ID and Names

1. faIXXBh 6. BEA 1. EE%E 16. BB
2. Mk 7. B3 12. 248 17. I EERS
3. Ex# 8. M= 13. R K1 18. Z& A
4. fIEERY 9. RET 14. A1 X B 19.

5. Z&ER 10. R=E 15. B R E 20. 55
21. WER 26. t55E 3. FTXKE 36. R1E#
22, SRET] 27 a] 3L B 32. 37. 3B
23. 558 28. 33. &2F 4§ 38. R T
24. {5558 29. 34. =% 39. SMEE
25. #hiEth 30. A FER 35. =IA#H 40. #RiE1h
41. [EEF 46. 51. 56.

42, [EHE R 47. 52. 57.

43. [F 48. M= 53.

44. [EiEE 49, 54.

45, 50. PE{ETE 55.

There are 57 questions in the book by Michael Nielsen.

Question 1.

Sigmoid neurons simulating perceptrons, part |

Suppose we take all the weights and biases in a network of perceptrons, and multiply them
by a positive constant,c>0 . Show that the behaviour of the network doesn't change.

Solutions 1. (fa] 3XBh)

output=0ifwx+b<0 wx+bs<0<==>cwx+cb=<s0 ifc>0
1Tifwx+b>0 wx+b>0<==>cwx+cb>0 ifc>0

Question 2.

2.+ Sigmoid neurons simulating perceptrons, part IT

Suppose we have the same setup as the last problem - a
network of perceptrons. Suppose also that the overall input to

the network of perceptrons has been chosen. We won't need
the actual input value, we just need the input to have been
fixed. Suppose the weights and biases are such that

w - x + b # 0 for the input z to any particular perceptron in the
network. Now replace all the perceptrons in the network by
sigmoid neurons, and multiply the weights and biases by a
positive constant ¢ > (. Show that in the limit as ¢ — oo the
behaviour of this network of sigmoid neurons is exactly the
same as the network of perceptrons. How can this fail when

w - ¥ + b = 0for one of the perceptrons?
Solutions 2. (#Ak 3&)

Output of sigmoid neurons=0(z)=0(w " x+b),

o((ew) - x+(cb))=0(c(w- x+b))=0(cz)

when z>0 o(cz) tends to 1 as c—

when z<0 o(cz) tends to 0 as c—o

thus when z+0, c—o, the behaviour of this network of sigmoid neurons is exactly the same
as the network of perceptrons

However, o(cz) =0.5 as z=0,independent to ¢, which is different from the output of an
perceptron with z=0(output of an perceptron =0 as z<0)

Question 3.

There is a way of determining the bitwise representation of a digit by adding an extra layer to
the three-layer network above. The extra layer converts the output from the previous layer
into a binary representation, as illustrated in the figure below. Find a set of weights and
biases for the output layer. Assume that the first 3 layers of neurons are such that the correct
output in the third layer (i.e., the old output layer) has activation at least 0.99, and incorrect
outputs have activation less than 0.01.

Solutions 3. (E &%)

Question 4.

4. « Prove the assertion of the last paragraph. Hint: If you're not
already familiar with the Cauchy-Schwarz inequality, you may
find it helpful to familiarize vourself with it.

Solutions 4. ({A]EER)

Ruestion m
gb[&k‘ﬂt‘dﬁ; i e
L‘((o.uclw..
6gua[c‘6,r L&

Question 5.:

What happens when C is a function of just one variable ?

Can you provide a geometric interpretation of what gradient descent is doing in the
one-dimensional case ?

Solutions 5. (&R

Question 6.

An extreme version of gradient descent is to use a minibatch
size of just 1. That is, given a training input, , we update our
weights and biases according to the rules

wy —» wk = W — T}aC /aw;ﬁ and bg — E}l T}aC /abg

Then we choose another training input, and update the weights and biases again. And so
on, repeatedly. This procedure is known as online, online, or incremental learning. In online
learning, a neural network learns from just one training input at a time (just as human beings
do). Name one advantage and one disadvantage of online learning, compared to stochastic
gradient descent with a mini-batch size of, say 20.

