Уважаемый студент, выполнение указанных заданий строго обязательно!

Группа ПКД1/1 Дата:25.11.2022г.

Дисциплина: ОДП Химия Преподаватель: Воронкова А.А.

Практическое занятие. Исследование влияния различных факторов на скорость химической реакции

Цель: исследовать зависимости скорости реакции от температуры, площади соприкосновения, ингибитора, катализатора и концентрации вещества.

Задание: выполнить работу по алгоритму

Ход работы

<u>Опыт № 1. Зависимость скорости реакции от природы реагирующих</u> веществ

https://www.youtube.com/watch?v=Gah0VEO7Ps0

• Изучение влияния природы кислоты

В одну пробирку наливаем раствор соляной кислоты, а в другую – столько же уксусной (примерно одинаковой концентрации). Одновременно помещаем в них по грануле цинка. В обеих пробирках протекает реакция замещения с выделением водорода:

$$Zn + 2HCl = ZnCl_2 + H_2 \uparrow$$

$$Zn + 2CH_3COOH = Zn(CH_3COO)_2 + H_2\uparrow$$

В пробирке с уксусной кислотой водород выделяется с меньшей скоростью. Это можно объяснить тем, что уксусная кислота обладает меньшими кислотными свойствами по сравнению с соляной кислотой.

• Изучение влияния природы металла

В две пробирки нальем одинаковое количество соляной кислоты и одновременно поместим в них по кусочку металлов разной природы: цинка и магния. Уравнения данных реакций:

$$Zn + 2HCl = ZnCl_2 + H_2 \uparrow$$

$$Mg + 2HCl = MgCl_2 + H_2 \uparrow$$

Реакция соляной кислоты с магнием протекает с большей скоростью, так как интенсивнее выделяется водород. Магний — более активный металл, чем цинк (магний стоит в ряду напряжений левее цинка).

<u>Опыт № 2. Зависимость скорости реакции от площади поверхности соприкосновения реагирующих веществ</u>

https://www.youtube.com/watch?v=Oruq6wqu1Kw

• Изучение влияния степени измельчения вещества (поверхности соприкосновения реагирующих веществ).

В две пробирки нальем примерно по 2 мл раствора медного купороса. Одновременно поместим в одну пробирку кусок железной проволоки, а в другую – железный порошок. В обеих пробирках протекает реакция замещения в соответствии с уравнением:

$$Fe + CuSO_4 = FeSO_4 + Cu \downarrow$$

О протекании реакции замещения между сульфатом меди (II) и железом можно судить по выделению из раствора вещества красно-бурого цвета — меди. Признаки реакции быстрее появились в пробирке с порошком железа, т. к. порошок железа имеет большую площадь поверхности соприкосновения с раствором медного купороса. Мы видим, что измельчение вещества приводит к повышению скорости реакции.

<u>Опыт № 3. Зависимость скорости реакции от концентрации исходных</u> веществ

https://www.youtube.com/watch?v=cKLD1ejTJg4&t=28s

В две пробирки поместим по 2 гранулы цинка и осторожно прильем растворы уксусной кислоты: в первую пробирку — 9%-ный уксус, а во вторую — 70%-ную кислоту. Реакция протекает быстрее в той пробирке, в которой больше концентрация уксусной кислоты.

Опыт № 4. Зависимость скорости реакции от температуры https://www.youtube.com/watch?v=z8ig_koe9q8

В две пробирки с соляной кислотой одинаковой концентрации добавим по 1 грануле цинка. Одну из пробирок поместим в стакан с горячей водой.

Наблюдаем, что при нагревании скорость выделения водорода увеличивается. Скорость реакции зависит от температуры, при которой она проводится.

Опыт № 5. Зависимость скорости реакции от участия катализатора https://www.youtube.com/watch?v=f8hsZMo9x3Q

На дно стакана нальем 3%-ный раствор перекиси водорода. Пероксид водорода – очень непрочное вещество и легко разлагается на воду и кислород:

 $2H_2O_2 = 2H_2O + O_2\uparrow$.

При обычных условиях реакция разложения пероксида водорода протекает медленно, признаков реакции (т. е. выделения пузырьков газа) мы не наблюдаем. Добавим в стакан с перекисью водорода немного черного порошка оксида марганца (IV). Наблюдаем интенсивное выделение пузырьков газа. Внесем в стакан тлеющую лучинку — она разгорается, следовательно, выделяющийся газ — кислород. Почему при внесении в стакан оксида марганца скорость реакции увеличилась? Дело в том, что оксид марганца является катализатором реакции разложения пероксида водорода. Катализатор, участвуя в реакции, ускоряет ее, но сам в ней не расходуется.

