GRADE 10

LIFE SCIENCES

THE LEAF AS AN ORGAN

\$\div 1. INTRODUCTION TO ORGANS

- Organ: A group of different tissues working together to perform a specific function.
- The **leaf** is an organ composed of various tissues that function together to carry out **photosynthesis**, **gaseous exchange**, and **transpiration**

? 2. TYPES OF LEAVES

- Dicotyledonous (Dorsiventral) Leaves:
 - Unequal upper and lower surfaces
 - Net-like venation (pinnate or palmate)
 - Contains petiole
- Monocotyledonous (Isobilateral) Leaves:
 - Both surfaces look similar
 - Parallel venation
 - No petiole (sessile leaves)

3. EXTERNAL STRUCTURE OF A LEAF

Part Description

Lamina Leaf blade

Apex Tip of the leaf

Petiole Leaf stalk

Margin Leaf edge

Midrib Main vein

Leaflets Parts of a compound leaf

★ 4.1 Epidermis (Upper & Lower)

- **Transparent**, thin outer layer of cells
- Covered with a waxy cuticle to reduce water loss
- Stomata with guard cells regulate gaseous exchange and transpiration
- Secretes metabolic compounds
- **#** 4.2 Mesophyll (Photosynthetic tissue)

• Located between the upper and lower epidermis; contains:

Layer	Structure	Function
Palisade Parenchyma	Vertically elongated cells, many chloroplasts	Main site of photosynthesis
Spongy Parenchyma	Loosely packed cells with air spaces	Gas exchange , some photosynthesis

• Contains chlorenchyma (parenchyma with chloroplasts)

Tissue Function

Xylem Transports water and minerals to the leaf

Phloem Transports **sucrose** and organic nutrients *from* the leaf

• Surrounded by **bundle sheath** of collenchyma/sclerenchyma for support

5. FUNCTIONS OF THE LEAF

※ 5.1 Photosynthesis

- Carried out mainly by palisade mesophyll
- Requires:
 - o Chlorophyll
 - Light
 - Carbon dioxide
 - Water

5.2 Gaseous Exchange

- Through stomata
- CO₂ enters for photosynthesis
- O₂ leaves as a by-product during day
- During cellular respiration at night, O2 enters and CO2 exits

5.3 Transpiration

- Water evaporates from mesophyll → stomata → atmosphere
- Maintains upward pull of water
- Cools plant

6. TRANSPORT IN THE LEAF

6.1 Movement of Gases

- Photosynthesis (day):
 - o CO₂ in, O₂ out
- Respiration (night):
 - \circ O₂ in, CO₂ out
- All via diffusion through stomata

6.2 Water Movement

- Drawn up via xylem by transpirational pull
- Enters mesophyll by osmosis down concentration gradient

6.3 Sugar Transport

- Glucose made in palisade cells
- Converted to **sucrose** → transported by **phloem**
- Stored as **starch**

■ 7. OPENING AND CLOSING OF STOMAT

Condition Stomata

Bright light, high humidity Open

Darkness, dry conditions Closed

• Controlled by guard cells that respond to internal/external signals

Tissue Role

Epidermis Protects leaf, controls water loss

Palisade Mesophyll Main site of photosynthesis

Spongy Mesophyll Gas exchange

Xylem Brings in water/minerals

Phloem Removes sugars

Bundle Sheath Structural support

9. LEAF ADAPTATIONS FOR FUNCTION

For Photosynthesis:

- Large surface area
- Many chloroplasts in palisade cells
- Thin to reduce distance for diffusion

• Transparent upper epidermis

For Gaseous Exchange:

- Stomata present (mostly underside)
- Spongy layer with air spaces

For Transpiration:

- Stomata allow controlled water loss
- Waxy cuticle prevents excess loss