Solutions 6. (& &)

e Advantage: It is better than mini-batch method when updating the learning model
because online learning only uses one example in each iteration. This is useful when
we need to update the model frequently since it use only one sample each time to
train the model. This allows us to model problems where you have a continuous
stream of data and you want an algorithm to learn from them. This algorithm can
adapt to changing user preferences

e Disadvantage: Mini-batch is more stable than online learning on convergence issue
because the training data used by mini-batch is fixed while the training data used by
online learning updates frequently.

Question 7.

Write out Equation (22) in component form, and verify that it gives tha same result as the
rule (4) for computing the output of a sigmoid neuron.

Solutions 7. (£ ﬂ])

Equation 22: a’ = o(wa + b)

1
le 4: = i +0b
rule T eap(— S wya, — J(ijxj +b)

a =o(wa+0b) ={(c Zwm%"’b)i}

wij is the weight from thej-th neuron in previous layer to i-th neuron in current layer.
The summation sums all weights times inputs, so it satisfies rules (4)

Question 8.

Try creating a network with just two layers an input and an output layer, no hidden layer
with 784 and 10 neurons,n = 100.0 respectively. Train the network using stochastic gradient
descent. What classification accuracy can you achieve?

Solutions 8. (fE#47=)

When n = 100.0, the best classification accuracy achieved so far is 58.35% when the
mini-batch size is 20. When n is not constrained, the best classification accuracy found so
faris 91.93% (n=0.875 and mini-batch size=20). Moreover, when the mini-batch size=10, the
accuracy can also achieve 91.36% and 91.14% with n=6.25 and 13.125, respectively.
However, due to the lack of the hidden layer, the trend of the results is quite unstable.
Hence, | believe it should not be easy to reproduce the same results.

Question 9.

Alternate presentation of the equations of
backpropagation: ['ve stated the equations of
backpropagation (notably (BP1) and (BP2)) using the
Hadamard product. This presentation may be disconcerting if
you're unused to the Hadamard product. There's an alternative
approach, based on conventional matrix multiplication, which
some readers may find enlightening. (1) Show that (BP1) may

be rewritten as
5t = B'(z")V.C, (33)

where ¥'(zF) is a square matrix whose diagonal entries are the
values o'(z}), and whose off-diagonal entries are zero. Note
that this matrix acts on V,C by conventional matrix

multiplication. (2) Show that (BP2) may be rewritten as
8 = B () (w1 T (34)
(3) By combining observations (1) and (2) show that
§ =2 (T . YY) () TY (M) V. (35)

For readers comfortable with matrix multiplication this
equation may be easier to understand than (BP1) and (BP2).
The reason I've focused on (BP1) and (BP2) is because that

approach turns out to be faster to implement numerically.

Solutions 9. (3R %)
Summary: the equations of backpropagation

6t = V,C @ a'(z%) (BP1)
r!'f . tt",f{]}f'ﬁ'{ll} . ﬂj[::} {Iil12:|
r;_:” _ r'i'j (BP3)

o = ay 6] (BP4)

Hadamara’ Product ®

Q, ks) ay by by O+~ 0 © Q"
Qa, 10 ba i 0z ba < 0 b, 5 - Y
(int b Qs by O+~ 0 bn An
(n sL = v C ! L i
a @ o(x7) = -3 (ZL} Vo C

) |
@8 = (W)5) o o (24 57 (2% (wiHyT g4+

F?
i
]

L ﬂ"‘: -I- O
where Z(z") = t:l;rm";z‘-\ 2)
- g
: e
0 . o 5"":2'11'} J

Combine 0) . (2

1_ 1" I ; _f+ T r_.i.‘i. 1 ')
7= R (W g7 = m(2%) (T g (2 (winy gt

= Z' (2 (WY EE W 2l e

1

Question 10.
Prove Equations (BP3) and (BP4)

Solutions 10. (R =)

Question 11.
Backpropagation with a single modified neuron
Suppose we modify a single neuron in a feedforward network so that the output from

the neuron is given by f(} WX, + b), where fis some function other than the
)
sigmoid. How should we modify the backpropagation algorithm in this case?

