
Unit-2

SLP & MLP

A single layer perceptron

A perceptron is a simple type of neural network that can learn to classify linearly separable
patterns. It consists of a single layer of weighted inputs and a binary output. A multi-layer
perceptron (MLP) is a more complex type of neural network that can learn to classify
non-linearly separable patterns. It consists of multiple layers of perceptrons, each with its own
weights and activation function. In this article, you will learn about the advantages and
disadvantages of using a single-layer perceptron versus a multi-layer perceptron for different
tasks and scenarios.

A single layer perceptron (SLP) is a feed-forward network based on a threshold transfer function.

SLP is the simplest type of artificial neural networks and can only classify linearly separable cases with a

binary target (1 , 0).

The perceptron consists of 4 parts.

1

o​ Input value or One input layer: The input layer of the perceptron is made of artificial input
neurons and takes the initial data into the system for further processing.

o​ Weights and Bias:​
Weight: It represents the dimension or strength of the connection between units. If the
weight to node 1 to node 2 has a higher quantity, then neuron 1 has a more considerable
influence on the neuron.​
Bias: It is the same as the intercept added in a linear equation. It is an additional parameter
which task is to modify the output along with the weighted sum of the input to the other
neuron.

o​ Net sum: It calculates the total sum.

o​ Activation Function: A neuron can be activated or not, is determined by an activation
function. The activation function calculates a weighted sum and further adding bias with it
to give the result.

There are two types of architecture. These types focus on the functionality of artificial neural
networks as follows-

o​ Single Layer Perceptron
o​ Multi-Layer Perceptron

2

Single Layer Perceptron
The single-layer perceptron was the first neural network model, proposed in 1958 by Frank
Rosenbluth. It is one of the earliest models for learning. Our goal is to find a linear decision
function measured by the weight vector w and the bias parameter b.

To understand the perceptron layer, it is necessary to comprehend artificial neural networks
(ANNs).

The artificial neural network (ANN) is an information processing system, whose mechanism is
inspired by the functionality of biological neural circuits. An artificial neural network consists of
several processing units that are interconnected.

This is the first proposal when the neural model is built. The content of the neuron's local
memory contains a vector of weight.

​
Single-layer perceptron advantages

One of the main advantages of using a single-layer perceptron is its simplicity and efficiency. It
is easy to implement, train, and understand. It has a clear geometric interpretation as a
hyperplane that separates two classes of data. It can also perform well on problems that are
linearly separable, such as logical operations, linear regression, and binary classification.

2Single-layer perceptron disadvantages

One of the main disadvantages of using a single-layer perceptron is its limited expressive power
and generalization ability. It cannot learn to classify non-linearly separable patterns, such as
XOR, circles, or spirals. It is also prone to overfitting and noise, as it tries to fit a straight line to
the data. It does not have any hidden layers or activation functions that can introduce
non-linearity and flexibility to the model.

o​ Multi-Layer Perceptron
o​ An MLP is a type of feedforward artificial neural network with multiple layers, including

an input layer, one or more hidden layers, and an output layer. Each layer is fully
connected to the next. In this article, we will understand MultiLayer Perceptron Neural
Network, an important concept of deep learning and neural networks.

 A multilayer perceptron (MLP) Neural network belongs to the feedforward neural network. It is
an Artificial Neural Network in which all nodes are interconnected with nodes of different
layers.

Frank Rosenblatt first defined the word Perceptron in his perceptron program. Perceptron is a
basic unit of an artificial neural network that defines the artificial neuron in the neural network. It
is a supervised learning algorithm containing nodes’ values, activation functions, inputs, and
weights to calculate the output.

The Multilayer Perceptron (MLP) Neural Network works only in the forward direction. All
nodes are fully connected to the network. Each node passes its value to the coming node only in

3

the forward direction. The MLP neural network uses a Backpropagation algorithm to increase the
accuracy of the training model.

Structure of MultiLayer Perceptron Neural Network
This network has three main layers that combine to form a complete Artificial Neural Network.
These layers are as follows:

Input Layer
It is the initial or starting layer of the Multilayer perceptron. It takes input from the training data
set and forwards it to the hidden layer. There are n input nodes in the input layer. The number of
input nodes depends on the number of dataset features. Each input vector variable is distributed
to each of the nodes of the hidden layer.

Hidden Layer
It is the heart of all Artificial neural networks. This layer comprises all computations of the
neural network. The edges of the hidden layer have weights multiplied by the node values. This
layer uses the activation function.

There can be one or two hidden layers in the model.

Several hidden layer nodes should be accurate as few nodes in the hidden layer make the model
unable to work efficiently with complex data. More nodes will result in an overfitting problem.

