
SUMMARY

This asset works in a similar fashion as the official VideoPlayer component, but for
WebGL only. It does everything you'd expect from a video player, and is packed with
more events than the official API. If you are having issues playing videos with the
standard video player on Safari or other browser(s), you came to the right place!

FEATURES

1.​ You can play, pause, stop, restart, seek, change the volume, the playback rate,

mute, check the length, width, height, if it’s playing, if it’s paused, check the
current time, check the buffer, check the network state, preserve pitch or not,
check readiness state of video, check the time ranges the user can seek to.

2.​ You can have multiple videos playing at the same time.
3.​ It supports all available video events for the web. There are 20 events available,

the official Unity API only supports 8.
4.​ You can easily configure everything through the inspector. You can also change

anything later at runtime if you want to. For example, changing the source of the
video to play multiple content using the same video instance.

5.​ You can autoplay the video.
6.​ You can play videos from the StreamingAssets folder(local) or from an external

URL. Easily configurable through the inspector.
7.​ It works on basically anything. You can play the video on a plane or a sphere for

example. You can play the video on a raw image. My asset works by storing the
video feed on a render texture, which you then use to create materials that you
apply to your objects.

8.​ It works on all major browsers: chrome, safari, firefox, edge, opera. Currently just
not working on firefox for Android, because of a firefox bug.

9.​ Playing videos with transparency is possible since 1.8 across browsers, by using
the ChromaKey shader under
MarksAssets/VideoPlayerWebGL/Shaders/ChromaKey for videos with green
screen background. Alternatively, there is also the Alpha Video shadergraph under
MarksAssets/VideoPlayerWebGL/Shaders/Side-by-Side Alpha Masked. There are a
few important remarks about the latter:

​ ​ 1-If you use the built-in RP, it only works on Unity 2021.2 or higher.
Otherwise, it requires you to use URP.

2- You must prepare the video, so that one of the sides has the color
channels, and the other side has the alpha channel. As a consequence, the
prepared video will have twice the width or height of the original video. If your
video has a bigger width than height, duplicate the height. If it has a bigger height,
duplicate the width. This way, you might not need to compress the video.

http://docs.unity3d.com/ScriptReference/Video.VideoPlayer.html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#events
https://docs.unity3d.com/ScriptReference/Video.VideoPlayer.html
https://docs.unity3d.com/Manual/class-RenderTexture.html
https://docs.unity3d.com/ScriptReference/Material.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1884282
https://github.com/otdavies/UnityChromakey/tree/master
https://docs.unity3d.com/Manual/built-in-render-pipeline.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@16.0/manual/index.html
https://docs.zap.works/studio/video/preparing-alpha-video/

3- In the video preparation, it must be encoded as an h.264 mp4 file.

REQUIREMENTS

1.​ Install the NaughtyAttributes free asset first. It works on Unity 2019 or higher.
2.​ Use mp4 files encoded with H.264 or MPEG-4 for cross-browser compatibility. At

the time of writing, webm isn’t supported on Safari yet.
3.​ If your video’s source is an external URL, it must be a direct link pointing to the

video, that is, the URL must end with the file name. For example, this video. It
works on videos stored in CDNs like AWS or CloudFlare for example. But it does
not support playing videos from youtube because the URL from youtube videos
are not direct links.

4.​ If your video is not muted and has an audio track, you must use the
UnlockVideoPlayback or PlayPointerDown method at least once on a pointerdown
event to make the video play on Safari. The example scene shows this.

5.​ Each VideoPlayerWebGL instance must have its own render texture.
6.​ If you are hosting your video files locally, they must reside in the StreamingAssets

folder, and the StreamingAssets folder must be a direct child of the root folder. If
the folder doesn’t exist, create one.

HOW TO USE

https://assetstore.unity.com/packages/tools/utilities/naughtyattributes-129996
https://d8d913s460fub.cloudfront.net/videoserver/cat-test-video-320x240.mp4
http://en.wikipedia.org/wiki/Content_delivery_network
http://aws.amazon.com/
http://www.cloudflare.com/
https://docs.unity3d.com/2019.1/Documentation/ScriptReference/EventSystems.EventTriggerType.PointerDown.html

Under the VideoPlayerWebGL->Scripts folder, there is one file called
VideoPlayerWebGL.cs. Drag it to any game object. Configure the parameters on the
inspector or through code, or both, and you’re done.

