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Abstract 
 
The statistically significant correlation between cancer-related deaths and metastasis makes 
tumor metastasis prevention crucial in the improvement of therapeutic and clinical treatments. 
With its ability to confer cancer cells more mobility, invasive capability, and resistance to 
apoptosis, the epithelial-mesenchymal transition (EMT) has been suspected for its role in driving 
cancer progression from carcinogenesis to metastasis. More importantly, tumor cells, after 
undergoing the EMT, have shown acquired traits of stem cells, which makes them even stronger 
in therapeutic resistance. Scientists are increasingly targeting the EMT pathways as their 
complex biological steps have been seen as promising opportunities to find cancer treatments or 
even cures. However, experiments testing the EMT's influence on metastasis in vivo have been 
technically challenging and generated unexpected results. So, having a clear-cut definition of 
and understanding how the EMT worsens cancer metastasis remains an unachieved mission. To 
accomplish this mission, many studies have started to use in vivo imaging, advanced lineage 
tracing systems, and in vivo models. These tools could efficiently help uncover the intricate 
driving mechanism of EMT in metastasis. This review discusses the recent advances scientists 
have made regarding the biological concepts of EMT in boosting metastasis and future clinical or 
therapeutic innovations.   
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Introduction 
 
First observed in the development of embryos, the EMT is a process in which cells lose their 
epithelial features and gain mesenchymal features.[1] EMT results in spindle-shaped cells that 
have removed cellular polarity.[1] These traits are often characterised by mesenchymal cells 
which have more motility and invasive tendencies.1 This transition is a transformation between 
two morphologically different states and types of cells.1 The epithelial cells lose their E-cadherin 
and adopt more vimentin, a mesenchymal cell marker.2 The loss of E-cadherin in epithelial cells 
is a fundamental process in the EMT because it triggers a cascade of morphologic alterations 
that allow for a full transition.2 More notably, cancer cells have shown expression of EMT-related 
molecular pathways that plays the same role in embryonic development.3  
 
Many growth factors, including hepatocyte, transforming growth factor-β2, and epidermal growth 
factor, are key EMT initiators.4 When these factors are activated, intracellular signaling cascades 
are triggered to downregulate E-cadherin.4 Besides, the signaling cascades also alter the cellular 
cytoskeletal matrix and certain pattern of gene expressions, all leading to a clear-cut 
transformation.4 After epithelial cells lose their E-cadherin, their cell-cell adhesions also break 
down, making it easier for them to migrate.4 A transcriptional repressor of E-cadherin called 
SNAI1 (snail) is one key element to understanding driving mechanisms of EMT.5  
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The discovery of this zinc finger molecule provides opportunities for investigation of the link 
between intracellular signaling and downregulation of E-cadherin.5 Signaling pathways activating 
SNAI1 silence the gene expression of E-cadherin through binding the critical E2 boxes to the 
transcriptional site of the E-cadherin promoter.6 Alternatively, SNAI2 (slug), zeb1, zeb2, 
SMAD-interacting protein 1, and TWIST1 are other  E-cadherin transcriptional repressors that 
have been discovered that also serve similar functions to SNAI1.7  

 

 
 

 
Figure 1: The ability to initiate and expand a tumor has long been known as a unique hallmark of 
cancer stem cells (CSCs), otherwise regarded as the source of cancer progression.8 Scientists 
can use a set of marker proteins such as ABCG2 (a member of the ABC family transporter), 
CD133, EpCAM (an epithelial cell adhesion molecule), and ALDH1 (aldehyde dehydrogenase 
1), to mark the cancer stem cells, so that they could be separated from the other cancer cells.9 
Cancer stem cells can both indefinitely self-renew, which ensures the long-term survival of 
cancer cells, and differentiate, which ensures that the tumor heterogeneity is maintained, making 
treatments less effective.9 The EMT can induce a CSC-like phenotype to original cancer cells.10 
TGF-β, Wnt or Notch are examples of EMT inducers that result in cells acquiring a CD44 high 
CD24 low phenotype, which closely resembles that of CSCs.11 
 
