reproducible-research-dealing-with-software-collapse/
https://knb.ecoinformatics.org/knb/d1/mn/v2/object/kengmiller.16.2
https://doi.org/10.5063/F1CF9N69


The table summarizes, for each type, how they can be identified and cited:

Category Definition Example How to
identify

How to cite

Closed
source
version

A version of
closed source
(possibly
commercial)
software.

version 14.3
of SAS/STAT.

URL to a
release, or a
company
product
number

Gather metadata needed for
citation and format
appropriately.

Closed
source
concept

The software
concept for a
closed source
(possibly
commercial)
software
package

SAS/STAT URL to the
software, or a
company
product
number

Gather metadata needed for
citation and format
appropriately.

Open
source
published
version

published
version of an
open source
software
package

version 1.2 of
the
Application
Skeleton
package
(https://github.
com/applicati
onskeleton/Sk
eleton), found
on GitHub at
https://github.
com/applicati
onskeleton/Sk
eleton/release
s/tag/v1.2,
published by
Zenodo as
https://doi.org/
10.5281/zeno
do.13750

The software
is identified
by the
publisher,
likely with a
DOI.

Metadata we need for
citation should be available
as part of its publication
Cite the software similarly to
other published digital object,
with the exceptions of
identifying it as software, by
adding "[Software source
code]" or similar in the
citation, and identifying the
version

Open
source

unpublished
version of an

https://github.
com/applicati

E.g. through
Software

1.Look for the metadata in
the archive of the repository,

https://documentation.sas.com/?docsetId=statug&docsetVersion=14.3&locale=en
https://documentation.sas.com/?docsetId=statug&docsetVersion=14.3&locale=en
https://www.sas.com/en_us/software/stat.html
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton/releases/tag/v1.2
https://github.com/applicationskeleton/Skeleton/releases/tag/v1.2
https://github.com/applicationskeleton/Skeleton/releases/tag/v1.2
https://github.com/applicationskeleton/Skeleton/releases/tag/v1.2
https://github.com/applicationskeleton/Skeleton/releases/tag/v1.2
https://doi.org/10.5281/zenodo.13750
https://doi.org/10.5281/zenodo.13750
https://doi.org/10.5281/zenodo.13750
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://www.softwareheritage.org/


unpublish
ed version

open source
software
package

onskeleton/Sk
eleton as of
commit
81c66c0db5c
381dacc0841
a4c16e0b387
6b15b89.

Heritage, with
search and
browse
capability

e.g. AUTHORS file that tells
me the authors of the
software.
2. If none, name the authors
as "Application Skeleton
Project."
3. If the software has been
previously versioned, use the
previous version's citation
information as a starting
point, adding to it any
updates made to the
AUTHORS, CITATION,
README,
ACKNOWLEDGEMENT etc.
files as appropriate, along
with the short commit hash.

Open
source
concept

The software
concept for an
open source
software
package

the
Application
Skeleton
package
(https://github.
com/applicati
onskeleton/Sk
eleton)

Identified by
the software
repository,
and is
sometime
represented
by a software
paper or the
software
users manual

Organizations who register
DataCite DOIs can take
advantage of the built-in
support for codemeta, e.g.:
https://doi.org/10.5438/qeg0-
3gm3, points to
https://github.com/datacite/m
aremma.

C. Metadata for software citation
The generally required metadata for software citation, from the Software Citation Principles are:

● Identifier
● Software name
● Authors - can fall back to "[Software name] Project" for open source projects, or

"[Company name]" for commercial projects.
● Type: Software
● Version/Release date -if applicable
● Location/Repository

Metadata for software citation can be stored and made machine-actionable in a software
repository in one of two formats:

https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://www.softwareheritage.org/
https://archive.softwareheritage.org/browse/search/
https://archive.softwareheritage.org/browse/search/
https://archive.softwareheritage.org/browse/search/
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://doi.org/10.5438/qeg0-3gm3
https://doi.org/10.5438/qeg0-3gm3
https://github.com/datacite/maremma
https://github.com/datacite/maremma
https://doi.org/10.7717/peerj-cs.86


● CodeMeta.json is a machine-actionable general-purpose exchange format for software
metadata expressed in JSON-LD format (i.e. JavaScript Object Notation for Linking
Data). The use of JSON-LD in the CodeMeta specification means that the software
metadata includes some structure (in JSON format) and can be extended with semantics
via context files, which provide mappings of the elements to vocabularies. The provided
context in CodeMeta relies mostly on the schema.org vocabulary.