INSPECTOR

1. Source: a dropdown menu. If you want to play a video that resides inside your project,
use the “StreamingAssets” option. If you want to play a video that resides on an external
server, use the “External” option.

a. “StreamingAssets”: By selecting this option, the “File Name” field will
appear. Just type the name of your video in it(including the file extension).
For example, “myvideo.mp4”. You also need to put the file under the
StreamingAssets folder. This folder must be under the root of your project:
Assets->StreamingAssets. If the folder doesn’t already exist, create one.

b. “External”: By selecting this option, 2 fields will appear:

i. “URL” field. Type the full path of the video here. For example:
https://d8d913s460fub.cloudfront.net/videoserver/cat-test-video-32
0x240.mp4 .

ii. “Cross Origin” field, a dropdown menu. The option to select here
depends on how the response header of the server hosting the
video is configured. If it has the header “Access-Control-Allow-Origin:
*”, for example, you need to select the Anonymous option. Please
note that setting the CORS option here is necessary, but not
sufficient to make it work. The server hosting the video needs to set
the proper response headers as well.

2. Autoplay: Tick this field to automatically play the video when the video loads. Playing
the video automatically always works if the video is muted, without any user
intervention. If it’s not muted, there are restrictions. On Chrome, it will only play if the
user interacts with the document before the video loads. This means simply tapping on
the screen anywhere. If you can guarantee that the user will interact with the document
before playing the video(maybe there’s a start screen with a start button or something)
and your target is just Chrome, you can leave the script disabled, and only enable it once
it’s supposed to play(because the video loads on Start), then the autoplay option will
work even if the video is not muted. On Safari, it’s simply not possible. It requires a user
gesture to play the video, meaning the user needs to tap on something(a button for
example) and the play method needs to be called manually. To be honest it’s just simpler

https://d8d913s460fub.cloudfront.net/videoserver/cat-test-video-320x240.mp4
https://d8d913s460fub.cloudfront.net/videoserver/cat-test-video-320x240.mp4

that you forget that autoplay even exists if the video is unmuted, because it only works
on Chrome under the specific condition described above. The universal solution is to call
the PlayPointerDown method on a button. You can read more about it later on.
3. Loop: Tick this field to make the video loop infinitely.
4. Muted: Tick this field to mute the video. Necessary to make the video autoplay on
Chrome without user intervention, and the only way to autoplay on Safari.
5. Volume: A slider to control the volume of the video. From 0 to 1, where 0 there is no
volume and 1 is the normal volume. Please note that changing the volume does not
work on mobile Safari.
6. Pan: A slider to control the stereo pan of the video. From -1 to 1.
7. Force Mono: If this option is ticked, the audio is downmixed to mono.
8. Playback Speed: A slider to control the speed of the video. From 0 to 10, where 0 the
video is effectively paused, 1 is the normal speed, 2 is twice as fast, etc.
9. Target Texture: The render texture where the video feed will be sent to. In the Textures
folder of this asset you will find the texture VideoMaterialTexture.renderTexture that I
created for your convenience. The size of the texture you can leave at 256x256, the
correct dimensions are set by code internally. Apply the texture to a material, and then
apply the material to a Mesh Renderer. Or just drag the material to any object in the
scene that works with materials, like a quad or a cube. I also created the material
VideoMaterial.mat under the Materials folder for your convenience. IMPORTANT: YOU
NEED ONE RENDER TEXTURE PER VIDEOPLAYERWEBGL INSTANCE.
10. Events: A multi selectable dropdown menu. Here you can select the events you are
interested in subscribing to. For each event that you select, the corresponding
UnityEvent will show up in the inspector, where you can add callbacks that will run when
the UnityEvent is invoked. For example, if you select the “Ended” event, the “Ended”
UnityEvent shows up in the inspector; if you then add a callback to disable a gameobject,
when the video finishes playing, on the javascript side the ended event will be called and
your corresponding “Ended” UnityEvent will be invoked, and the gameobject disabled.