Epithelial-Mesenchymal Transition 
 
Epithelial-mesenchymal transition (EMT) is a process, as the name implies, in which epithelial 
cells turn into mesenchymal cells through the acquisition of certain characteristics.12 This EMT 
process can be observed in many biological processes such as tissue fibrosis, embryonic 
evolution, tissue formation, and wound healing.12 Moreover, EMT can be key in tumor growth, 
drug resistance, and metastasis.13 Since this transition plays a major role in cancer 
development, it has been targeted in many therapeutic and clinical treatments.13 The EMT is a 
result of the synergization of many different signaling pathways such as the transforming growth 
factor beta (TGF-β) signaling pathway, the receptor tyrosine kinase (RTK) signaling pathway, the 
Wnt/β-catenin signaling pathway, the signal transducer and activator of transcription 3 (STAT3) 
signaling pathway, the extracellular matrix (ECM)-mediated signaling pathway, and many more.13 
Many of these signaling pathways initiate EMT by mediating the three main transcription factors: 
Snail, Twist, and ZEB.14 Additionally, these pathways also upregulate mesenchymal cell markers, 
downregulate epithelial cell markers, and thus alter the overall property of epithelial cells. 
 



Snails are members of the family of the ZINC finger transcription factors.5 There are three types 
of Snails: Snail1 (Snail), Snail2 (Slug), and Snail3 (Smuc).5 Out of the three, Snail1 has a 
significant role in the modulation of cancer cell migration and metastasis through the 
epithelial-mesenchymal transition.5  
 
Many different Snail1 transcription factors can bind to promoters to activate expression of  
metastasis-associated 1 family member 3 (MTA3), hypoxia-inducible factor 1-alpha (HIF-1a), 
glioma-associated oncogene homolog 1 (Gli1), lysyl oxidase-like 2 (LOXL2), and many more.15 
Besides, many of these factors can bind to the E-cadherin gene, the gene responsible for 
alterations of E-cadherin. The sudden shifts in expressed E-cadherin levels are strongly 
correlated with EMT and cancer metastasis.16 Also, Snail1 can regulate proteins involved in 
extracellular cell-cell interaction and intracellular signaling pathways such as Claudin (CLDN), 
Occludin (OCLN), Zona occludens 1 (ZO-1), Cytokeratin 18, and Mucin 1.17 Some discoveries 
have even proven that Snail1 modulates the expression of two types of matrix 
metalloproteinases (MMP): MMP-2 and MMP-9.18 More importantly, Snail1 mediates the gene 
expression of other transcription factors involved in enhancing EMT, namely ZEB-1 and ZEB-2.19 
 
The second main transcription factor in EMT is called Twist, which is classified as a BASIC 
HELIX-LOOP-HELIX (BHLH) and often plays many key roles in many physiological pathways.20 
There are two types of Twist, Twist-1 (Twist) and Twist-2 (Dermo-1), which help cells form their 
mesodermal layer.21 Mutated Twist in drosophila causes a mutated phenotype in which they lack 
internal organs.22 This Twist mutation, in humans, can lead to Saethre-Chotzen syndrome, 
where patients have craniosynostosis and mild limb anomalies.22 Twist-1 plays a pivotal role in 
many progressive steps that result in cancer metastasis, angiogenesis, and stemness.23 There is 
a high correlation between Twist-1 and  Twist-2 expression and cancer cell properties, including 
frequent invasion, migration, and anoikis resistance.24,25 Therefore, increased Twist-1 and 
Twist-2  expression can theoretically aid the EMT process, which aids tumor metastasis.24,25  
 
The third key transcription factor of EMT is Zinc finger E-box-binding homeobox ZEB.26 These 
factors, affecting gene expression of many proteins that affect embryogenesis, differentiation, 
tumorigenesis, and metastasis, can be found in two forms: ZEB1 and ZEB2.26 ZEB1 and ZEB2 
are fundamental to the EMT process, because they restrict E-cadherin expression by binding to 
the E-cadherin promoters’ E-BOX sequences.27 When E-cadherin is downregulated, cancer cells 
get induced traits of mesenchymal cells, which will then metastasize.27 ZEB1, by binding to the 
promoter of other genes that makes important proteins in cell-cell interaction, tight junctions (TJ), 
desmosomes, and cell polarity, reduces epithelial cell properties and enhances metastasis.28  
 