● CITATION.cff: The Citation File Format (CFF) is a machine-actionable, human-readable
and -writable metadata format based on the Software Citation Principles. CFF relies on
the YAML format for representing the citation metadata, which is a superset of JSON
(i.e., JavaScript Object Notation)

Both formats can be used to provide citation-relevant metadata for a software but CFF is a
“front-end” format, and CodeMeta is a “back-end” format. Although CFF is the suitable format for
the initial provision of software citation metadata by the creators of a software, the metadata
should be transferred to CodeMeta to leverage CodeMeta’s linked-data features.For example,
the Netherlands eScience Center's Research Software Directory (e.g.,
https://research-software.nl/software/xenon) uses CFF for the citation metadata input (converted
to BibTeX etc.) and then also use it to generate CodeMeta JSON-LD using cffconvert, which can
be embedded in a landing page for re-use by search engines.

The differences between the two are presented in the following table:

Feature CodeMeta Citation File Format

Metadata type general-purpose metadata citation metadata

Targeted at machine exchange human and machine actors

Linked data yes no

Self-documenting no (perhaps via file name) yes

Enforces Principles no (?) yes

Secondary references yes (general) yes (scoped)

Implementation JSON-LD YAML

And? So? What should the user do??

Once the citation metadata is known and stored, it can be presented in various formats, such as
a text citation, or in a format such as bibtex, RIS, etc. This metadata can also be stored in a
reference manager, which can then do this conversion.

https://codemeta.github.io/
https://json-ld.org/
https://schema.org
https://citation-file-format.github.io
http://www.yaml.org/spec/1.2/spec.html
https://research-software.nl/software/xenon
https://github.com/citation-file-format/cff-converter-python/tree/master/cffconvert


For example, DataCite's Content Resolver can return a representation of DOI in different
formats. An example of this is returning the metadata for version 1.2 of the Application Skeleton
package (with doi https://doi.org/10.5281/zenodo.13750) in bibtex:
> curl https://data.datacite.org/application/x-bibtex/10.5281/zenodo.13750

@misc{https://doi.org/10.5281/zenodo.13750,
doi = {10.5281/zenodo.13750},
url = {https://zenodo.org/record/13750},
author = {Katz, Daniel S. and Merzky, Andre and Turilli, Matteo and Wilde,

Michael and Zhang, Zhao},
keywords = {computer science, application skeleton, co-design, distributed

computing, many-task computing, parallel computing},
title = {Application Skeleton V1.2},
publisher = {Zenodo},
year = {2015}

}

NB: Type is "misc", not "software", since there is no software type in bibtex

Next steps:

1. What special cases are missing from the list above (q for Dan & rest of the group)?
2. What can be taken out?

a. Do we need all these software types? As a test: how many of the examples
under 3.a. fall in each category?

b. Do we need more data on metadata?
3. What more do we need to do before sending this?

a. Examples, from 5 domains (e.g. life, physical, earth, social sciences & computer
science, e.g. NLP/data science, random Jupyter Notebook):

i. Software examples (e.g. 5-10 per domain)
ii. Metadata for these
iii. Example citations for these

b. Better description of:
i. What metadata is required exactly
ii. How to create it
iii. Tools for creating metadata, exhaustive/editable list

c. Easily legible/well-formatted version of the flowchart
d. A website showing a-c (e.g. on Force11 website?)

4. Who do we want to reach?
a. Open Source community
b. Publishers
c. Code repositories
d. Other efforts:

https://support.datacite.org/docs/datacite-content-resolver
https://data.datacite.org/application/x-bibtex/10.5281/zenodo.13750


i. Scholix?
ii. Make Data Count?
iii. Enabling FAIR data in ESS
iv. Others?
v. RDA community?

5. What do we want from them:
a. Sign on/off? How?
b. Implementation: how do we know it worked?