METHODS

First, there are 3 enums that are used as input and output on some of the methods:
public enum cors {anonymous = 1, usecredentials = 2};
public enum srcs {StreamingAssets, External};
[Flags]
public enum evnts {canplay = 1, canplaythrough = 2, complete = 4, durationchange = 8,
emptied = 16, ended = 32, loadeddata = 64, loadedmetadata = 128, pause = 256, play =
512, playing = 1024, progress = 2048, ratechange = 4096, seeked = 8192, seeking = 16384,

https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/Device-SpecificConsiderations/Device-SpecificConsiderations.html
https://developer.mozilla.org/en-US/docs/Web/API/StereoPannerNode
https://docs.unity3d.com/Manual/class-RenderTexture.html
https://docs.unity3d.com/Manual/Materials.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#events
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/ended_event

stalled = 32768, suspend = 65536, timeupdate = 131072, volumechange = 262144, waiting
= 524288};

Now to the methods:
public void CreateVideo(srcs _source, string _path, cors _crossOrigin, bool _autoplay, bool
_loop, bool _muted, double _volume, double _pan, bool _forceMono, double
_playbackSpeed, RenderTexture _targetTexture, evnts _events)
This method is called automatically on Start. You only need to call it manually if you
destroy the video and want to recreate it. If for some reason you don’t want the video to
load automatically, disable the script on the inspector. Don’t confuse loading with
playing. By loading I mean creating the video element on the html side and retrieving the
video from the specified source(local or external).

1. _source: use srcs.StreamingAssets option for videos in the
Assets/StreamingAssets folder(local) or srcs.External option for videos located on
an external server.

2. _path: It depends on the option you selected for _source: if you selected
srcs.StreamingAssets, _path just takes the name of the video file, including the
extension. If you selected srcs.External, it’s the URL of the file.

3. _crossOrigin: cors.anonymous or cors.usecredentials. This parameter is only
relevant if _source is srcs.External.

4. _autoplay: true if you want to play the video automatically on load, false if not.
5. _loop: true if you want the video to loop infinitely, false if not.
6. _muted: true if you want the video to be muted, false if not.
7. _volume: from 0 to 1, where 0 is a video with no volume and 1 is the normal

volume.
8. _pan: from -1 to 1, where -1 is full left pan, and 1 is full right pan. See

StereoPannerNode
9. _forceMono: If true, the video’s audio is downmixed to mono. If false, the number

of channels is preserved.
10. _playbackSpeed: from 0 to 10, where 0 the video doesn’t play, 1 is the normal

speed, 2 is twice as fast, etc.
11. _targetTexture: the texture where the video feed will be sent to.
12. _events: The events you want to listen to. You can pass a single event or multiple,

for example: evnts.timeupdate | evnts.play(listen to timeupdate and play events).
If you want to listen to all, you can pass (evnts)(-1) as input. If you don't want to
listen to any event, pass 0 as input.

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://developer.mozilla.org/en-US/docs/Web/API/StereoPannerNode

public void Play()
Plays the video from its current time. If the current time is the end of the video, it plays
from the start. It works no problem on Chrome, but for Safari, see the 2 methods below.
This method can be called anywhere you want.

public void PlayPointerDown()
Same as Play(), but this method only works if called on a pointerdown event. This
method was made because of Safari. On Safari, you need to either call this method once
or UnlockVideoPlayback once. And then you can use Play() normally. Alternatively, you
can simply always call PlayPointerDown(). This method also works on Chrome, so if you
want a universal method for all browsers, use this one.

public void UnlockVideoPlayback()
This method just plays and immediately pauses a video. It only works on a pointerdown
event. It was made because of Safari. On Safari, you need to either call this method once
or PlayPointerDown once. And then you can use Play() normally. This method also works
on Chrome, so you can use UnlockVideoPlayback + Play for Chrome and Safari for a
universal solution(although unnecessary for Chrome, because on Chrome it works with
Play alone). The idea of this method is to call it on a button at the start of the
experience, together with other permission requests like the gyroscope, so that all
permission stuff is done in one place and then you can forget about it. A typical use
case is having a start scene with a start button, where you click on said button and use
the pointerdown event with this method to switch scenes and also unlock the video.

