Laws of Exponents with Whole Number Exponents

Notes	Video Links & Practice Space
Vocabulary	Vocabulary (1:03)
Base: the number used as a in exponential form.	
2. Exponent: the number of times the occurs as a factor.	
Expression: one or more terms, may include variables,, operators, and grouping symbols.	
4. Factor: one of the numbers of that are multiplied together to produce a product.	
2 = 2 × 2 × 2 base 2 multiplied by itself 3 times	
Important Note: Notice how 2^3 is not $2 \cdot 3$	

Product of Powers Law

To multiply factors that have the same base, keep the base the same and _____ the exponents.

Multiplying Powers with Same Base

$$2^3 \cdot 2^4 =$$

Important Note: When multiplying powers, do <u>not</u> multiply or add the *bases*.

$$2^3 \cdot 2^4 = 2^{3+4} = 2^7$$

How does this work?

$$2^{3} \cdot 2^{4} = (2 \cdot 2 \cdot 2)(2 \cdot 2 \cdot 2 \cdot 2)$$

= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2

Important Note: The product property can only be used for powers that have the _____ base.

We _____ use the product property to simplify $5^3 x 8^2$ Why?

Because the powers have DIFFERENT bases.

The bases must be the _____ in order to _____ the exponents.

Product of Powers Law (2:31)

Practice Problems #1

Simplify

$$5^4 \cdot 5^7 = \qquad \qquad 2^2 \cdot 2^9 =$$

$$3^4 \cdot 3^6 = 6^5 \cdot 6 =$$

Important Note: If a number has an exponent of 1, it is usually not shown because any number with an _____ of 1 equals itself. For example, 6^1 = 6

Product of Powers Law Practice (1:29)

Quotient of Powers Law

To divide expressions that have the same base, keep the base the same and _____ the exponents.

Dividing Powers with Same Base

$$\frac{a^m}{a^n} = \underline{\hspace{1cm}}$$

$$\frac{2^5}{2^3} =$$

Important Note: When dividing powers, do <u>not</u> divide or subtract the *bases*.

Quotient of Powers Law (1:55)

How does this work

$$\frac{2^5}{2^3} = \frac{\cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2}}{\cancel{2} \cdot \cancel{2} \cdot \cancel{2}}$$

$$\frac{2 \cdot 2}{1} = 2^2$$

We _____ use the quotient property to simplify

$$4^2 \div 7^3$$
.... Why?

Because the powers have DIFFERENT bases.

The bases must be the _____ in order to

the	exponents.

Practice Problems #2

Simplify

$$\frac{6^{3}}{6} = 8^{9} \div 8^{5} =$$

$$\frac{10^{6}}{10^{4}} =$$
How many times larger is 38than33?

Quotient of Powers Law Practice (1:54)

Zero Exponent Law

When the base has an exponent of zero, it is to 1.

$$a^0$$
 = 1 when a $\neq 0$

$$5^0 = 1$$

How does this work?

$$\frac{3^3}{3^3} = \frac{3 \cdot 3 \cdot 3}{3 \cdot 3} = \frac{1}{1} = 1$$

$$\frac{3^3}{3^3} = 3^{3-3} = 3^0 = 1$$

Practice Problems #3

Simplify

$$3.2^{0} = 1200^{0} =$$
 $(2)^{0} = 16^{-3} \cdot 16^{3} =$

Zero Exponent Law (1:14)

Zero Exponent Law Practice (0:53)

Power of a Power Law

To raise an expression with an exponent to another exponent, keep the base the same and _____ the exponents.

$$(a^m)^n =$$

$$(8^2)^5 =$$

See why this works:

Product Property

$$(6^2)^3 = (6^2) \cdot (6^2) \cdot (6^2) = 6^{2+2+2} = 6^6$$

Expanded Form

$$(6^2)^3 = (6^2) \cdot (6^2) \cdot (6^2) =$$

 $(6 \cdot 6) \cdot (6 \cdot 6) \cdot (6 \cdot 6) = 6^6$

Important Note: We do not add or multiply the base by the exponent. We only multiply the exponents.

Power of a Power Law (2:05)

Practice Problems #4

Simplify

$(6^2)^4 =$	$(9^0)^5 =$
$\left(5^3\right)^x =$	$- (4^5)^3 =$

Power of a Power Law Practice (1:18)

Power of Product Law

To raise a product to an exponent, raise each _____ to the exponent.

$$(ab)^m = a^m \cdot b^m$$

$$(7^2 \cdot 9^4)^3$$

Power of a Quotient Law

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}b \neq 0$$

$$\left(\frac{11^4}{15^6}\right)^3 = \frac{11^{4\cdot 3}}{15^{6\cdot 3}} = \frac{11^{12}}{15^{18}}$$

Power of Product Law (1:56)

Practice Problems #5

Simplify

$$(2^5 \cdot 3^6)^4 = \left(\frac{5^2}{4^3}\right)^6 =$$

Evaluate vs Simplify

$$\left[\frac{\left(\frac{1}{4}\right)^7}{\left(\frac{1}{4}\right)^6}\right]^2$$

Equivalent Expressions

$$(6^3 \times 4^5)^4$$

Power of a Product Law Practice (4:57)