Output Layer
This layer gives the estimated output of the Neural Network. The number of nodes in the output
layer depends on the type of problem. For a single targeted variable, use one node. N
classification problem, ANN uses N nodes in the output layer.

Working of MultiLayer Perceptron Neural Network
●​ The input node represents the feature of the dataset.

●​ Each input node passes the vector input value to the hidden layer.

●​ In the hidden layer, each edge has some weight multiplied by the input variable. All the
production values from the hidden nodes are summed together. To generate the output

●​ The activation function is used in the hidden layer to identify the active nodes.

●​ The output is passed to the output layer.

●​ Calculate the difference between predicted and actual output at the output layer.

●​ The model uses backpropagation after calculating the predicted output.

Advantages of MultiLayer Perceptron Neural Network
1.​ MultiLayer Perceptron Neural Networks can easily work with non-linear problems.

2.​ It can handle complex problems while dealing with large datasets.

3.​ Developers use this model to deal with the fitness problem of Neural Networks.

4.​ It has a higher accuracy rate and reduces prediction error by using backpropagation.

4

5.​ After training the model, the Multilayer Perceptron Neural Network quickly predicts the
output.

Disadvantages of MultiLayer Perceptron Neural Network
1.​ This Neural Network consists of large computation, which sometimes increases the overall

cost of the model.

2.​ The model will perform well only when it is trained perfectly.

3.​ Due to this model’s tight connections, the number of parameters and node redundancy
increases.

Difference between single layer perceptron and multi layer perceptron

Adaptive Filtering Problem

Adaptive filtering is of central
importance in many applications of
signal processing, such as the
modelling, estimation and detection of
signals. Adaptive filters also play a
crucial role in system
modelling and control. These
applications are related to

5

communications, radar, sonar,
biomedical
electronics, geophysics, etc.
A general discrete-time filter defines a
relationship between an input time
sequence {u(n), u(n–1),
…} and an output time sequence
{y(n), y(n–1), …}, u(n) and y(n) being
either uni or
multidimensional signals. In the following,
we consider filters having one input and
one output. The
generalization to multidimensional
signals is straightforward.
There are two types of filters: (i)
transversal filters (termed Finite Impulse
Response or FIR filters in

6

linear filtering) whose outputs are
functions of the input signals only; and
(ii) recursive filters
(termed Infinite Impulse Response or IIR
filters in linear filtering) whose outputs
are functions both
of the input signals and of a delayed
version of the output signals. Hence,
a transversal filter is
defined by:
y(n) =[u(n), u(n-1), ..., u(n-M+1)], (1)
where M is the length of the finite
memory of the filter, and a recursive filter
is defined by
y(n) =[u(n), u(n-1), ..., u(n-M+1),
y(n-1), y(n-2),, y(n-N)] (2)
where N is the order of the filter.

7

The ability of a filter to perform the
desired task is expressed by a
criterion; this criterion may be
either quantitative, e.g., maximizing the
signal to noise ratio for spatial filtering
[see for instance
Applebaum and Chapman 1976],
minimizing the bit error rate in data
transmission [see for instance
Proakis 1983], or qualitative, e.g.
listening for speech prediction [see for
instance Jayant and Noll
1984]. In practice, the criterion is
usually expressed as a weighted sum
of squared differences
between the output of the filter and the
desired output (e.g. LS criterion).

8

An adaptive filter is a system whose
parameters are continually updated,
without explicit control by
the user. The interest in adaptive
filters stems from two facts: (i)
tailoring a filter of given
architecture to perform a specific task
requires a priori knowledge of the
characteristics of the input
signal; since this knowledge may be
absent or partial, systems which can
learn the characteristics of
the signal are desirable; (ii) filtering
nonstationary signals necessitates
systems which are capable of
tracking the variations of the
characteristics of the signal.

9

The bulk of adaptive filtering theory is
devoted to linear adaptive filters, defined
by relations (1) and
(2), where is a linear function. Linear
filters have been extensively studied, and
are appropriate for
many purposes in signal processing. A
family of particularly efficient adaptation
algorithms has bee
Adaptive filtering is of central
importance in many applications of
signal processing, such as the
modelling, estimation and detection of
signals. Adaptive filters also play a
crucial role in system
modelling and control. These
applications are related to
communications, radar, sonar,
biomedical

10

electronics, geophysics, etc.
A general discrete-time filter defines a
relationship between an input time
sequence {u(n), u(n–1),
…} and an output time sequence
{y(n), y(n–1), …}, u(n) and y(n) being
either uni or
multidimensional signals. In the following,
we consider filters having one input and
one output. The
generalization to multidimensional
signals is straightforward.
There are two types of filters: (i)
transversal filters (termed Finite Impulse
Response or FIR filters in
linear filtering) whose outputs are
functions of the input signals only; and
(ii) recursive filters

