
Performance Evaluation Report 
Overall, I am happy with the outcome of the project. I was able to implement most of the features I 

set out to and got a functional end result in a mostly coherent project. I learnt a fair bit along the way 

about ENet and general packet creation and sending, and Reliable vs Unreliable transmission. 

Though, my project will only ever be a toy/PoC level implementation. In the real world, you would 

likely use different technologies and techniques to achieve this result which I’ll discuss further below. 

Issues Encountered 
One thing I didn’t consider was that ENet is primarily a library used for implementing networked 

multiplayer in a game project. It works around creating a Host and having a finite amount of 

concurrent peers connect to that Host and exchange packets over a connection life-time. I utilise 

ENet for my non-gameplay related network communication, like directing a user to another server 

and authentication. In practice, this would likely be handled by something like HTTPS requests and 

not UDP / socket based traffic. It felt a bit weird to achieve my result using ENet, but given the 

academic nature of the project, ENet was fine for getting some C++ and basic networking reps in. 

Another issue I ran into was the complexity of having a Windows C++ application start another 

process that was not tethered/child to the current process. I ultimately dropped support for this as it 

was not critical to the outcome or concept I was trying to achieve. I would like to revisit it in future. 

Performance of the System 
I am happy with the performance of the system. Memory footprint across the modules is low, as is 

processing time for some complex tasks. 

One particular task that I thought would be slow is the loading and lookup of country codes based on 

IP address. It took some time to think how to store this data and I am happy with my result. Loading 

and building the IP Range database takes about 315ms on my NVMe SSD, and 850ms on my SATA 

SSD. Searching an IP address that exists in the database takes about 1100 nanoseconds. 

Optimisations 
The ‘Ping all Balanced Servers’ request is not ideal. It relies on connecting to a bunch of ENet 

sessions, sending some data and then just measuring the ping provided by ENet. Something lower 

level would be much more performant here, but also require me to implement my own networking 

stack. 

Areas of Improvement 
I used ENet for all networking in this project, but ENet is designed specifically for ‘game lobbies’ and 

only a small portion of my project is actually that – So utilising a more general networking stack like 

Winsock would likely be cleaner for this infrastructure. 

Additionally, some flexibility in configuration like sending users directly from the Master Server to 

Game Sessions would be cool. As it stands, you would need to bunny hop through a Balanced Server 

with just one Game Session connected to it. 

Required Changes 
One thing I didn’t consider was how the end user might hook into the behaviour of the various 

modules for their own use. E.g perhaps the end user wants to know when the client successfully 

connects to a master server or balanced server. Perhaps they want to connect to a Game Session 

manually rather than automatically. I ended up creating some public callbacks. Function pointers that 



the end user can subscribe to. These are available in all 4 modules for Connect, Packet Received and 

Disconnect so the implementer is able to do their own responses to various connection events. 


	Performance Evaluation Report 
	Issues Encountered 
	Performance of the System 
	Optimisations 
	Areas of Improvement 
	Required Changes 