Cancer cells, undergoing the EMT process, often express anoikis resistance.29 Anoikis is simply 
the programmed cell death (apoptosis) in which epithelial cells self-degrade from breaking their 
extracellular matrix and neighboring cells.30 Anoikis is a process that could prevent metastasis.30 
However, cancer cells, wanting to metastasize, tend to avoid anoikis by separating from the 
original tumor and hitchhiking around the body through the circulatory and lymphatic system.31 

Many EMT-promoting proteins are responsible for cancer cells’ anoikis resistance.32 These 
EMT-promoting proteins decrease E-cadherin expression, increase N-cadherin expression, and 
therefore further strengthen anoikis resistance.33 Similarly, Twist, Snail, and Zeb1 (the three main 
EMT transcription factors) also alter the expression of E-cadherin and N-cadherin, thereby 
enhancing anoikis resistance and metastasis.33  
 
Ankyrin-G protein is another important factor in regulating E-cadherin, because it uses 
E-cadherin as a bridge from the cytoskeleton to the cell membrane.34 Ankyrin-G protein pushes 
the NRAGE protein, often found in the plasma membranes, to migrate to the nucleus.35 In the 
EMT process, which has low levels of E-cadmium and ankyrin-G, the NRAGE protein is 
translocated to the nucleus and reduces transcription of the tumor suppressor p14ARF gene.36 



This directly induces anoikis resistance, because the cells now produce fewer tumor suppressor 
proteins.36 All of this shows that the Ankyrin-G protein plays a critical role in maintaining the 
cancer cells’ induced anoikis by hemophilically binding to two neighboring cells. On the other 
hand, altered YAP phosphorylation of E-cadherin and β-catenin further supports anoikis 
resistance.37 N-cadherin activated by the Akt or the PI3K/Akt signaling pathway mediates tumor 
anoikis resistance.38 
 
The EMT has attracted many researchers' attention as the power it holds in regulating cancer 
cell metastasis is a potential target. For example, simvastatin, a drug treating hyperlipidemia, has 
inhibited EMT.39 Simvastatin works by preventing the expression of EMT factors such as 
cadherin, vimentin, and β-catenin.39 Therefore, simvastatin can successfully prevent cancer 
metastasis.39 Many different Phase II clinical trials have utilized simvastatin to treat 
advanced-stage carcinomas.40 Alternatively, LY2157299 (galunisertib) also prevents cancer 
metastasis by inhibiting the TGF ‐ β pathway, one of the main inducing pathways of EMT.41  
 
Cancer stem cells are a vital component of tumors as their mechanism ensures cancer survival 
and progression.42 This EMT process primarily leads to stemness in cancer cells, a state in 
which cancer cells can self-renew and generate many differentiated cells.42 The stem cells’ 
interaction with the environment is also fundamental to their growth and proliferation.42 Stem 
cells utilize these properties for the maintenance of tissue homeostasis. Cancer stem cells use 
these features to survive and advance their malignancy. Cancer cells are usually killed at an 
early stage using chemotherapy or radiation, whereas certain tumor cells, namely cancer stem 
cells, might cause tumor relapse.43 Cancer stem cells are extremely treatment-resistant and 
express certain traits similar to stem cells.43 These cancer stem cells allow for tumor growth, 
because they give rise to other cancer cells.43 In short, they are the driving cells behind tumor 
growth and development. CSCs can be identified in many tumors including liver, breast, prostate, 
pancreas, leukemia, melanoma, and many more by identification of certain cell surface 
markers.44 Frequently used CSC surface markers such as CD24, CD29, CD44, CD90, CD133, 
epithelial-specific antigen (ESA), and aldehyde dehydrogenase 1 (ALDH1) can be used to 
separate the smaller population of cancer stem cells, which will be eventually targeted.45  
 
EMT-induced Cancer Stem Cells 
 
Rare tumor cells (cancer stem cells) possess the ability to self-renew and give birth to normal 
cancer cells to grow the tumor.46 Scientists are currently investigating the root source of CSCs. 
Although many different factors contribute to the rise of CSC in a tumor, the EMT has been 
suspected for its cause in giving cancer cells the capability of cancer stem cells.47 Mesenchymal 
cells, a product of the EMT, can differentiate into multiple lineages.48 More cancer-associated 
EMTs lead to an increased amount of migratory cells that can form new tissues and metastasize. 
CSCs, in squamous cell carcinoma and breast cancer, exhibit both epithelial and mesenchymal 
characteristics in a shifting manner.49 They can be proliferative like epithelial cells and migratory 
like mesenchymal cells.50 Cells, after experiencing the EMT, increase their tumor size by at least 
10-fold, which further supports the notion that the EMT gives cells characteristic of stem cells.51  
 