Example:

//some script attached to a gameobject on the first scene

private VideoPlayerWebGL vp;​
 [SerializeField]​
 private RenderTexture rt;//render texture, which also persists

across scenes.​
​
 private void Awake() {​
 var vps = FindObjectsOfType<VideoPlayerWebGL>();​
 if (vps is null || vps.Length == 0) {//if there's no video

yet, create one​

https://docs.unity3d.com/2019.1/Documentation/ScriptReference/EventSystems.EventTriggerType.PointerDown.html

 vp = gameObject.AddComponent<VideoPlayerWebGL>();​
 vp.CreateVideo(VideoPlayerWebGL.srcs.StreamingAssets,

"video.mp4", VideoPlayerWebGL.cors.anonymous, false, false, false,

1.0, 0, false, 1.0, rt, 0);​
 } else {//otherwise got back to this scene, get video that is

already available​
 vp = vps[0];​
 }​
 DontDestroyOnLoad(vp);//we want the video to persist across

scenes, because on this scene it will just be unlocked.​
 }​
​
 public void UnlockVideo() {//call this on pointerdown event of

//button that switches scenes​
 vp.UnlockVideoPlayback();​
 }

//now on some script attached to a gameobject on some other scene

//that uses the same video from the first scene.

void Awake() {

 vp = FindObjectsOfType<VideoPlayerWebGL>()[0];

}

Another common use case is when you have a first video that has to play, and a second
one that should play after the first finishes. You can play the first video and unlock the
second on the same button, like so (you must always call UnlockVideoPlayback before
PlayPointerDown, otherwise it won't work on mobile Safari, the order is important here)

On the first video's end event, you can simply call Play on the second video now

public void Restart()
Restarts the video. Be sure to have called PlayPointerDown or UnlockVideoPlayback on
Safari at least once, otherwise this method won’t work.

public void Pause()
Pauses the video

public void Stop()
Pauses the video, and sets its time to 0.

public double Time()
Returns the current time of the video, in seconds.

public void Time(double time)
Seeks the video, pass the time you want the video to jump to, in seconds. If time is < 0 it
becomes 0. If it’s > than the video’s length, it becomes the video’s length.

public bool IsSetToLoop()
returns true if the video is set to loop, false if not.

public void Loop(bool lp)
set true if you want the video to loop, false if not.

public bool IsMuted()
Returns true if the video is muted, false if not.

public void Muted(bool mute)
set true if you want to mute the video, false if not.

public bool IsSetToAutoPlay()
Returns true if the video was set to autoplay, false if not.

public void Autoplay(bool autoplay)
Set true if you want the video to autoplay, false if not. It's only useful to use this if you
change the source of the video at runtime, and want to autoplay a video that previously
was set to not autoplay, and vice versa.

public double PlaybackSpeed()
Returns the current playback speed of the video, default is 1.

public void PlaybackSpeed(double pbspd)
Sets the playback speed of the video. It can be anything from 0.0(inclusive) to
10.0(inclusive). Values outside that range will be clamped to the nearest valid value.

public string Source()
Returns the source of the video.

public void Source(srcs src, string path, cors crossorigin = cors.anonymous)

Sets the source of the video
Example external source:
'Source(srcs.External,"https://d8d913s460fub.cloudfront.net/videoserver/cat-test-video-3
20x240.mp4")'
Example StreamingAssets(local) source: 'Source(srcs.StreamingAssets,
"cat-test-video-320x240.mp4")'
The third argument is only relevant if the source is external.

public bool IsPlaying()
Returns true if the video is currently playing, false if not.

public bool IsPaused()
Returns true if the video is currently paused, false if not.

https://d8d913s460fub.cloudfront.net/videoserver/cat-test-video-320x240.mp4
https://d8d913s460fub.cloudfront.net/videoserver/cat-test-video-320x240.mp4

public uint Width()
Returns the width of the video, in pixels.

public uint Height()
Returns the height of the video, in pixels.

public double Volume()
Returns the current volume of the video.

public void Volume(double vol)
Sets the volume of the video. It can be anything from 0.0(inclusive) to 1.0(inclusive).
Values outside that range will be clamped to the nearest valid value. It doesn’t work on
mobile Safari.

public double Pan()

Returns the current pan of the video

public void Pan(double _pan)
Sets the pan of the video. It can be anything from -1.0(inclusive) to 1.0(inclusive).
Values outside that range will be clamped to the nearest valid value. Requires
PlayPointerDown or UnlockVideoPlayback to be used at least once.

public bool ForceMono()

Returns true if the video is currently being downmixed to mono, false if not.

public void ForceMono(bool forceMono)

If the parameter is true, the video is downmixed to mono. If false, the original number of
channels is restored. You can use this method to downmix from stereo to mono at
runtime and later on restore to stereo, for example. This method doesn’t take effect
immediately. It only takes effect after you start playing the video using the
PlayPointerDown method. This means that if you call this method while the video is
playing, you will only notice the change after it pauses/finishes and you call