Solutions 11. (FEZ48)

The modified backpropagation algorithm will be like this:
1. Input x : Set the corresponding activation a' for the input layer.
2. Feedforward : Foreachl = 2,3,...,L — 1 compute Z=wd '+
and @' = O'(Zl) and 2 =w'd"" + b and a" = f(2).
3. Output error 5" Compute the vector § = VaC(Df'(zL)

4. Backpropagate the error: Foreachl = L — 1,L — 2,..., 2 compute

5l = ((wl+1)T81+1)®c'(zl).

5. Output : The gradient of the cost function is given by a‘%; = a;(_lsjl_
ij
and ¢ - = 81_.
ob.]

Question 12.

Solutions 12. (Name(s) of solution provider)

Question 13.

Fully matrix based approach to backpropagation over a minibatch: Our
implementation of stochastic gradient descent loops over training examples in a minibatch.
It's possible to modify the backpropagation algorithm so that it computes the gradients for
all training examples in a mini batch simultaneously. The idea is that instead of beginning
with a single input vector, , we can begin with a matrix X = [x_1, ... x_n] whose columns
are the vectors in the mini batch. We forward propagate by multiplying by the weight
matrices, adding a suitable matrix for the bias terms, and applying the sigmoid function
everywhere. We backpropagate along similar lines. Explicitly write out pseudocode for this
approach to the backpropagation algorithm. Modify network.py so that it uses this fully
matrix based approach. The advantage of this approach is that it takes full advantage of
modern libraries for linear algebra. As a result it can be quite a bit faster than looping over
the minibatch. (On my laptop, for example, the speedup is about a factor of two when run on
MNIST classification problems like those we considered in the last chapter.) In practice, all
serious libraries for backpropagation use this fully matrix based approach or some variant.

Solutions 13. (3& K)
Please see the zip file "ex13.zip’ in the same directory.

Question 14.
Verify that 0’(z)=0(z)(1-0(2)).
Solutions 14. (Al 3X3h)

o(z)'=(12)'= C = () = o)1 - 0(2)

_ _z. 2 - -
1+e (1+e Z) 1+e ” (1+e Z)

Question 15.0ne gotcha with the cross-entropy is that it can be difficult at first to remember

the respective roles of the s and the s. It's easy to get confused about whether the right form
is or . What happens to the second of these expressions when or ? Does this problem afflict
the first expression? Why or why not? y =y1,y2,...aL1,aL2,..C=-[In+(1-)In(1-)]
.IndxYjyjaLjyjaLj(®@3)>j10ya-[ylna+(1-y)n(1-a)]-[alny+(1-a)in(1-y)

Solutions 15. (Name(s) of solution provider)

Question 16.

Solutions 16. (Name(s) of solution provider)

Question 17.

Solutions 17. (AT EEM)

au&(ﬁ " !1

Wheu wm«c, Wm_‘
=5 _L_ L= '

Question 18.
Show that if we use the quadratic cost function then the output error 6L for a single

training example x is given by 6" L=a"L-y.
Show that the partial derivatives with respect to the weights and biases in the output layer
are given by
oC/ow”L_jk = (1/n)*sum_x(a”(L-1)_k * (a”L_j -y_j) and
0C/0b"L_j = (1/n)*sum_x(a"L_j-y_j).

Solutions 18. (X% R)

Question 19.

Solutions 19. (Name(s) of solution provider)

Question 20.

20.. Construct an example showing explicitly that in a network with
a sigmoid output layer, the output activations o/ won't always

sumtol.

Solutions 20. (EF#)
1
0 = ——
1+e %
Take 2- = 0,22 = 5
1 1 1
L _ L _
MTP® Tires 72
L L
T
ay +a2 > 2+2

Question 21.

