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There are 57 questions in the book by Michael Nielsen. 

 
 
Question 1. 
Sigmoid neurons simulating perceptrons, part I  
Suppose we take all the weights and biases in a network of perceptrons, and multiply them 
by a positive constant,c>0 . Show that the behaviour of the network doesn't change.  
 
Solutions 1. (何文劭) 
 
output = 0 if w·x + b ≤ 0     w·x + b ≤ 0 <==> c·w·x + c·b ≤ 0    if c>0  
              1 if w·x + b > 0     w·x + b > 0 <==> c·w·x + c·b > 0    if c>0  

 
 
Question 2. 



 
Solutions 2. (林永璿) 
 
Output of sigmoid neurons=σ(z)=σ(w⋅x+b), 

σ((cw)⋅x+(cb))=σ(c(w⋅x+b))=σ(cz)  

when z>0  σ(cz)  tends to 1 as c→∞   

when z<0  σ(cz)  tends to 0 as c→∞​
thus when z≠0, c→∞, the behaviour of this network of sigmoid neurons is exactly the same 

as the network of perceptrons 

However, σ(cz) =0.5 as z=0,independent to c, which is different from the output of an 

perceptron with z=0( output of an perceptron =0 as z≤0) 

 
 
Question 3. 
There is a way of determining the bitwise representation of a digit by adding an extra layer to 
the three-layer network above. The extra layer converts the output from the previous layer 
into a binary representation, as illustrated in the figure below. Find a set of weights and 
biases for the output layer. Assume that the first 3 layers of neurons are such that the correct 
output in the third layer (i.e., the old output layer) has activation at least 0.99, and incorrect 
outputs have activation less than 0.01. 
 
Solutions 3. (王嘉澤) 
 

 
 
Question 4. 

 
Solutions 4. (何庭昀) 



 
 

Question 5.: 
    What happens when C is a function of just one variable ?  

    Can you provide a geometric interpretation of what gradient descent is doing in the 

one-dimensional case ? 
 
Solutions 5. (李承恩) 

 
 

 
 
Question 6. 



An extreme version of gradient descent is to use a minibatch 
size of just 1. That is, given a training input, , we update our 
weights and biases according to the rules 

 
Then we choose another training input, and update the weights and biases again. And so 
on, repeatedly. This procedure is known as online, online, or incremental learning. In online 
learning, a neural network learns from just one training input at a time (just as human beings 
do). Name one advantage and one disadvantage of online learning, compared to stochastic 
gradient descent with a mini-batch size of, say 20. 
 
Solutions 6. (廖為謙) 

●​ Advantage: It is better than mini-batch method when updating the learning model 
because online learning only uses one example in each iteration. This is useful when 
we need to update the model frequently since it use only one sample each time to 
train the model. This allows us to model problems where you have a continuous 
stream of data and you want an algorithm to learn from them. This algorithm can 
adapt to changing user preferences 

●​ Disadvantage: Mini-batch is more stable than online learning on convergence issue 
because the training data used by mini-batch is fixed while the training data used by 
online learning updates frequently. 

 
 

 
 
Question 7. 
Write out Equation (22)  in component form, and verify that it gives tha same result as the 
rule (4) for computing the output of a sigmoid neuron. 
Solutions 7. (蔡宇翔) 

 

 
wij  is the weight from the j-th neuron in previous layer to i-th neuron in current layer. 
The summation sums all weights times inputs, so it satisfies rules (4) 
 

 
 
 
Question 8. 
 



Try creating a network with just two layers  an input and an output layer, no hidden layer  
with 784 and 10 neurons,η = 100.0 respectively. Train the network using stochastic gradient 
descent. What classification accuracy can you achieve? 
 
Solutions 8. (陳銘宏) 
 
When η = 100.0, the best classification accuracy achieved so far is 58.35% when the 
mini-batch size is 20. When η is not constrained, the best classification accuracy found so 
far is 91.93% (η=0.875 and mini-batch size=20). Moreover, when the mini-batch size=10, the 
accuracy can also achieve 91.36% and 91.14% with η=6.25 and 13.125, respectively. 
However, due to the lack of the hidden layer, the trend of the results is quite unstable. 
Hence, I believe it should not be easy to reproduce the same results. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 9. 