Twist thwarts the expression of CD24, which will eventually lead to cells with CSC’s 
phenotypes.52 Snail triggers the dedifferentiation of epithelial cells in colorectal cancer.53 ZEB1, 
an EMT transcriptional factor, can restrict many epithelial determinants and consequently 
dedifferentiate cancer cells.54 In gastric, breast, liver, and colon cancer, the existence of Snail 
influences the dedifferentiated phenotype of cancer cells, conveying that differentiated cancer 
cells transform into less differentiated cancer cells after undergoing EMT.55 These less 
differentiated cancer cells exhibit a more CSC-like phenotype.  
 



The EMT confers cancer cells not only stemness properties but also mesenchymal properties.56 
For instance, breast cancer cell lines with a high population of CD44+/CD24- cells exhibit both 
stem/progenitor cell properties and mesenchymal markers.57 Similar findings were also observed 
in nontumorigenic immortalized human mammary epithelial cells (HMLEs).58 Ectopic expression 
of Twist or Snail induces EMT, a process in which mesenchymal-like cells with a CD44 
high/CD24 low pattern are created.59 This unsurprisingly indicates that HMLEs become more 
stem-like as a result of undergoing the EMT. These acquired stem cell properties can also be 
demonstrated using functional assays.60 Scientists had long been testing cancer cells’ ability to 
form tumorspheres to determine their state of stemness. When Snail or Twist is upregulated, 
HMLEs form more than 30-fold the amount of its current tumorspheres.61 Additionally, the 
number of CSCs increases two-fold as Twist or Snail, EMT-inducing transcription factors, are 
overexpressed.61   
 
Researchers have already evaluated breast cancer cells’ state by examining their CD24 
expression.62 They found that CD24-negative mesenchymal-like cells, unlike CD24-positive 
epithelial-like cells, were able to form tumorspheres and therefore expand their tumor.62 Cells 
transitioned from CD24-positive to CD24-negative through EMT, which is induced by TGF-β.63 
EMT factor Snail confers the cancer cells the plasticity they need to migrate and have stem cell 
properties.64 Many researchers conclude that cells undergoing EMT become dedifferentiated. 
Some researchers even used mice skin carcinoma cell lines as models to track the effect that 
activation of Snail can have on primary tumors.65 They found that when Snail is activated 
through EMT, cells begin to have higher tumor-initiation capacity.65 These observations give 
strong support to our understanding that the EMT gives stemness traits to cancer cells. As 
discussed before, EMT triggers a set of early steps that are pivotal to the development of cancer 
cell metastasis. After the EMT, cells have to revert to their original epithelial state so that they 
can colonize a new environment (a site different from where the original tumor grows) and 
establish a metastatic tumor.66 Mouse breast cancer cells can turn mesenchymal through 
spontaneous EMT, which causes them to disperse.67 But after this, they transform back into their 
epithelial state to settle their metastasized tumor.67  
 
Mechanism of EMT-induced Cancer Stemness 
 
How the EMT mechanism gives cancer cells acquired stemness traits is still not totally 
understood.68 However scientists can approach this by examining the EMT transcription factors, 
such as Twist, Snail, and Zeb, which can modulate non-coding RNA expression.69 miRNAs are 
small non-coding RNA molecules significantly affecting cell differentiation as they function in the 
post-transcriptional period of gene expression regulation.70 Therefore, the factors that affect the 
expression and processing of miRNA could play a pivotal role in the cells’ stemness or 
differentiation. 
 