21.. Monotonicity of softmax Show that daf / 9z is positive if
j = k and negative if 7 # k. As a consequence, increasing zf is
guaranteed to increase the corresponding output activation, af,
and will decrease all the other output activations. We already

saw this empirically with the sliders, but this is a rigorous

Solutions 21. (FA21h)

Suppose there are n neuron in the output layer with softmax function.

L
Zj Rzt _

For j = 1,2, n,write at — — = — &)y A
Y et h(zf) S h(z
k=1 E=1 k=1

daf 1 h(z) 7 h(=L)
o J _ j L T ’ I _

If j # k, then ﬁzf_[n] _ W(E)

S h(zF) (3 h(zF))
k=1 k=1
S h(E) X k()

daj - ' j 71
If j = k, then E;% = [1_%‘1—} — kjj .hf{z‘;.:'}: Rr:éj
oA
i k; h(zg) (El h(z))? (ka h(z))?

The desired result follows.

> h(z)

h(z;.r‘)

(3 h(zE))?
k=1

> h(z)

, where h(z) = e*.

-ezf < (.

L
.ezj

> 0.

Question 22.

+ Non-locality of softmax A nice thing about sigmoid layers is
that the output a’ is a function of the corresponding weighted
input, a} = o(zf). Explain why this is not the case for a
softmax layer: any particular output activation a* depends on
all the weighted inputs.

Solutions 22. (3R %)

zd
. +J I L e (%)
sigmoi ayer ai = ot . :
e L=l oL
Z&L‘:}Eu‘ﬂ‘n" l:u Enl.
softmax |ayer a; 3 :
Y e ey Ez'%+..‘+eh
*) ;" = o (z4) ' e®
= = “— L = ———
. 2y
For softmax !n}:gr- : %ﬂé = __*.__E__.I__ = |
z &
: {#1&:!_; ..n.J
Zi 7 = ot~ ol k%4

%L depends on all he we.r:ghtu! inputs.

Question 23.
23. « Inverting the softinax layer Suppose we have a neural
network with a softmax output layer, and the activations a}? are
known. Show that the corresponding weighted inputs have the

form zjf‘ =]11{1}';r + C, for some constant C' that is independent

of 7.

Question 24.

24..« Derive Equations (81) and (82).

= —Inal. (80)
ac
v~ Y
oc
= el e~) (52)
3k

Question 25.

25. » Where does the "softmax" name come from? Suppose
we change the softmax function so the output activations are

given by

L
Bczj

a;." = W, (83)
where ¢ is a positive constant. Note that ¢ = 1 corresponds to
the standard softmax function. But if we use a different value of
c we get a different function, which is nonetheless qualitatively
rather similar to the softmax. In particular, show that the
output activations form a probability distribution, just as for
the usual softmax. Suppose we allow c to become large, i.e.,

¢ — oo. What is the limiting value for the output activations
af? After solving this problem it should be clear to you why we
think of the ¢ = 1 function as a "softened” version of the

maximum function. This is the origin of the term "softmax".

Solutions 25. (FAE4h)

ZJ ECZJ‘L

And >, a;—t' = W — 1. Hence, we show that {a;—f }; forms a probability distribution.
k

Now, let z% = max 2.
jo PN

Assume that z;;' - z;%] < 0 for all j # jo. i.e., z4, is the only maximal.

L
By dividing numerator and denominator with ¢““o we can rewrite a;; as follows:

L__L
Ec(zj zm}

L L
CZ oz
&t

L
—z:) L_ Ly
ok — e i %in B 1+Zk;éjnlec{3k z50)
T L L_.L -

Zkeczk Zkec{zk zm]

if § # Jo

i
Tty eos T
do

. L L) L _ L
Since z; — zj;, < 0, we have c(zj zj

7)—}—OCRSC—}OO.

1, ifa; =ay

Hence, as ¢ — oo, we have al — 0, lfJ 7 Jo — 0, ifa; 7 aj,
' I 1, it j=jo

That is, a;_f is 1 when z;;' is the maximal among all z;;', and 0 if it is not the maximal one.
Further, if there are m maximal among zF, that is, z;, > z_f‘ for k=1,2--- m.