PlayPointerDown again. The normal Play method doesn’t work here, ever.

public cors CORS()

Returns the current crossorigin configuration. It can either be cors.anonymous or
cors.usecredentials

public srcs SourceType()
Returns the current source type. It can either be srcs.StreamingAssets or srcs.External

public void CORS(cors crossorigin)
Sets the cross origin attribute on the video. Irrelevant if the video is
local(StreamingAssets folder), but required if the source is external. It can be
cors.anonymous or cors.usecredentials.
public bool IsReady()
Returns true if the video is ready to be played, false if not.

public void Destroy()
Destroys the video from the html side, releases the target texture, unregisters all Unity
Events and removes all non persistent(runtime) callbacks from them. This method is
automatically called on OnDestroy.

public void RegisterEvent(evnts evt)
Registers one event, or multiple events. For example:
RegisterEvent(evnts.timeupdate|evnts.play) will register timeupdate and play events. For
example

first you add the callbacks that you want
myAction += myCallback;
play.AddListener(myAction);//accessing the play UnityEvent and adding a callback then
you call RegisterEvent(evnts.play) to make your play UnityEvent be invoked(and all of its
callbacks) when the video plays .

The events are normally registered on Start, subscribing to the events you set up in the
inspector because Start calls CreateVideo, and the last parameter of CreateVideo can be

https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnDestroy.html

used to subscribe to all the events you want.

RegisterEvent is not normally necessary to be used, but in a couple of situations:

1.​ If you don't subscribe to events in the inspector. For example, the following image
shows a video subscribed to ended and canplay, even though there are no
callbacks attached to them. In this case, the RegisterEvent method is not
necessary for ended and canplay.​

2.​ If you called the UnregisterEvent method with the event you previously registered,

or called the Destroy method.
3.​ If you create the video manually with CreateVideo but don't subscribe to the

event(s) you want on the last parameter.

If you want to register all events, pass (evnts)(-1) as input .

If you are creating the video through code, you need to assign a new UnityEvent before
calling the CreateVideo method, and you must add the listener itself after the creation.
Example:

void Start() {​
 vp = gameObject.AddComponent<VideoPlayerWebGL>();​
 vp.ended = new UnityEvent();​
 vp.CreateVideo(VideoPlayerWebGL.srcs.StreamingAssets,

"myvideo.mp4", VideoPlayerWebGL.cors.anonymous, true, false, true,

1.0, 0, false, 1.0, rt, VideoPlayerWebGL.evnts.ended);​
 vp.ended.AddListener(() => Debug.Log("ended"));​

 }

If you already have the video player attached to a gameobject, make sure the event is
already registered in the inspector, then just add the listener in the script. You should
always wait a frame though, otherwise it might not work.

Example

IEnumerator Start() {

 videoPlayer = GetComponent<VideoPlayerWebGL>();

 yield return null;​
 videoPlayer.ended.AddListener(() => Debug.Log("ended"));​
}

public void UnregisterEvent(evnts evt, bool removeAllNonPersistentListeners =
false)

For example:

UnregisterEvent(evnts.timeupdate | evnts.play) will unregister timeupdate and play events.

So in this example it means that when the video plays or the timeupdate event is fired
from javascript, the Unity Events subscribed to them won't be invoked. if the second
argument is true, in addition to unregistering the event, its runtime callbacks will be
removed as well.
Callbacks added from the inspector are persistent and not removed if the second
argument is true.
if you want to unregister all events, pass (evnts)(-1) as input

public MediaError GetError()

Returns the most recent error that occurred when attempting to play the video, or null if
there hasn't been any error. Use this in conjunction with the error event to handle video
playback issues. Example usage:

public class Example : MonoBehaviour {​
 public VideoPlayerWebGL vp;​
​
 public void onError() {​
 Debug.Log("errorCode: " + vp.GetError().code);​
 }​
}

PUBLIC PROPERTIES

1.​ RenderTexture targetTexture
2.​ UnityEvents corresponding to the video events.
3.​ double length (corresponds to duration and Unity's Video Player length). Call this

at least after the loadedmetadata event fires, otherwise it will return -1.
4.​ TimeRanges buffered (see VideoPlayerWebGLSeekControlSampleScene)
5.​ TimeRanges seekable
6.​ NETWORKSTATE networkState
7.​ READYSTATE readyState
8.​ bool preservesPitch (need to wait a frame before setting the value on Start)