miRNAs that promote differentiation include the let-7 family and miR-34. The let-7 family can be 
observed in all somatic cells, so they can be seen as an obstacle to maintaining cells’ 
stemness.71 Scientists have classified the let-7 family as a group of tumor suppressors due to 
their pluripotency and various oncogenic traits.71 For instance, let-7 can inhibit Lin28, a gene 
responsible for self-renewal within cells.72 As a result, decreased expression of Myc and Sall4 
occurs.72 Scientists are still understanding the mechanism in which let-7 loss happens. Let-7 
genes can be removed through the reprogramming of somatic cells using additional transcription 
factors such as Oct4, Sox2, Klf4, and c-Myc, which induce pluripotency into differentiated cells.73  
 
In cellular reprogramming, the inhibition of let-7 allows for the pluripotency targets to be 
expressed, thus increasing efficiency.74 When Snail binds to the let-7 promoters, its expression 
increases while that of let-7 decreases.75 In pluripotent stem cells, low levels of let-7 are 
maintained by Lin28, which prevents the processing and production of let-7.76 Additionally, Twist, 



another one of three main EMT transcription factors, also represses let-7 expression.77 Thus, it 
can be concluded that the EMT factors are a major repression source of let-7 and other 
tumor-suppressor miRNAs. 
 
Like let-7, miR-34 inhibits pluripotency factors so that cells don’t acquire stemness traits.78 As a 
p53 target, its expression is likely dysregulated in p53-mutated cancers.79 When Snail represses 
miR-34 expression by binding to the miR-34 promoter, cells in EMT develop their stemness 
phenotype.80  
 
Aside from let-7 and miR-34, many alternative miRNAs could influence the establishment of the 
stem cells in tumors. Despite the power let-7 has in differentiating cells, it lacks in comparison to 
the power of miRNAs that activate self-renewal, called ESCC (ESC-specific cell cycle) 
miRNAs.81 The miR290 cluster is an example of ESCC miRNAs.82 Therefore when let-7 is 
downregulated, cell self-renewal is more unlikely, especially in conjunction with the expression of 
ESCC miRNAs. This shows how the path that cells take to acquire stemness traits is 
complicated as there are “checks and balances” that keep the cell in its differentiated state. 
 

 
 
Figure 2: microRNAs can be seen as a mediator of EMT, which causes cancer cells’ stemness. 
EMT induced by TGF-β is activated by mir-155, a microRNA that could target RHOA to break 
down tight junctions, which ultimately results in the creation of more cancer stem cells.83 TGF-β 
can also modulate restrictive actions against mir-200 and mir-205, which increases levels of Zeb 
protein, which decreases levels of E-cadherin, which causes adherens junctions breakdown.84 
Increased levels of Zeb can also come back and repress mir-200 and mir-205 by promoting 
Sox2 and Klf4, two attackers of mir-200.85 This triggers the renewal of cancer stem cells. TGF-β 
can also cause downregulation of E-cadherin by increasing HMGA2 activity.86 The let-7 
microRNA could block CSC’s self-renewal and repress HMGA2, a molecule that helps in 
E-cadherin repression. Therefore, it can be inferred that there is a correlation between TGF-β 
signaling, EMT, and the emergence of CSCs.  
 
Since 1991, the association between the loss of E-cadherin and the EMT causing tumor 
dedifferentiation has been observed. Recent discoveries show that the expression of individual 
EMT-inducing transcription factors such as Snail, Twist, or Zeb, can transform the cancer cells 
into cancer stem cells. ZEB1, an EMT transcription factor in carcinoma cells, is unusually 
overexpressed in pancreatic cancer, causing the stem-like phenotypes in previously 
non-stem-like cells.87 ZEB1 has also been shown to be a significant player in the stage of tumor 



initiation in a xenograft model.88 Similar to how Snail dedifferentiates cells by inducing 
expression of let-7 and miR-34, the EMT transcription factor ZEB1 inhibits many miRNAs such 
as miR-203, miR-200, and miR-183 so that stemness factors such as Sox2, KLF4, and BMI1, 
get upregulated.89 Hence, ZEB1 can be linked to the EMT and cancer cell dedifferentiation 
(stemness). EMT in ovarian cancer development turns the epithelial cells into stem-like cells 
called mesenchymal cells. EMT factors inhibit pathways and proteins including NF-kB, tumor 
necrosis factor alpha, β-catenin, and p53 so that cells don’t differentiate and stay in their 
pluripotent state.90  
 