By the same argument as above, we have the following result:

{ 0, if j# g forall k=1,2,---m and for all j

As o we have al 1
§ ¢ — 00, we have a; — —, if j = jj for some k=1,2,---m
m

Question 26.
Solutions 26. (i5&:5)

Question 27.

As discussed above, one way of expanding the MNIST training data is to use small rotations
of training images. What's a problem that might occur if we allow arbitrarily large rotations of
training images?

Solutions 27. (Al 3XEf)

Question 28.

Solutions 28. (Name(s) of solution provider)

Question 29.

29. « Verify that the standard deviation of z =) w;z; + bin the
paragraph above is \/375 . It may help to know that: (a) the
variance of a sum of independent random variables is the sum
of the variances of the individual random variables; and (b) the

variance is the square of the standard deviation.

Solutions 29. (Name(s) of solution provider)
Suppose there are n;,, inputs x;, and half of them are 1 and another half are 0.

1
Suppose w; N (0, n—} and b N(0,1) which are all independent.

Then we have:
Var(z) = Var(y,wjz;+b)
= Zj Var(wjz;) + Var(b) since they are independent.
= Zj x?Va'T’(TL-‘j) + Var(b)
= n;n — + 1 since half of z; are 1 and half of them are 0, so are their square.
. Tin

[P

. 3
Hence, the standard deviation of z is \/; .

Question 30.

30.. Connecting regularization and the improved method
of weight initialization L2 regularization sometimes
automatically gives us something similar to the new approach
to weight initialization. Suppose we are using the old approach
to weight initialization. Sketch a heuristic argument that: (1)
supposing A is not too small, the first epochs of training will be
dominated almost entirely by weight decay; (2) provided
nA < n the weights will decay by a factor of exp(—nA/m) per
epoch; and (3) supposing A is not too large, the weight decay
will tail off when the weights are down to a size around 1//n,
where n is the total number of weights in the network. Argue
that these conditions are all satisfied in the examples graphed

in this section.

L2 regularization sometimes automatically gives us something similar to the new approach
to weight initialization. Suppose we are using the old approach to weight initialization. Sketch

A

a heuristic argument that: (1) supposing is not too small, the first epochs of training will

<E T

be dominated almost entirely by weight decay; (2) provided A
A

the weights will decay
by a factor of Pl A/7) ser anoch; and (3) supposing ™ is not too large, the weight
decay will tail off when the weights are down to a size around L/vm ,where is the total
number of weights in the network.

Solutions 30. ({ATEEM)

nA n ac,
s (1= -1 ,
v >(n)u mZ thw

A is not too small, by the formula ,

(1)because when
A

the ' part will near 1 and the first epochs of training will be dominated almost entirely by

weight decay.

M
w _ . . n/) < n

(2) " partwill be multiple (n/m) times by in one epoch, because :

A

-2
T X L
A(n/m) roughly equal to “*P! nA/m)

(3)22?
Question 31.

31.« Modify the code above to implement L1 regularization, and use
L1 regularization to classify MNIST digits using a 30 hidden
neuron network. Can you find a regularization parameter that
enables you to do better than running unregularized?
Modify the code above to implement L1 regularization, and use L1 regularization to classify
MNIST digits using a 30 hidden neuron network.

Can you find a regularization parameter that enables you to do better than running
unregularized ?

Solutions 31. (& R)

Question 32.
Solutions 32.

Question 33.

33. + Modify network2.py so that it implements early stopping using a
no-improvement-in-n epochs strategy, where n is a parameter
that can be set.

Solutions 33. (BF#))

The modified file is network2_ex33.py.

Change its name as network2.py.

net.SGD(training_data, 30, 10, 10.0, Imbda = 1000.0,

...evaluation_data=validation_data, monitor_evaluation_accuracy=True, no_improvement_num=10)
no_improvement_num'’s default value is zero, and it is not be executed without setting.

