
None

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

Carbon Language - http://github.com/carbon-language

Safety Unit No. 10:
private unsafe /
public safe

Authors: josh11b, (add yourself)
Status: Draft
Created: 2025-10-14
Docs stored in Carbon's Shared Drive
Access instructions

"Safety Unit" is a series of docs with "units of discussion": a doc to help written, async
communication.

Proposal
We don't expect to be able to make all data structures have safe implementations, but we want
them to have safe APIs. To accomplish that, we want to limit the code that needs to be verified
as maintaining the invariants needed for safety. The idea is to strengthen the public/private split
already used to hide implementation details, and then only code with private access (members
of the class and friends) needs to be reviewed.

Lets see how it could work using an example:

class StackListWithDefault(T:! type) {
 private class Node;
 private var ^A: Node;

 class Node {
 var data: T;
 var next: Optional(Node ^A *);
 }

 private var top: Optional(Node ^A *);
 // Having a default value makes the empty case simpler.
 private var deflt: T;

 // public, type of contained places is `T`.
 alias ^Elts = ^A.data + &deflt;

 fn Make(deflt: T) -> Self;

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
http://github.com/carbon-language
https://drive.google.com/drive/folders/1aC5JJ5EcI8B7cgVDrLvO7WNw97F0LpS2
https://github.com/carbon-language/carbon-lang/blob/trunk/CONTRIBUTING.md#getting-access

 fn Push[ref self: Self](x: T) [[write(^self)]] {
 // TODO: should there be an effect to indicate that a
 // newly allocated place is added to `^A`?
 // ...
 }
 fn Pop[ref self: Self]() -> T [[write(^self), free(^Elts)]] {
 if let .Some(p: Node ^A *) = self.top {
 returned var r: T = p->data;
 self.top = p->next;
 // UNSAFE: actually invalidating ^A, but we only have
 // `[[free(^Elts)]]` effect
 Allocator.Release(p);
 return var;
 } else {
 return self.deflt;
 }
 }

 fn Peek[ref self: Self]() -> ref ^Elts T {​
 if let .Some(p: Node ^A *) = self.top {
 return p->data;
 } else {
 return self.deflt;
 }
 }

 // TODO: destructor
}

Another example, in sketch, is the RC class. It will also publicly expose access (including
references) to a contained data item of type T. It would like to prevent public access to the
reference count itself. Furthermore, RC's destructor will invalidate references to T data elements,
but not the pointers in other RC instances (even though that isn't safe).

Goals:

●​ Easier to invalidate the public slice of an alias set even when suppressing invalidation of
a private alias set containing it.

●​ Provide a way to reacquire references to elements in a container after they have been
invalidated by a shape-changing operation.

●​ Provide a guarantee that only code with private access has a pointer to any object in an
owned private alias set (as long as unsafe code doesn't leak it).

Something that makes this tricky is that we are assuming unsafe code, for which we are
generally not restricting or providing guarantees for. However, by switching from Rust's unsafe
blocks to unsafe operations, we hopefully can say that some unsafe operations preserve these
properties, and are expressive enough for common data structures. Other unsafe operations
would require greater scrutiny.

Discussion on 2025-10-06
#safety 2025-10-03

https://docs.google.com/document/d/1Yt-i5AmF76LSvD4TrWRIAE_92kii6j5yFiW-S7ahzlg/edit?tab=t.0#heading=h.3utc3s2uysh3
https://discord.com/channels/655572317891461132/708431848715452476/1423805356924211300

	Safety Unit No. 10: private unsafe / public safe
	Proposal