 
 
Solutions 9. (張繁可) 

 



 
 

 
 
Question 10. 
Prove Equations (BP3) and (BP4) 
 
Solutions 10. (吳亭慧) 



 
 
 

 
 
Question 11.​ ​ ​ ​ ​  
Backpropagation with a single modified neuron 
Suppose we modify a single neuron in a feedforward network so that the output from 

the neuron is given by , where f is some function other than the 𝑓(
𝑗

∑ 𝑤
𝑗
𝑥

𝑗
+ 𝑏)

sigmoid. How should we modify the backpropagation algorithm in this case?  

 
Solutions 11. (陳彥禎) 
The modified backpropagation algorithm will be like this: 

1.​ Input x : Set the corresponding activation a1 for the input layer. 

2.​ Feedforward : For each  compute  𝑙 = 2, 3,...., 𝐿 − 1 𝑧𝑙 = 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙

and  and  and . 𝑎𝑙 = σ(𝑧𝑙) 𝑧𝐿 = 𝑤𝐿𝑎𝐿−1 + 𝑏𝐿 𝑎𝐿 = 𝑓(𝑧𝐿)

3.​ Output error  : Compute the vector  δ𝐿 δ𝐿 = ᐁ
𝑎
𝐶⊙𝑓'(𝑧𝐿)

4.​ Backpropagate the error : For each  compute 𝑙 = 𝐿 − 1, 𝐿 − 2,...., 2

. δ𝑙 = ((𝑤𝑙+1)
𝑇
δ𝑙+1)⊙σ'(𝑧𝑙)

5.​ Output : The gradient of the cost  function is given by  ∂𝐶

∂𝑤
𝑗𝑘
𝑙 = 𝑎

𝑘
𝑙−1δ

𝑗
𝑙

and . ∂𝐶

∂𝑏
𝑗
𝑙 = δ

𝑗
𝑙

 
 
Question 12. 



 
Solutions 12. (Name(s) of solution provider) 
 

 
 
Question 13. 
Fully matrix based approach to backpropagation over a minibatch: Our 

implementation of stochastic gradient descent loops over training examples in a minibatch. 

It's possible to modify the backpropagation algorithm so that it computes the gradients for 

all training examples in a mini batch simultaneously. The idea is that instead of beginning 

with a single input vector, , we can begin with a matrix X = [x_1, … x_n]​ whose columns 

are the vectors in the mini batch. We forward propagate by multiplying by the weight 
matrices, adding a suitable matrix for the bias terms, and applying the sigmoid function 

everywhere. We backpropagate along similar lines. Explicitly write out pseudocode for this 

approach to the backpropagation algorithm. Modify network.py so that it uses this fully 

matrix based approach. The advantage of this approach is that it takes full advantage of 

modern libraries for linear algebra. As a result it can be quite a bit faster than looping over 

the minibatch. (On my laptop, for example, the speedup is about a factor of two when run on 

MNIST classification problems like those we considered in the last chapter.) In practice, all 

serious libraries for backpropagation use this fully matrix based approach or some variant.  

​ ​ ​ ​ ​  
Solutions 13. (張大衛) 
Please see the zip file `ex13.zip’ in the same directory. 

 
 
Question 14. 
Verify that σ’(z)=σ(z)(1-σ(z)). 
Solutions 14. (何文劭) 

       σ(𝑧)' = 1

1+𝑒−𝑧( )' = 𝑒−𝑧

(1+𝑒−𝑧)
2 = ( 1

1+𝑒−𝑧
)( 𝑒−𝑧

(1+𝑒−𝑧)
) = σ(𝑧)(1 − σ(𝑧))

 
 
Question 15.One gotcha with the cross-entropy is that it can be difficult at first to remember 
the respective roles of the s and the s. It's easy to get confused about whether the right form 
is or . What happens to the second of these expressions when or ? Does this problem afflict 
the first expression? Why or why not? y = y1, y2,… a L 1 , a L 2 ,… C = − [ ln + (1 − )ln(1 − )] 
. 1 n ∑x ∑ j yj a L j yj a L j (63) ∑j 1 0 y a −[y ln a + (1 − y)ln(1 − a)] −[a ln y + (1 − a)ln(1 − y) 
 
Solutions 15. (Name(s) of solution provider) 
 

 
 
Question 16. 
 