11

(termed Infinite Impulse Response or IIR
filters in linear filtering) whose outputs
are functions both
of the input signals and of a delayed
version of the output signals. Hence,
a transversal filter is
defined by:
y(n) =[u(n), u(n-1), ..., u(n-M+1)], (1)
where M is the length of the finite
memory of the filter, and a recursive filter
is defined by
y(n) =[u(n), u(n-1), ..., u(n-M+1),
y(n-1), y(n-2),, y(n-N)] (2)
where N is the order of the filter.
The ability of a filter to perform the
desired task is expressed by a
criterion; this criterion may be

12

either quantitative, e.g., maximizing the
signal to noise ratio for spatial filtering
[see for instance
Applebaum and Chapman 1976],
minimizing the bit error rate in data
transmission [see for instance
Proakis 1983], or qualitative, e.g.
listening for speech prediction [see for
instance Jayant and Noll
1984]. In practice, the criterion is
usually expressed as a weighted sum
of squared differences
between the output of the filter and the
desired output (e.g. LS criterion).
An adaptive filter is a system whose
parameters are continually updated,
without explicit control by

13

the user. The interest in adaptive
filters stems from two facts: (i)
tailoring a filter of given
architecture to perform a specific task
requires a priori knowledge of the
characteristics of the input
signal; since this knowledge may be
absent or partial, systems which can
learn the characteristics of
the signal are desirable; (ii) filtering
nonstationary signals necessitates
systems which are capable of
tracking the variations of the
characteristics of the signal.
The bulk of adaptive filtering theory is
devoted to linear adaptive filters, defined
by relations (1) and

14

(2), where is a linear function. Linear
filters have been extensively studied, and
are appropriate for
many purposes in signal processing. A
family of particularly efficient adaptation
algorithms has bee

15

To design a multiple
input-single output model of
the unknown dynamical
system, it is by
building it around a single
linear neuron.The neuronal
model operates under the
influence
of an algorithm that controls
necessary adjustments to
the synaptic weights of the
neuron.
With the following points in
mind:

16

To design a multiple
input-single output model of
the unknown dynamical
system, it is by
building it around a single
linear neuron.The neuronal
model operates under the
influence
of an algorithm that controls
necessary adjustments to
the synaptic weights of the
neuron.
With the following points in
mind:

17

To design a multiple
input-single output model of
the unknown dynamical
system, it is by
building it around a single
linear neuron.The neuronal
model operates under the
influence
of an algorithm that controls
necessary adjustments to
the synaptic weights of the
neuron.
With the following points in
mind:

18

To design a multiple
input-single output model of
the unknown dynamical
system, it is by
building it around a single
linear neuron.The neuronal
model operates under the
influence
of an algorithm that controls
necessary adjustments to
the synaptic weights of the
neuron.
With the following points in
mind:

19

To design a multiple
input-single output model of
the unknown dynamical
system, it is by
building it around a single
linear neuron.The neuronal
model operates under the
influence
of an algorithm that controls
necessary adjustments to
the synaptic weights of the
neuron.
With the following points in
mind:

20

To design a multiple
input-single output model of
the unknown dynamical
system, it is by
building it around a single
linear neuron.The neuronal
model operates under the
influence
of an algorithm that controls
necessary adjustments to
the synaptic weights of the
neuron.
With the following points in
mind:

21

To design a multiple
input-single output model of
the unknown dynamical
system, it is by
building it around a single
linear neuron.The neuronal
model operates under the
influence
of an algorithm that controls
necessary adjustments to
the synaptic weights of the
neuron.
With the following points in
mind:

22

Multiple Neuron Adaptive Filters
You might want to use more than one neuron in an adaptive system, so you need some additional
notation. You can use a tapped delay line with S linear neurons, as shown in the next figure.

Alternatively, you can represent this same network in abbreviated form.

23

If you want to show more of the detail of the tapped delay line—and there are not too many
delays—you can use the following notation:

Here, a tapped delay line sends to the weight matrix:

●​ The current signal
●​ The previous signal
●​ The signal delayed before that
You could have a longer list, and some delay values could be omitted if desired. The only
requirement is that the delays must appears in increasing order as they go from top to bottom.

24

25

26

27

28

29

30

31

Least Mean Square Algorithm
The ADALINE (adaptive linear neuron) networks discussed in this topic are similar to the perceptron, but
their transfer function is linear rather than hard-limiting. This allows their outputs to take on any value,
whereas the perceptron output is limited to either 0 or 1. Both the ADALINE and the perceptron can solve
only linearly separable problems

The LMS algorithm adjusts the weights and biases of the ADALINE so as to minimize this mean square
error.