Epoch 14 training complete

Accuracy on evaluation data: 1030 / 10000
Highest accuracy on evaluation data: 1090 7/14

Epoch 15 training complete
Accuracy on evaluation data: 991 / 10000
Highest accuracy on evaluation data: 1090 7/15

Epoch 16 training complete
Accuracy on evaluation data: 1090 / 10000
Highest accuracy on evaluation data: 1090 7/16

Epoch 17 training complete

Accuracy on evaluation data: 967 / 10000
Highest accuracy on evaluation data: 1090 7/17
No Improvement in 10

In picture, the highest accuracy is 1090 in Epoch 7, so it terminated because no improvement during epoch 7~17

Question 34. Can you think of a rule for early stopping other than no-improvement-in n ?
Ideally, the rule should compromise between getting high validation accuracies and not
training too long. Add your rule to network2.py , and run three experiments comparing the
validation accuracies and number of epochs of training to no-improvement-in 10 .

Solutions 34. (Z{G#%)
| add a early_stop_factor(< 1) to max accuracy comparison, saying the program updates
max accuracy(improves) if the current accuracy is bigger than the max accuracy times

early_stop_factor. It would make the program stop later and try to improve more.

| use ex34.py to generate an experiment sample and save it in numpy data, the following
figure is the whole training process (300 epochs).

accuracy-epochs

70 4

accuracy
[=3]
(=]

1

o
(=]
1

40

30 1

| e

—— ftraining
evalutaion

And | call ex34-compare.py to compare the effect of the addition of early stop_factor, the

T T T T T
100 150 200 2350 300

epochs

following table is a comparison of different early_stop_factor.

early_stop_factor

early stop epoch (total 300)

best accuracy

1 (standard 41 73.0
no-improvement-in-10)

0.98 63 75.0
0.96 134 70.0
0.95 no early stop none

Question 35. Modify network2.py so that it implements a learning schedule that: halves the
learning rate each time the validation accuracy satisfies the noimprovementin 10 rule; and

terminates when the learning rate has dropped to 1/128 of its original value.

Solutions 35. (R{G#%)

The test code is ex35.py, and the network is network _ex35.py, and the following figure is the

result of the training process with decreasing learning rate.

Epoch 148 training complete

Cost on training data: 2.63434152297
Accuracy on training data: 825 / 1000
Best Accuracy: 825

No imporvement counter: 10

Cost on evaluation data: 8.01430983185

Accuracy on evaluation data: 80 / 100
Early stop

Question 36.

It's tempting to use gradient descent to try to learn good values for hyperparameters such as
A and n . Can you think of an obstacle to using gradient descent to determine A ? Can you
think of an obstacle to using gradient descent to determine n ?

Solutions 36. (Z{G#%)

Actually the final cost is a function of A, n and weights, and since final weights depend on A
and n, so the final cost is really a function of two variables A and n.

But there is no clear way to write the partial derivatives cost function respect to A and n, for
example, to compute final cost function ¢ respect to A

0 0 A Ow; 1
O = 2-Co(Am) + o= > 2wt + o= w?,
ox CA) = 5 00””%2.: Yion Ton 2
o Ow;
- C ()\:’-'}')
but we don’t know how to compute 2N and 3/_

Question 37
What would go wrong if we use p>1 in the momentum technique?
Solutions 37. (ZME)

v—=v =pv—nVC (107)
w—w =w+v. (108)

If p>1, there is a possibility that the effect of momentum over-exceed the effect of gradient
descent eq.(107).This will cause the gradient descent fail to move toward the minimum.

Qusetion 38
What would go wrong if we use p<0 in the momentum technique?
Solutions 38. (FBEE)

v—=v = pv—nVC (107)
w—ow =w+. (108)

If p<0, it will change the direction of velocity in the first term in eq.(107) every time. This may

cause the gradient descent unable to move forward effectively or even move in the opposite
direction.