Solutions 16. (Name(s) of solution provider) 
 



 
 
Question 17. 
 
Solutions 17. (何庭昀) 

 
 

Question 18. 
    Show that if we use the quadratic cost function then the output error δ^L for a single 

training example x is given by δ^L=a^L−y. 
    Show that the partial derivatives with respect to the weights and biases in the output layer 

are given by  

∂C/∂w^L_jk = (1/n)*sum_x(a^(L-1)_k * (a^L_j - y_j)  and  

∂C/∂b^L_j = (1/n)*sum_x(a^L_j - y_j) . 

 
Solutions 18. (李承恩) 



 
 

 
Question 19. 
 
Solutions 19. (Name(s) of solution provider) 
 

 
 
Question 20. 

 
Solutions 20. (蔡宇翔) 

 
 

 
Question 21. 



 
Solutions 21. (林澤佑) 

 
 

 
 
Question 22. 

 
Solutions 22. (張繁可) 



 
 

 
Question 23. 

 
Solutions 23. (楊喬諳) 



 
 
Question 24. 

 
Solutions 24. (楊喬諳)

 
 
Question 25. 

 
Solutions 25. (林澤佑) 



 
 
Question 26. 
Solutions 26. (楊喬諳)

 
 
Question 27. 
As discussed above, one way of expanding the MNIST training data is to use small rotations 
of training images. What's a problem that might occur if we allow arbitrarily large rotations of 
training images? 



Solutions 27. (何文劭) 
 

 
Question 28. 
 
Solutions 28. (Name(s) of solution provider) 
 

 
 
Question 29. 

 
Solutions 29. (Name(s) of solution provider) 

 
 

 
Question 30. 

 



L2 regularization sometimes automatically gives us something similar to the new approach 
to weight initialization. Suppose we are using the old approach to weight initialization. Sketch 

a heuristic argument that: (1) supposing  is not too small, the first epochs of training will 

be dominated almost entirely by weight decay; (2) provided the weights will decay 

by a factor of per epoch; and (3) supposing  is not too large, the weight 

decay will tail off when the weights are down to a size around ,where is the total 
number of weights in the network.  
 
Solutions 30. (何庭昀) 

(1)because when is not too small, by the formula , 

the part will near 1 and the first epochs of training will be dominated almost entirely by 
weight decay. 

(2) part will be multiple (n/m) times by  in one epoch, because , 

^(n/m) roughly equal to  
(3)??? 

 
 
Question 31. 

 
    Modify the code above to implement L1 regularization, and use L1 regularization to classify 

MNIST digits using a 30 hidden neuron network.  

    Can you find a regularization parameter that enables you to do better than running 

unregularized ? 
 
Solutions 31. (李承恩) 
 

 
Question 32. 
Solutions 32. 

 
Question 33. 



 
Solutions 33. (蔡宇翔) 
The modified file is network2_ex33.py. 
Change its name as network2.py. 
net.SGD(training_data, 30, 10, 10.0, lmbda = 1000.0,​
...evaluation_data=validation_data, monitor_evaluation_accuracy=True, no_improvement_num=10) 
no_improvement_num’s default value is zero, and it is not be executed without setting. 

 
In picture, the highest accuracy is 1090 in Epoch 7, so it terminated because no improvement during epoch 7~17 

 
 
Question 34. Can you think of a rule for early stopping other than no-improvement-in n ? 
Ideally, the rule should compromise between getting high validation accuracies and not 
training too long. Add your rule to network2.py , and run three experiments comparing the 
validation accuracies and number of epochs of training to no-improvement-in 10 . 
 
Solutions 34. (袁佑緣) 
 
I add a early_stop_factor(< 1) to max accuracy comparison,  saying the program updates 
max accuracy(improves) if the current accuracy is bigger than the max accuracy times 
early_stop_factor. It would make the program stop later and try to improve more. 
  
I use ex34.py to generate an experiment sample and save it in numpy data, the following 
figure is the whole training process (300 epochs). 



 
 And I call ex34-compare.py to compare the effect of the addition of early_stop_factor, the 
following table is a comparison of different early_stop_factor. 
 