Fortunately, the mean square error performance index for the ADALINE network is a quadratic function.
Thus, the performance index will either have one global minimum, a weak minimum, or no minimum,
depending on the characteristics of the input vectors. Specifically, the characteristics of the input vectors
determine whether or not a unique solution exists.

LMS Algorithm (learnwh)
Adaptive networks will use the LMS algorithm or Widrow-Hoff learning algorithm based on an
approximate steepest descent procedure. Here again, adaptive linear networks are trained on
examples of correct behavior.

The LMS algorithm, shown here, is discussed in detail in Linear Neural Networks.

W(k + 1) = W(k) + 2αe(k)pT(k)

b(k + 1) = b(k) + 2αe(k)

Adaptive Filtering (adapt)
The ADALINE network, much like the perceptron, can only solve linearly separable problems. It
is, however, one of the most widely used neural networks found in practical
applications. Adaptive filtering is one of its major application areas.
Tapped Delay Line
You need a new component, the tapped delay line, to make full use of the ADALINE network.
Such a delay line is shown in the next figure. The input signal enters from the left and passes
through N-1 delays. The output of the tapped delay line (TDL) is an N-dimensional vector, made
up of the input signal at the current time, the previous input signal, etc.

32

https://www.mathworks.com/help/deeplearning/ug/linear-neural-networks.html

Adaptive Filter
You can combine a tapped delay line with an ADALINE network to create the adaptive
filter shown in the next figure.

The output of the filter is given by

α(k)=purelin(Wp+b)=R∑i=1w1,iα(k−i+1)+b

In digital signal processing, this network is referred to as a finite impulse response (FIR) filter
[WiSt85]. Take a look at the code used to generate and simulate such an adaptive network.

33

https://www.mathworks.com/help/deeplearning/ug/shallow-neural-networks-bibliography.html

34

35

36

Learning Curves

A learning curve is a correlation between a learner’s performance on a task and the number of attempts

or time required to complete the task; this can be represented as a direct proportion on a graph

The learning curve theory proposes that a learner’s efficiency in a task improves over time the more the

learner performs the task

37

Bias:​
It is basically nothing but the difference between the average prediction of a model and the
correct value of the prediction. Models with high bias make a lot of assumptions about the
training data. This leads to over-simplification of the model and may cause a high error on both
the training and testing sets. However, this also makes the model faster to learn and easy to
understand. Generally, linear model algorithms like Linear Regression have a high bias.
Variance:​
It is the amount a model’s prediction will change if the training data is changed. Ideally, a
machine learning model should not vary too much with a change in training sets i.e., the
algorithm should be good at picking up important details about the data, regardless of the data
itself. Example of algorithms with high variance is Decision Trees, Support Vector Machines
(SVM)
The Artificial Neural Network literature has used the term to show the diverging behavior of in
and out-of-sample performance as a function of the number of training iterations for a given
number of training examples.
General Machine Learning uses learning curves to show the predictive generalization
performance as a function of the number of training examples. Both graphs in Figure 3 are
examples of such learning curves.

Learning curve formula:- Y = aXb

Where:​
Y is the average time over the measured duration​
a represents the time to complete the task the first time​

38

X represents the total amount of attempts completed​
b represents the slope of the function

The formula can be used as a prediction tool to forecast future performance.

Learning Rate Annealing Techniques

•​ Changing the learning rate for your stochastic gradient descent optimization technique can

improve performance while also cutting down on training time.

•​ This is also known as adaptable learning rates or learning rate annealing.

•​ This method is referred to as a learning rate schedule since the default schedule updates

network weights at a constant rate for each training period.

•​ These have the advantage of making big modifications at the start of the training procedure

when larger learning rate values are employed and decreasing the learning rate later in the

training procedure when a smaller rate and hence smaller training updates are made to weights.

Methods of Learning Rate Annealing

1A Learning Rate Decay

2Adaptive Learning Rate

3Learning-Rate Warmup

Learning-Rate Decay

A schedule defines how things will change over time. In general, learning rate scheduling

specifies a certain learning rate for each epoch and batch. There are two types of methods for

scheduling global learning rates: the decay, and the cyclical one. The most preferred method is

the learning rate annealing that is scheduled to gradually decay the learning rate during the

training process

Adaptive Learning Rate

39

In the gradient-based optimization, it is desirable to determine the step-size automatically based

on the loss gradient that reflects the convergence of each of the unknown parameters

However, the adaptive method is usually inferior to SGD in accuracy for unknown data in

supervised learning, such as the image classification with conventional shallow model

Learning-Rate Warmup

The learning rate warmup, is a recent approach that uses a relatively small step size at the

beginning of the training. The learning rate is increased linearly or non-linearly to a specific value

in the first few epochs, and then shrinks to zero. The observations behind the warmup are that:

the model parameters are initialized using a random distribution, and thus, the initial model is

far from the ideal one; thus, an overly large learning rate causes numerical instability; and

training a initial model carefully in the first few epochs may enable us to apply a larger learning

rate in the middle stage of the training, resulting in a better regularization The bottom row of

Figure provides the learning rate schedules by the conventional annealing methods with

warmup.