HLS SUPPORT

https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/error
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video#events
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/duration
https://docs.unity3d.com/ScriptReference/Video.VideoPlayer-length.html
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/buffered
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/seekable
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/networkState
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/readyState
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/preservesPitch#setting_the_preservespitch_property

This plugin doesn't directly support HLS, and if you use it without any third party plugins,
your success will depend on whether the browser supports it or not. The good news is,
there's a third party library called hls.js which you can easily integrate with my plugin.
There's only 2(or 3) steps

1.​ Modify the generated HTML to be like this (or create a custom webgl template.
You'll add the hls library from CDN)​

2.​ Modify the CreateVideo function from VideoPlayerWebGL.jspre by commenting

out the video.setAttribute('src', url); line and adding 2 lines
hls.loadSource(url); ​
hls.attachMedia(video);​
to the file like so

https://caniuse.com/http-live-streaming
https://github.com/video-dev/hls.js/
https://cdnjs.cloudflare.com/ajax/libs/hls.js/1.3.3/hls.min.js

3.​ If you have to change the video source to another .m3u8 file, you have to modify
the SourceVideo function following the same logic

And that's it…you should be good to go and be able to play m3u8 files!

PLAYING ALPHA VIDEOS

The easiest and more efficient way is to use a video with a green background and use
the ChromaKey shader. There are cases where the ChromaKey can be insufficient
though. If you can't achieve a clear enough separation, or if you have a dynamic alpha
channel (e.g places with 50% transparency, like smoke etc) for example. If the
ChromaKey solution doesn't cut it for you, you can use the Alpha Video shadergraph.
This one isn't as straightforward, but it's still quite simple. Below are the instructions for
it.

Assuming you have already prepared the video, here are a few configurations for the
alpha video shader where C= color channels, A = Alpha channel, L = left, R = right, T =
top, B = bottom. For example CL/AR means that you prepared the video with the color
channels on the left side, and the alpha channel to the right side. The shader's default
values are for this case.

CL/AR (default)

Multiplier x: 0.5, y: 1

https://docs.zap.works/studio/video/preparing-alpha-video/

BaseColorOffset: x: 0, y: 0

AlphaOffset: x: 0.5, y: 0

CR/AL

Multiplier x: 0.5, y: 1

BaseColorOffset: x: 0.5, y: 0

AlphaOffset: x: 0, y: 0

CT/AB

Multiplier x: 1.0, y: 0.5

BaseColorOffset: x: 0, y: 0.5

AlphaOffset: x: 0, y: 0

CB/AT

Multiplier x: 1.0, y: 0.5

BaseColorOffset: x: 0, y: 0

AlphaOffset: x: 0, y: 0.5

It helps to take a snapshot of the first video frame and use the texture in the inspector to
see if the video will display correctly without having to build. You may have to play a little
bit with the offsets.

For example, here's a CL/AR prepared video in the inspector.

And here's a CT/AB one

Are there known issues?

Yes, and they are all browser restrictions unless said otherwise:

1.​ Only one unmuted video can play at any time on Safari. Multiple videos will play at
the same time only if they are muted or don’t have an audio track. On chrome
there is no problem.

2.​ Autoplaying videos has restrictions. It works on Safari and Chrome if the video is
muted, no need for user intervention. However, If the video is not muted it doesn’t
work on Safari at all, and on chrome it works only if the user taps anywhere on the
screen(doesn’t need to be a button) before the video loads.

3.​ Chrome can fail to seek a video. This is a browser bug. It happened to me on
Chrome for Windows, but didn’t happen on Chrome for Android.

4.​ When trying to play a video from an external URL, you can get an error like "Access
to video at 'urlVideo' from origin 'urlOrigin' has been blocked by CORS policy: No
'Access-Control-Allow-Origin' header is present on the requested resource.". This
error is caused because the server providing the video did not set the proper
CORS response header.

5.​ When trying to play a video on Safari, even if it’s from the StreamingAssets folder,
you can get this error: “Failed to load resource: the server responded with a Status
of 404()”. This happens if the web server you are using doesn’t support the Range
request header.