Опыт № 6. Зависимость скорости реакции от участия ингибиторов https://www.youtube.com/watch?v=_7aNB80NqoE

Описать наблюдаемый опыт, записать химические реакции

Запи	шите вывод ф	ормулируя след	ующие утвержд	ения:		
Скорость		химической				реакции –
это_				•		
При	повышении	концентрации	реагирующих	веществ	скорость	реакции
При	 повышении	температуры	на каждые	e 10°C	скорость	реакции (Правило
 Вант	-Гоффа).					_\ 1
измен пути	няют механиз л	скорость реакці и реакции и нап ргией активации	равляют ее по			
_ Инги	биторы –					
	лизатора	ти химической	реакции или	ее напро	авления с	помощью

Контрольные вопросы

А1. Реакция, уравнение которой

$$3H_2 + 2N_2 \leftrightarrow 2NH_3 + Q$$

является

- 1) обратимой и экзотермической
- 2) необратимой и экзотермической
- 3) обратимой и эндотермической
- 4) необратимой и эндотермической.
- А2. С наибольшей скоростью взаимодействуют:
- а) NaOH (p-p) и HCl (p-p); б) Cu и O₂; в) Fe и HCl (p-p); г) CuO и HCl.
- А 3. Химическое равновесие в системе

$$CO_{2(r)} + C_{(TB)} \leftrightarrow 2 CO_{(r)} - Q$$

Сместится вправо при

- 1) повышении давления
- 2)понижении температуры
- 3) повышении концентрации СО
- 4) повышении температуры.
- А4. При повышении давления равновесие смещается вправо в системе
- 1)2CO_{2(r)} \leftrightarrow 2CO_(r) + O_{2(r)}
- $2)C_2H_{4(r)} \leftrightarrow C_2H_{2(r)} + H_{2(r)}$
- $3)PCl_{3(r)} + Cl_{2(r)} \leftrightarrow PCl_{5(r)}$
- $4)H_{2(r)} + Cl_{2(r)} \leftrightarrow 2HCl_{(r)}$
- А 5. Согласно термохимическому уравнению

$$2NO_{(r)} + O_{2(r)} \leftrightarrow 2NO_{2(r)} + 113, 7 кДж$$

При образовании 4 моль NO₂

- 1) выделяется 113,7 кДж теплоты
- 2) поглощается 227, 4 кДж теплоты
- 3) выделяется 227,4 кДж теплоты
- 4) поглощается 113,7 кДж теплоты

Алгоритм работы

1.Повторить материал прошлых лекций

2. Просмотреть видео опытов

3. Оформить каждый опыт в таблицу

№опыта	Наблюдения (химическая реакция)	Вывод
Опыт № 1. Зависимость скорости		
реакции от природы реагирующих веществ		
Опыт № 2. Зависимость скорости		
реакции от площади поверхности		
соприкосновения реагирующих веществ		
Опыт № 3. Зависимость скорости		
реакции от концентрации исходных веществ		
Опыт № 4. Зависимость скорости		
реакции от температуры		
Опыт № 5. Зависимость скорости		
реакции от участия катализатора		
Опыт № 6. Зависимость скорости		
реакции от участия ингибиторов		

- 4.Запишите вывод формулируя следующие утверждения:
- 5.Ответьте на контрольные вопросы в тетради. Выбирая ответ, аргументируйте.

Для максимальной оценки задание нужно прислать до 15.00 ч. 25.11.2022г. Выполненную работу необходимо сфотографировать и отправить на почтовый ящик <u>voronkova20.88@gmail.com</u>, или <u>Александра Александровна (vk.com)</u>, добавляемся в <u>Блог преподавателя Воронковой А.А. (vk.com)</u> -здесь будут размещены видео материалы

-ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО

Список литературы

Рудзитис Г. Е., Фельдман Ф. Г. Химия. 11 класс: учеб. для общеобразоват. организаций базовый уровень / Г. Е. Рудзитис, Ф. Г. Фельдман. — М.: Просвещение, 2014.-224c.: ил. — ISBN 978-5-09 — 028570-4

Дополнительная литература:

- 1. Габриелян О.С. Химия в тестах, задачах, упражнениях: учеб. Пособие для студ. сред. проф. учебных заведений / О.С. Габриелян, Г.Г. Лысова М., 2012.Рудзитис Г. Е., Фельдман Ф. Г. Химия. 11 класс: учеб. для общеобразоват. организаций с прил. на электрон.носителе (DVD) базовый уровень / Г. Е. Рудзитис, Ф. Г. Фельдман. М.: Просвещение, 2014. 224с.: ил. ISBN 978-5-09—028570-4.
- 2. Габриелян О.С. Химия. 11 класс. Базовый уровень: учеб. Для общеобразоват. Учреждений. М., 2010.

Интернет-ресурсы: (Перечень адресов интернет-ресурсов с кратким описанием)

- 1. http://www.chem.msu.su/rus/school/ школьные учебники по химии для 8-11 классов общеобразовательной школы
- 2. http://experiment.edu.ru/catalog.asp естественнонаучные эксперименты
- 3. chem.msu.su портал фундаментального химического образования России 4.alhimik.ru образовательный сайт по химии