Perceptron –Convergence Theorem

40

41

Relation Between Perceptron and Bayes Classifier for a Gaussian Environment

•​ Bayesian decision theory is a fundamental statistical approach to the problem of classification as

for pattern recognition.

•​ It makes the assumption that the decision problem is posed in probabilistic term, and all of the

relevant probability values are known.

•​ To minimize the error probability in classification problem, one must choose the state of nature

that maximizes the posterior probability.

•​ Classification techniques employ a learning algorithm to identify a model that best fits the

relationship between attribute set and class label for the input data.

•​ Its clear that the Bayesian Decision Rule(BDR) has great role in statistical data analysis for various

directions in our live, specially in stochastic processes.

•​ This can be done when one needs to make classification among some classes come from several

populations, to return to their origin.

•​ This criteria can be done by using what is so called (Perceptron)

42

Back Propagation Algorithm

A neural network is a group of connected I/O units where each connection has a weight

associated with its computer programs.

 It helps you to build predictive models from large databases.

This model builds upon the human nervous system.

Backpropagation is the essence of neural network training. It is the method of fine-tuning the

weights of a neural network based on the error rate obtained in the previous epoch (i.e.,

iteration).

 Proper tuning of the weights allows you to reduce error rates and make the model reliable by

increasing its generalizationBackpropagation in neural network is a short form for “backward

propagation of errors.”

It is a standard method of training artificial neural networks.

This method helps calculate the gradient of a loss function with respect to all the weights in the

network

Among various logical gates, the XOR or also known as the “exclusive or” problem is one of the logical

operations when performed on binary inputs that yield output for different combinations of input, and

for the same combination of input no output is produced.

The outputs generated by the XOR logic arenot linearly separable in the hyperplane.

Working of Back Propagation Algorithm
The goal of the back propagation algorithm is to optimize the weights so that the neural network can learn
how to correctly map arbitrary inputs to outputs. Here, we will understand the complete scenario of back
propagation in neural networks with the help of a single training set.

43

In order to have some numbers to work with, here are initial weights, biases, and training input
and output.
1
2
3

Inputs(i1): 0.05 Output (o1): 0.01

Inputs(i2): 0.10 Output(o2):0.99

Step 1: The Forward Pass:

The total net input for h1: The net input for h1 (the next layer) is calculated as the sum
of the product of each weight value and the corresponding input value and, finally, a
bias value added to it.

The output for h1: The output for h1 is calculated by applying a sigmoid function to the
net input Of h1.

The sigmoid function pumps the values for which it is used in the range of 0 to 1.

It is used for models where we have to predict the probability. Since the probability of
any event lies between 0 and 1, the sigmoid function is the right choice.

Carrying out the same process for h2
1 out h2 = 0.596884378

44

The output for o1 is:

Carrying out the same process for o2:
1 out o2 = 0.772928465

Calculating the Total Error:

We can now calculate the error for each output neuron using the squared error function and sum
them up to get the total error: E total = Ʃ1/2(target – output)2

The target output for o1 is 0.01, but the neural network output is 0.75136507; therefore, its error
is:
1 E o1 = 1/2(target o1 - out o1)2 = 1/2(0.01 - 0.75136507)2 = 0.27481108 ……………..……………. (Equat

By repeating this process for o2 (remembering that the target is 0.99), we get:
1 E o2 = 0.023560026

Then, the total error for the neural network is the sum of these errors:
1 E total = E o1 + E o2 = 0.274811083 + 0.023560026 = 0.298371109

Step 2: Backward Propagation:

Our goal with the backward propagation algorithm is to update each weight in the network so
that the actual output is closer to the target output, thereby minimizing the error for each
neuron and the network as a whole.

45

XOR Problem

The XOR logic is used to and how to integrate the XOR logic using neural networks.

XOR or Exclusive OR is a classic problem in Artificial Neural Network Research. An XOR
function takes two binary inputs (0 or 1) & returns True if both inputs are different & False if
both inputs are same.