Another way EMT factors can give cells stemness traits is through the prevention of 
senescence.91 Somatic cells’ life span is limited and when differentiation ceases, their dividing 
and self-renewing ability also cease. However, both stem and cancer cells are able to overcome 
this limit, which allows them to proliferate at a nonrestrictive pace. The EMT transcriptional 
factors Snail and Twist could suppress tumor suppressors, say, cycle regulator p16, which 
enhances the cancer cell’s ability to self-renew and grow.92 Thus, it can be concluded that there 
are many different molecular mechanisms at play in the process of cells gaining EMT-driven 
stemness. The EMT correlation with stemness can also be seen at a clinical level. Researchers 
use gene expression profiling to design a system that could quantitatively score tumors on their 
EMT state.93 This system can identify the distinct EMT states across different tumor types.94 The 
reported gene expression, given by the system’s molecular subtypes, shows that they closely 
represent the EMT status in ovarian cancer. The prognosis of ovarian cancer patients is defined 
by clinicopathological parameters, such as the extent of metastasis damage and cell resistance 
to chemotherapy.95 The higher the EMT score, the worse the prognosis. A higher level of 
pluripotency and stemness also indicates a higher level of chemoresistance and more chance of 
metastasis. It can therefore be logically inferred that subtypes with higher EMT scores are 
associated with the dedifferentiated state. These findings sum up to the conclusion that cancer 
cells acquire potency or stemness after undergoing the EMT, which shows how the EMT can 
cause dedifferentiation in cancer cells.  
 
EMT-induced Therapeutic Resistance 
 
Mediators of EMT enhanced not only cellular motility but also cellular survival. In an environment 
of serum starvation and TNF-α treatment, the expression of Snail in Madin–Darby Canine 
Kidney (MDCK) cells strengthens its resistance.96 This anti-apoptotic cellular reaction was 
correlated with Snail expression, through the activation of both the MAPK and the PI3K 
pathways.97 Through inhibiting pro-apoptotic factors such as p53, DNA Fragmentation Factor 40, 
and BH3-Interacting Domain Death Agonist, Slug that was transfected into MCF7 breast cancer 
cells causes cells’ resistance to programmed cell death (due to DNA damage).98 After scientists 
found that EMT links to enhanced survival pathways and anti-apoptotic behaviors, they are 
interested in exploring how EMT causes cells’ resistance to anti-neoplastic therapeutic 
strategies.  
 
Recent studies have investigated the cancer cells’ acquired chemotherapy resistance due to 
EMT upregulation causing molecular alterations in gastrointestinal malignancies. Pancreatic 
cancer cells’ acquired gemcitabine resistance showed changed behavior and phenotypes that 
aligned with EMT.99 For example, the resistant pancreatic cancer cells experienced upregulated 
vimentin, lack of E-cadherin expression, and β-catenin nuclear translocation.100 Applying chronic 
oxaliplatin exposure to CRC cells can trigger resistant EMT-correlated phenotypic mutations 
including loss of polarity, spindle shape, and increased mobility.101 The oxaliplatin-induced 
resistant cells, as predicted, showed decreased levels of E-cadherin in sync with increased 
levels of snail and vimentin, all hallmarks distinctive of EMT.  
 



These studies demonstrate that cancer cells undergo EMT to adopt a new anti-apoptotic and 
pro-survival state when they are induced with stress from chemotherapy. Alternatively, rather 
than chemotherapy inducing EMT, chemotherapy may result in clonal selection and propagation 
of cells with enhanced pro-survival pathway activation as observed with EMT.102 Therefore, EMT 
pathways can also be seen as a direct mechanism or mediator of chemotherapy resistance.103 
For instance, Panc-1 cancer cells with transfection of Snail adopted unusual EMT traits that 
make them sensitive to chemotherapy treatment such as 5-fluorouracil and gemcitabine.104 More 
recently, manually-programmed expression of Snail in colon cancer cells increases the CSC 
population and phenotype that explains its oxaliplatin resistance.105 Specifically, snail-expressing 
HCT116 and HT29 cells, two types of colorectal cancer stem cells, demonstrated EMT-linked 
morphological, functional, and molecular characteristics such as having a 10-fold resistance to 
oxaliplatin.105 
 