Qusetion 39
Solutions 39. (Z}ME)
1. Initialize self.velocities with zeros.

def default_weight_initializer(self):
self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
self.weights = [np.random.randn(y, x)/np.sqrt(x)
for x, y in zip(self.sizes[:-1], self.sizes[1:])]
self.velocities = [np.zeros(w.shape) for w in self.weights]|

2. Mimicking eq(107) and eq(108)

def update_mini_batch(self, mini_batch, eta, lmbda, n, mu=0):
"""Update the network's weights and biases by applying gradient
descent using backpropagation to a single mini batch. The
‘‘mini_batch'' is a list of tuples ‘‘(x, y)'', “‘eta'' is the
learning rate, '“lmbda’' is the regularization parameter, and
*'n°" is the total size of the training data set.

nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.velocities = [mu * v — (eta/len(mini_batch))*nw
for v, nw in zip(self.velocities, nabla_w)]
self.weights = [v+(1-etax(lmbda/n))*w
for v, w in zip(self.velocities, self.weights)]
self.biases = [b—(eta/len(mini_batch))x*nb
for b, nb in zip(self.biases, nabla_b)]

3. Results
u=0 p=0.3 (Achieves the accuracy saturation faster!!!)

100

100

98

9%

2)
—— Accuracy on the test data —— Accuracy on the test data
Accuracy on the training data Accuracy on the training data
EY

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch

Epoch

Question 40

Prove the identity in Equation (111). i.e., derive the relation between sigmoid function and
hyperbolic tangent.

Solutions 40 (#:2{f)

Let o(z) = ———, be the sigmoid function. Then we have:

l+e 7
20(z) —1
B 2 1+4+e 7
 1l4e 1 +e™7
B 1 —e % ez;?
1 726_“ ex/?
e*/c — e =/ z
= — = tanh(—<).
ex/2 L e—2/2 (2)
1 + tanh(z/2
ie., o(z)= 11;1(3/) which is the equation (111).
Question 41

We've seen how to use networks with two hidden layers to approximate an arbitrary
function. Can you find a proof showing that it's possible with just a single hidden layer? As a
hint, try working in the case of just two input variables, and showing that: (a) it's possible to
get step functions not just in the x or y directions, but in an arbitrary direction; (b) by adding
up many of the constructions from part (a) it's possible to approximate a tower function which
is circular in shape, rather than rectangular; (c) using these circular towers, it's possible to
approximate an arbitrary function.

Solutions 41 (F&E7EH)
(a) AEMEMEHIEMAE, FERMBM, sigmoid function o(z) AT LLIE L step function
h(z)o
BEEEREHAz = (v), Bw = w,w), WEwhAEE, R LA
o(wlx +twy + b) = hw(t + b/|w|)
B (x, y) S ERYEEE, b B 2w i R fUstep function.

(b) {FEBEEAREZ, H(a)F Il LLE B wall function”, Blw7 [l _E Bon-off function, 32 3
M Z {4 tHtower function, FHMEIEREE, Etowerf S E (E)7 & EI B2 @@ Ltk B fwall, {5
BiEtwal& BN EEE)MAF EE, BFEFIEF Atowers E({H), a0tk F 8] LLE Llcircular
towers,

(c) {E{aTfunction#h 7] LL BB 4@ circular towers 3K SE 3 . B = 4 FE A 15 550 /] LUSE HE

Question 42

Earlier in the book we met another type of neuron known as a rectified linear unit. Explain
why such neurons don't satisfy the conditions just given for universality. Find a proof of
universality showing that rectified linear units are universal for computation.

Solutions 42 (F#E5E 1)

http://neuralnetworksanddeeplearning.com/chap3.html#other_models_of_artificial_neuron

R Arectified linear unit z—ooff A~ & fa#(saturated), FAE1E Histep function, &l Ikt A~ FA AT ER
B,

ETHEERMMXH, {E& " "construct a sparsely-connected depth-4 neural network and bound
its error in approximating f',

Provable approximation properties for deep neural networks(2015), Uri
Shaham, Alexander Cloninger, Ronald R. Coifman
http://cpsc.yale.edu/sites/default/files/files/tr1513(1).pdf

Question 43

Suppose we consider linear neurons, i.e., neurons with the activation function s(z)=z.
Explain why linear neurons don't satisfy the conditions just given for universality. Show that
such neurons can't be used to do universal computation.