6.​ When trying to play a video on Safari, you get this error: “NotAllowedError: The play
method is not allowed by the user agent or the platform in the current context,
possibly because the user denied permission.”, or this error: "NotSupportedError:
The operation is not supported" This is likely because you didn’t follow
requirement number 4.

7.​ You can not change the volume on mobile Safari.
8.​ Firefox has an issue that prevents my plugin from working on Android.
9.​ It might take a long time to load a video on Safari if it’s too large in size. If this

happens, try compressing it.You can find more information here.
10.​You get the error NotSupportedError: The media resource indicated by the src

attribute or assigned media provider object was not suitable. Or Access Denied. Or
Failed to load resource: the server responded with a status of 404 (Not Found).
Please make sure that if you are using the StreamingAssets folder, it’s directly
under the root Assets folder. It must be Assets > StreamingAssets and not
something like Assets > Assets > StreamingAssets.

11.​You get the error SecurityError: The operation is insecure only on iOS Safari. Please
see this SO post. It’s likely that your CDN is using redirection and Safari can’t

https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/Device-SpecificConsiderations/Device-SpecificConsiderations.html
https://webkit.org/blog/6784/new-video-policies-for-ios/
https://stackoverflow.com/questions/36783521/why-does-setting-currenttime-of-html5-video-element-reset-time-in-chrome
https://stackoverflow.com/questions/41822932/html5-video-doesnt-play-with-crossorigin-anonymous
https://stackoverflow.com/questions/27712778/video-plays-in-other-browsers-but-not-safari/36299252#36299252
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/Device-SpecificConsiderations/Device-SpecificConsiderations.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1884282
https://stackoverflow.com/questions/53537770/safari-videos-load-far-too-slowly
https://stackoverflow.com/questions/62089037/three-js-webgl-video-texture-cors-issue-on-safari

handle it. Check the network tab and use the final url after the redirection.
12.​My asset does not work in play mode, only in the actual build. This is true for all

.jslib plugins. You can run the plugin in play mode but it won’t do anything.
13.​When trying to get the width and/or height of the video, it returns 0. This can

happen if you try to retrieve information from the video before it has properly
loaded. Try waiting for the canplay or loadeddata event to fire first.

14.​You get the following error(s), or similar one(s):​
"Failed to create RenderTexture with RGBA16 UNorm (24) format. The platform
doesn't support that format, and it doesn't have a compatible format"
“RenderTexture.Create failed: format unsupported - None (24).”​
Please take a look at this forum thread. Your device doesn’t support the render
texture used in the example. You can try another kind of render texture.

 15. The video color is washed out: There are 3 ways you can solve this​
​ 15a) Edit->Project Settings…->Player->Other Settings->Rendering->Color Space->
Select Gamma
 15b) If you really need Linear Color space, go to
Assets->MarksAssets->VideoPlayerWebGL->Plugins->VideoPlayerWebGL.jspre. Open the
file and go to the function
Module['VideoPlayerWebGL'].VideoPlayerWebGL_UpdateTexture. There are 2 lines (one
inside an if, another inside an else) like this GLctx.texImage2D(GLctx.TEXTURE_2D, 0,
GLctx.RGBA, GLctx.RGBA, GLctx.UNSIGNED_BYTE, video);.

Replace them with GLctx.texImage2D(GLctx.TEXTURE_2D, 0, GLctx.SRGB8_ALPHA8,
GLctx.RGBA, GLctx.UNSIGNED_BYTE, video);. This second option has a huge
performance cost though, it is significantly slower. You probably won’t notice if you only
have to play one video, but if you have to play several you will feel the FPS dipping.
​

https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/canplay_event
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/loadeddata_event
https://forum.unity.com/threads/failed-to-create-rendertexture-with-rgba16-unorm-24-format.1174268/

15c) Since version 1.8, if you are using URP, or if you're using Unity 2021.2 or
higher with the built-in RP, you can use the RGB to Linear shadergraph under the
Assets->MarksAssets->VideoPlayerWebGL->Shaders folder. If you are using the built-in RP
on a Unity version lower than 2021.2, you can use the RGB to Linear shader instead, and
delete the shadergraph version. This fixes the issue without the performance penalty of
the previous solution. Solution 15b) is only necessary if you must use Unity's standard
materials for some reason, on top of having to use linear color space.

 16. If you are experiencing lag on your video, or if it freezes, it might be due to
hardware acceleration. Try disabling it on your browser.