While anti-gastrointestinal-malignancy drugs have shown partial success in compromising 
vascular endothelial growth factor and epidermal growth factor receptors, a fully successful 
treatment is still far away due to roadblocks such as therapeutics resistance. More importantly, 
scientists have examined the influence of EMT in these molecule-targeting therapy’s outcomes. 
It was discovered that there was erlotinib resistance in head and neck squamous cell 
carcinoma.106 Erlotinib is a tyrosine kinase inhibitor of epidermal growth factor receptors.107 An 
upregulation of vimentin contrasting to the downregulation of claudin-4, E-cadherin, and 
claudin-7 that supported this resistance is what microassay and western blot analysis shows.108 
Conclusively, this change in protein expression pattern resembles distinguishable traits of cells 
undergoing EMT.  
 
To further understand how EMT relates to drug resistance, researchers have used the tumor 
from patients, whose cancer cells prove the erlotinib to be ineffective, for investigation. What 
they found was that after being treated with erlotinib, tumors with E-cadherin depletion take a 
shorter time to progress compared to tumors with E-cadherin bulges. Unsurprisingly, non-small 
lung cancer cells that were treated with gefitinib (another tyrosine kinase inhibitor of epidermal 
growth factor receptor) also show the same pattern of low E-cadherin results in short time to 
progression and high E-cadherin results in long time to progression.109 Levels of E-cadherin 
were measured by immunohistochemical staining.110 Applying vascular endothelial growth factor 
receptor 1 and bevacizumab, an angiogenesis inhibitor targeting vascular endothelial growth 
factors, strengthen the multiple colon cancer cell lines’ migratoratory and invasive properties.111 
These recent discoveries demonstrating EMT's pivotal role in acquired chemoresistance show 
that it is necessary for the development of novel drugs or therapies that could successfully inhibit 
EMT pathways, which would predictably improve patient outcomes when used in sync with 
traditional therapies such as chemotherapy and radiation. 
 
Conclusion 
 
During cancer progression, the synergization between EMT and CSCs contributes a major part 
to the survival, aggressiveness, and mobility of a tumor. EMT and CSCs can be seen as 
mediators of cancer development since they guard cancer cells against harmful environments or 
drugs and promote metastasis for long-term survival and worsened malignancy. Even though 
scientists are currently in a period where neoadjuvant treatment is commonly used, it should be 
carefully considered before use because these treatments could trigger more aggressive cancer 
phenotypes by conferring cancer cells the capability of metastasis and resistance. This concern 
suggests that researchers need to spend more time to further investigate the impact clinical 
therapy has on the pathobiological advancement of cancer. As discussed previously, methods 
blocking EMT pathways and subsequently canceling the maintenance of CSC prove to be future 
endeavors worthy of attention and trials. Luckily, this path is feasible as there have already been 
studies conducted to identify certain pharmacological agents capable of regulating the tumor’s 



state of differentiation. CSCs, cancer cells in the dedifferentiated or pluripotent state, can be 
compromised through the promotion of their differentiating ability.47  
 
Therefore, agents that could induce cancer stem cells to differentiate into a more niche, less 
pluripotent state, namely salinomycin or HDAC inhibitors, may hold significant therapeutic 
potential.112 Alternatively, both the TGF-β and Wnt pathways could be targeted as a strategy to 
decelerate the rate of EMT, which will lead to downregulation of CSCs.113 These pathways 
activate not only EMT but also anti-apoptotic signaling, including the ones involving PI3K and 
nuclear factor-κB. Since PI3K and Akt play a major role in EMT,  inhibiting them with the purpose 
of eliminating EMT and the rise of CSCs may show promising results. Lastly, since microRNAs 
contribute to the modulation of EMT and CSC emergence, injections of microRNAs manually 
designed to decrease EMT can also be seen as another bright path towards disrupting cancer 
progression. 
 
To sum up, researchers are having a much better understanding of how EMT carries out 
functions to improve cellular mobility and survival, which ultimately aids in tumor malignancy. It is 
well understood that EMT plays a pivotal role in the development of aggressive CSCs, no matter 
which organ the tumor originates from. Aside from being an effective marker of cancer 
aggressiveness and therapeutic resistance, EMT and CSC molecular pathways can also be 
targeted therapeutically to advance the fight against cancer.  
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