 

early_stop_factor early stop epoch (total 300) best accuracy 

1 (standard 
no-improvement-in-10) 

41 73.0 

0.98 63 75.0 

0.96 134 70.0 

0.95 no early stop none 

 
 

 
 
Question 35. Modify network2.py so that it implements a learning schedule that: halves the 
learning rate each time the validation accuracy satisfies the noimprovementin 10 rule; and 
terminates when the learning rate has dropped to 1/128 of its original value. 
 
Solutions 35. (袁佑緣) 
 
The test code is ex35.py, and the network is network_ex35.py, and the following figure is the 
result of the training process with decreasing learning rate. 



 
 

 
Question 36. 
 
It's tempting to use gradient descent to try to learn good values for hyperparameters such as 
λ and η . Can you think of an obstacle to using gradient descent to determine λ ? Can you 
think of an obstacle to using gradient descent to determine η ? 
 
 
Solutions 36. (袁佑緣) 
 
Actually the final cost is a function of λ, η and weights, and since final weights depend on λ 
and η, so the final cost is really a function of two variables λ and η. 
But there is no clear way to write the partial derivatives cost function respect to λ and η, for 
example, to compute final cost function c respect to λ 

 

but we don’t know how to compute   and .  
 

 
Question 37​ ​ ​ ​ ​ ​  
What would go wrong if we use  μ>1 in the momentum technique? 
Solutions 37. (郭俊廷) 

 
If   μ>1,  there is a possibility that the effect of momentum over-exceed the effect of gradient 
descent eq.(107).This will cause the gradient descent fail to move toward the minimum.  

 
 
Qusetion 38 
What would go wrong if we use  μ<0 in the momentum technique? 
Solutions 38. (郭俊廷) 
 



 
If  μ<0 , it will change the direction of velocity in the first term in eq.(107) every time. This may 
cause the gradient descent unable to move forward effectively or even move in the opposite 

direction. 
 

Qusetion 39 
Solutions 39. (郭俊廷) 

1.​ Initialize self.velocities with zeros. 

 
     2. Mimicking eq(107) and eq(108) 

 
3. Results 
μ=0​ ​ ​ ​ ​ μ=0.3 (Achieves the accuracy saturation faster!!!) 

 
 

 
 
Question 40  
Prove the identity in Equation (111). i.e., derive the relation between sigmoid  function and 
hyperbolic tangent. 
Solutions 40 (林澤佑) 



 
 

Question 41  
    We've seen how to use networks with two hidden layers to approximate an arbitrary 
function. Can you find a proof showing that it's possible with just a single hidden layer? As a 
hint, try working in the case of just two input variables, and showing that: (a) it's possible to 
get step functions not just in the x or y directions, but in an arbitrary direction; (b) by adding 
up many of the constructions from part (a) it's possible to approximate a tower function which 
is circular in shape, rather than rectangular; (c) using these circular towers, it's possible to 
approximate an arbitrary function. 
 
Solutions 41 (陳冠羽) 

(a)​由第四章的討論我們知道，藉由縮放， sigmoid function 可以近似 step function σ(𝑧)
。 ℎ(𝑧)

​ 現在考慮兩個輸入 ，𝑧 = (𝑥, 𝑦) 取𝑤 = (𝑤
1
, 𝑤

2
)，則當𝑤方向固定，長度足夠長時有

 σ(𝑤
1
𝑥 + 𝑤

2
𝑦 + 𝑏) ≈ ℎ

𝑤
(𝑡 + 𝑏/|𝑤|)

，其中 。 𝑡為(𝑥, 𝑦)方向軸上的座標，ℎ
𝑤
即為𝑤方向的𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(b) 仿照課本的作法，由(a)我們可以造出”wall function”，即w方向上的on-off function。接著我

們要做出tower function。我們的策略是，把tower的高度(值)分散到足夠多通過此點的wall，使
得這些wall各自的高度(值)微不足道，但總和正好為tower高度(值)，如此我們可以近似circular 
towers。 
(c) 任何function都可以用數個circular towers來逼近。更高維度的情況可以類推。 

 
Question 42 
Earlier in the book we met another type of neuron known as a rectified linear unit. Explain 
why such neurons don't satisfy the conditions just given for universality. Find a proof of 
universality showing that rectified linear units are universal for computation. 
 