On the surface, XOR appears to be a very simple problem, however, Minksy and Papert
(1969) showed that this was a big problem for neural network architectures of the 1960s,
known as perceptrons. A limitation of this architecture is that it is only capable of
separating data points with a single line. This is unfortunate because the XOR inputs are not
linearly separable. This is particularly visible if you plot the XOR input values to a graph. As
shown in the figure, there is no way to separate the 1 and 0 predictions with a single
classification line.

46

Solution

The backpropagation algorithm begins by comparing the actual value output by the
forward propagation process to the expected value and then moves backward through
the network, slightly adjusting each of the weights in a direction that reduces the size of
the error by a small degree. Both forward and back propagation are re-run thousands of
times on each input combination until the network can accurately predict the expected
output of the possible inputs using forward propagation.

As mentioned before, the neural network needs to produce two different decision planes

to linearly separate the input data based on the output patterns. This is achieved by

using the concept of hidden layers. The neural network will consist of one input layer

with two nodes (X1,X2); one hidden layer with two nodes (since two decision planes are

needed); and one output layer with one node (Y). Hence, the neural network looks like

this:

47

Model

Inputs

2 hidden neurons are used, each takes two inputs with different weights. After each
forward pass, the error is back propogated. I have used sigmoid as the activation function
at the hidden layer.

48

Heuristics

•​ Heuristics are strategies often used to find a solution that is not perfect, but is within an

acceptable degree of accuracy for the needs of the process.

 In computing, heuristics are especially useful when finding an optimal solution to a problem is

impractical because of slow speed or processing power limitations

The heuristic ANN design approach is made up of the following steps: knowledge-based
selection of input values, selection of a learning method, and design of the hidden layers
(quantity and nodes per layer).

A heuristic technique is a problem specific approach that employs a practical method that often
provides sufficient accuracy for the immediate goals. From: Numerical Methods

Types of Heuristics

●​ Affect Heuristics. Affect heuristics are based on positive and negative feelings that are
associated with a certain stimulus. ...

●​ Availability Heuristics. ...
●​ Representative Heuristics.

49

Heuristic algorithms are used in a variety of industries, including transportation, logistics, and finance.
For example, heuristic algorithms can be used to optimize delivery routes for packages or to minimize
risk in financial investments

Heuristic evaluations are certainly useful in some instances and can provide crucial insights into how your
site is meeting its objectives without the time, expense and potential problems of real user evaluation. It
can. However, be risky to rely on it as the sole means of testing your concept and product.

the neural network’s predictions are responsible for Combining heuristics with neural networks

Output Representation and Decision Rule

•​ To balance the accuracy of neural networks and the interpretability of decision rules, we propose

a hybrid technique called rule-constrained networks.

 Namely, neural networks that make decisions by selecting decision rules from a given ruleset

 learning about a new classifier is what kind of decision boundaries can this classifier learn. We
have explored this question in HW1 for the case of 1-KNN and decision trees, and showed that
both of them can vary their decision boundary either on a data-driven way for 1-KNN or based
on the size of the tree for decision trees. In this question we will explore these issues for the case
of a 2-layer Neural Network (NN). Recall from class that the input aj for a node j is given by:

50

1.1​Decision Boundary

Consider the classification task shown in figure 1 where ’+’ and ’o’ denotes positive and
negative classes, respectively. This data is available in the file data.mat, also please read NN
readme.txt which contains a simple code to draw the figure below. For this part of the problem,
you might want to write really a few lines of matlab code to evaluate the network and get the
necessary plots. Consider the 2-layer network in Figure 1. This network has 9 weights and a
logistic activation function for both the hidden and output layers.

Figure 1: (a) 2-layer NN with logistic activation functions at both the hidden and output layers.

(b) A 2-class dataset: ’+’ and ’o’ marks positive and negative labels respectively. (1) [2 points]
For each of the following classifiers, state with a one-line explanation whether or not they can
learn the decision boundary illustrated in Figure 1: 1-KNN, decision tree, Naive 1 Bayes, and
logistic regression. Solution: NB and LR can only learn linear decision boundaries thus they can
not learn the decision boundary in Figure 1. 1-KNN can learn that boundary. For decision trees,
you can argue either way, if you consider the approach we discussed in HW1, then if you don’t

51

constrain the depth of the tree, then definitely DT can learn that boundary with a very large tree
(which is not practical), thus you can argue that using a bounded-size tree, the decision boundary
in Figure 1 can not be learned.

of the input space (x1, x2) is non-linear though. (c) [2 points] Overlay the decision boundary
explicitly over the curve your drew in part (a) in terms of o1 and o2. State your observations.