Solutions 43 (f&E)

& Alinear neurons z— ol & z—— o R EEAF(saturated), T HEE Histep function, E it
IR FARTEREE EA,

B4+, HEHEAlinear neurons, A& & B ERIEL IR Alinear function(or affine transformation),
%0 W4T E B 2 (because the composite of translation, dilation, reflection is still linear),

Question 44-45
Solutions 44-45

Question 44: In our discussion of vanishing gradient problem, we made use of the fact that
sigma’(z) < Ya. Suppose we used a different activation function, one whose derivative could
be much larger. Would that help us avoid the unstable gradient problem?

Solution 44: (FF#&E72)

Unstable gradient problem arises when the gradient of the previous layer(s) is smaller than
the following layers. This means that in earlier layers, neurons learn at a much slower rate
than in later layers.

Assuming we deploy a different activation function, whose derivative is larger than %4
(sigma’(z) >= 1/4), we still cannot anticipate the vanishing gradient problem. The reason is
shown in Equation (122) (Niellsen, page 207). The partial derivative of the cost function is
basically a multiplication of sigma’(z) function. Even if we pick a value of sigma’(z) > V4, we
will still end up with the vanishing gradient issue, as multiplication of fraction yields an even
smaller fraction.

Question 46

http://neuralnetworksanddeeplearning.com/chap3.html#other_models_of_artificial_neuron
http://cpsc.yale.edu/sites/default/files/files/tr1513(1).pdf
https://arxiv.org/find/stat/1/au:+Coifman_R/0/1/0/all/0/1

46. « Identity neuron: Consider a neuron with a single input, =, a
corresponding weight, w,, a bias b, and a weight «, on the
output. Show that by choosing the weights and bias
appropriately, we can ensure wyo(uyz + b) = zforz € [0,1].
Such a neuron can thus be used as a kind of identity neuron,
that 15, a neuron whose output is the same (up to rescaling by a
weight factor) as its input. Hint: It helps to rewrite
£ = 1/2+ A, to assume w, is small, and to use a Taylor series
expansion inun A.

Solution 46 ()

Question 48: (a) What classification do you get if you omit the fully-connected layers, and
just use the convolutional-pooling layer and softmax layer? (b) Does the inclusion of the fully
connected layer help?
Solution 48: (fE#&i2)
(a) Omission of the fully-connected layers still allow us to obtain reasonably accurate
outputs from both convolutional and pooling layers (hence, a linear classification).
The addition of the fully-connected layers improve the learning outcome as it is a
cheap way to create non-linear combinations of the existing features.
(b) Thus, the inclusion of the fully connected layer does help and improve the learning
outcome of the system as it enhances the (possibly non-linear) function in that space.

Question 50: The idea of convolutional layers is to behave in an invariant way across
images. It may seem surprising, then, that our network can learn more when all we've done
is translate the input data. Can you explain why this is actually quite reasonable?
Solution 50: (fE#E72)
Schematic Diagram:
Convolutional Layer ---------- > Pooling Layer ---------- > Fully Connected Layer

The output of the convolutional layer(s) generates meaningful, low-dimensional,
and invariant information. The addition of the pooling layer(s) afterwards generates a
robust output that does not change significantly despite the change in the input data. The
statement above is quite reasonable because both convolutional and pooling layers can
cause “underfitting.” [1] The application of pooling layer(s) post convolutional layer(s) do not
necessarily apply on all channels to retain “highly invariant features” [1] and to prevent
underfitting “when the translation invariance prior is incorrect” [1]

Source(s):

[1] Goodfellow, I. Bengio, Y. Courville, A. 2016. “Deep Learning”. page 347