Solutions 42 (陳冠羽) 

http://neuralnetworksanddeeplearning.com/chap3.html#other_models_of_artificial_neuron


因為rectified linear unit z→ 時不會飽和(saturated)，不能造出step function，因此不適用前段∞
證明。 
在下面這篇論文中，作者"construct a sparsely-connected depth-4 neural network and bound 
its error in approximating f"。 
Provable approximation properties for deep neural networks(2015), Uri 
Shaham, Alexander Cloninger, Ronald R. Coifman 
http://cpsc.yale.edu/sites/default/files/files/tr1513(1).pdf 
 

 
Question 43 
Suppose we consider linear neurons, i.e., neurons with the activation function s(z)=z. 
Explain why linear neurons don't satisfy the conditions just given for universality. Show that 
such neurons can't be used to do universal computation.  
 
Solutions 43 (陳冠羽) 
因為linear neurons z→ 時及 z→ 均不會飽和(saturated)，不能造出step function，因此∞ − ∞
亦不適用前段證明。 
另外，若僅採用linear neurons，則最終合成函數亦為linear function(or affine transformation)，
無法近似任意函數(because the composite of translation, dilation, reflection is still linear)。

 
Question 44-45 
Solutions 44-45 
 
_________________________________________________________________________
__ 
Question 44: In our discussion of vanishing gradient problem, we made use of the fact that  
sigma’(z) < ¼. Suppose we used a different activation function, one whose derivative could 
be much larger. Would that help us avoid the unstable gradient problem?  
Solution 44: (陳德禮) 
Unstable gradient problem arises when the gradient of the previous layer(s) is smaller than 
the following layers. This means that in earlier layers, neurons learn at a much slower rate 
than in later layers. 
Assuming we deploy a different activation function, whose derivative is larger than ¼ 
(sigma’(z) >= 1/4), we still cannot anticipate the vanishing gradient problem. The reason is 
shown in Equation (122) (Niellsen, page 207). The partial derivative of the cost function is 
basically a multiplication of sigma’(z) function. Even if we pick a value of sigma’(z) > ¼, we 
will still end up with the vanishing gradient issue, as multiplication of fraction yields an even 
smaller fraction.  
 

 
Question 46 

http://neuralnetworksanddeeplearning.com/chap3.html#other_models_of_artificial_neuron
http://cpsc.yale.edu/sites/default/files/files/tr1513(1).pdf
https://arxiv.org/find/stat/1/au:+Coifman_R/0/1/0/all/0/1


 
Solution 46 () 
 
 
Question 48: (a) What classification do you get if you omit the fully-connected layers, and 
just use the convolutional-pooling layer and softmax layer? (b) Does the inclusion of the fully 
connected layer help? 
Solution 48: (陳德禮) 

(a)​Omission of the fully-connected layers still allow us to obtain reasonably accurate 
outputs from both convolutional and pooling layers (hence, a linear classification). 
The addition of the fully-connected layers improve the learning outcome as it is a 
cheap way to  create non-linear combinations of the existing features.  

(b)​Thus, the inclusion of the fully connected layer does help and improve the learning 
outcome of the system as it enhances the (possibly non-linear) function in that space. 

 
Question 50: The idea of convolutional layers is to behave in an invariant way across 
images. It may seem surprising, then, that our network can learn more when all we've done 
is translate the input data. Can you explain why this is actually quite reasonable? 
Solution 50: (陳德禮) 
Schematic Diagram: 
Convolutional Layer ---------->​​ Pooling Layer​ ---------->​ Fully Connected Layer 

The output of the convolutional layer(s) generates meaningful, low-dimensional, 
and invariant information. The addition of the pooling layer(s) afterwards generates a 
robust output that does not change significantly despite the change in the input data. The 
statement above is quite reasonable because both convolutional and pooling layers can 
cause “underfitting.” [1] The application of pooling layer(s) post convolutional layer(s) do not 
necessarily apply on all channels to retain “highly invariant features” [1] and to prevent 
underfitting “when the translation invariance prior is incorrect” [1] 

Source(s): 
[1] Goodfellow, I. Bengio, Y. Courville, A. 2016. “Deep Learning”. page 347  