52

Solution: Note that the last layer is a logistic regression classifier over the input (o1, o2), thus the
decision rule is: w31o1 + w32o2 + w30 = 0. Which you can easily draw as in Figure 2. (e) Lets
assume that we removed the logistic function form the hidden layer ONLY and instead used an
identity function, i.e o1 = a1 and o2 = a2, while maintaining the same weight values. (i) [2
points] repeat (a) and (b) and state your observations.

(ii) [2 points] Can you tweak the weights in this case to learn the correct decision boundary? If
yes, then find such weights and repeat (i), if NO, then re-express the network in this case using a
simpler network (or classifier) and argue why it can not learn this decision boundary.

Solution: The answer is NO, since you can simplify the 2-layer NN into a singlelayer NN with a
logistic unit (i.e. a logistic regression classifier) which can only a linear decision boundary over
(x1, x2). To see this:

53

Computer experiment

Nowadays there is a great interest in artificial neural networks, but the materials on this topic are
either incomprehensible for high school students or offer ready-made solutions using high-level
functions such as TensorFlow. The purpose of this work: the development of a computer program
that allows conducting a series of experiments using mathematical modeling methods, as a tool
for studying the features of neural networks functioning with a reasonable combination of
mathematics and practice in order to be apprehensible for high school students. The work
includes the following steps: Developing a list of more than 20 parameters and metrics used to
control the neural network. Some of them were developed by the author of this work.
Developing a computer program in Python with a plan of 12 different experiments.
Experimenting with the neural network the user can evaluate how various parameters of the
neural network affect the efficiency of its work, assess the impact of the training sample size on
the training of the neural network, etc. It is possible to compare the neural network and the naive
Bayes classifier. The program can work autonomously and in the Google Colaboratory
environment. The results of the program are displayed in form of graphs, tables and images of
matrices. Animation of the images improves perception of the dynamics of weights matrix
changes

Feature Detection

54

•​ Feature detection is a low-level image processing operation.

•​ That is, it is usually performed as the first operation on an image, and examines every pixel to

see if there is a feature present at that pixel.

•​ If this is part of a larger algorithm, then the algorithm will typically only examine the image in

the region of the features.

•​ Feature detection is a process by which the nervous system sorts or filters complex natural

stimuli in order to extract behaviorally relevant cues that have a high probability of being

associated with important objects or organisms in their environment, as opposed to irrelevant

background or noise.

ASSIGNMENT-2

SHORT ANSWERS(1 MARK)

1.​ Write a short note on perceptron.

2.​ Briefly describe about Learning Curves.

3.​ Write a short note on Heuristics.

4.​ Briefly describe about Output Representation and Decision Rule.

5.​ Write a short note on Computer Experiment.

6.​ Write a short note on Feature Detection.

LONG ANSWERS(5 MARKS)

1.​ Explain about Adaptive Filtering Problem in detail.

2.​ Explain in depth about Least Mean Square Algorithm.

3.​ Explain about Learning Rate Annealing Techniques in detail.

55

4.​ Explain in depth about Perceptron –Convergence Theorem.

5.​ Explain about Back Propagation Algorithm XOR Problem in detail.

6.​ Explain in depth about Unconstrained Organization Techniques.

7.​ Explain about Linear Least Square Filters in detail.

8.​ Explain in depth about Relation Between Perceptron and Bayes Classifier for a

Gaussian Environment Multilayer Perceptron.

9.​ Explain about SLP and MLP in detail.

ACTIVATION FUCTION:
The activation function decides whether a neuron should be activated or not by calculating the
weighted sum and further adding bias to it. The purpose of the activation function is to introduce
non-linearity into the output of a neuron.
Variants of Activation Function
Linear Function
●​ Equation : Linear function has the equation similar to as of a straight line i.e. y = x
●​ No matter how many layers we have, if all are linear in nature, the final activation function of

last layer is nothing but just a linear function of the input of first layer.
●​ Range : -inf to +inf
●​ Uses : Linear activation function is used at just one place i.e. output layer.
●​ Issues : If we will differentiate linear function to bring non-linearity, result will no more

depend on input “x” and function will become constant, it won’t introduce any
ground-breaking behavior to our algorithm.

Sigmoid Function

56

●​ It is a function which is plotted as ‘S’ shaped graph.
●​ Equation : A = 1/(1 + e-x)
●​ Nature : Non-linear. Notice that X values lies between -2 to 2, Y values are very steep. This

means, small changes in x would also bring about large changes in the value of Y.
●​ Value Range : 0 to 1
●​ Uses : Usually used in output layer of a binary classification, where result is either 0 or 1, as

value for sigmoid function lies between 0 and 1 only so, result can be predicted easily to
be 1 if value is greater than 0.5 and 0 otherwise.

Tanh Function

●​ The activation that works almost always better than sigmoid func
●​ tion is Tanh function also known as Tangent Hyperbolic function. It’s actually

mathematically shifted version of the sigmoid function. Both are similar and can be derived
from each other.

●​ Value Range :- -1 to +1
●​ Nature :- non-linear

57

●​ Uses :- Usually used in hidden layers of a neural network as it’s values lies between -1 to
1 hence the mean for the hidden layer comes out be 0 or very close to it, hence helps
in centering the data by bringing mean close to 0. This makes learning for the next layer
much easier.

RELU Function
●​ It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly

implemented in hidden layers of Neural network.
●​ Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise.
●​ Value Range :- [0, inf)
●​ Nature :- non-linear, which means we can easily backpropagate the errors and have multiple

layers of neurons being activated by the ReLU function.
●​ Uses :- ReLu is less computationally expensive than tanh and sigmoid because it involves

simpler mathematical operations. At a time only a few neurons are activated making the
network sparse making it efficient and easy for computation.

In simple words, RELU learns much faster than sigmoid and Tanh function.

Softmax Function
●​ It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly

implemented in hidden layers of Neural network.
●​ Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise.
●​ Value Range :- [0, inf)
●​ Nature :- non-linear, which means we can easily backpropagate the errors and have multiple

layers of neurons being activated by the ReLU function.
●​ Uses :- ReLu is less computationally expensive than tanh and sigmoid because it involves

simpler mathematical operations. At a time only a few neurons are activated making the
network sparse making it efficient and easy for computation.

In simple words, RELU learns much faster than sigmoid and Tanh function.
Softmax Function
●​ It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly

implemented in hidden layers of Neural network.
●​ Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise.
●​ Value Range :- [0, inf)
●​ Nature :- non-linear, which means we can easily backpropagate the errors and have multiple

layers of neurons being activated by the ReLU function.
●​ Uses :- ReLu is less computationally expensive than tanh and sigmoid because it involves

simpler mathematical operations. At a time only a few neurons are activated making the
network sparse making it efficient and easy for computation.

In simple words, RELU learns much faster than sigmoid and Tanh function.

Softmax Function

58

The softmax function is also a type of sigmoid function but is handy when we are trying to
handle multi- class classification problems.

●​ Nature :- non-linear
●​ Uses :- Usually used when trying to handle multiple classes. the softmax function was

commonly found in the output layer of image classification problems.The softmax function
would squeeze the outputs for each class between 0 and 1 and would also divide by the sum
of the outputs.

●​ Output:- The softmax function is ideally used in the output layer of the classifier where we
are actually trying to attain the probabilities to define the class of each input.

●​ The basic rule of thumb is if you really don’t know what activation function to use, then
simply use RELU as it is a general activation function in hidden layers and is used in most
cases these days.

●​ If your output is for binary classification then, sigmoid function is very natural choice for
output layer.

●​ If your output is for multi-class classification then, Softmax is very useful to predict the
probabilities of each classes.

LEARNING

An action a learner can engage in on their own to acquire a piece of knowledge or master a skill.

To summarize, neural networks, inspired by the human brain, learn patterns and make
predictions based on data through interconnected neurons in input, hidden, and output layers.
They learn by adjusting weights and biases using forward propagation, loss computation,
backpropagation, and parameter updates.
Types of Learning in Neural Networks

59

●​ Supervised Learning :
●​ Unsupervised Learning :
●​ Reinforcement Learning :

Types Of Learning Rules in ANN

Learning rule enhances the Artificial Neural Network’s performance by applying this rule over
the network. Thus learning rule updates the weights and bias levels of a network when certain
conditions are met in the training process. it is a crucial part of the development of the Neural
Network.

TRAINING

Neural network training is the process of teaching a neural network to perform a task. Neural
networks learn by initially processing several large sets of labeled or unlabeled data. By using
these examples, they can then process unknown inputs more accurately
Key Steps for Training a Neural Network

●​ Pick a neural network architecture. ...
●​ Random Initialization of Weights: The weights are randomly intialized to value in between 0 and

1, or rather, very close to zero.

60

61

	The perceptron consists of 4 parts.
	Single Layer Perceptron
	​Single-layer perceptron advantages
	2Single-layer perceptron disadvantages
	Structure of MultiLayer Perceptron Neural Network
	Input Layer
	Hidden Layer
	Output Layer

	Working of MultiLayer Perceptron Neural Network

	Advantages of MultiLayer Perceptron Neural Network
	Disadvantages of MultiLayer Perceptron Neural Network
	Multiple Neuron Adaptive Filters

	Working of Back Propagation Algorithm
	Solution
	Model

	The activation function decides whether a neuron should be activated or not by calculating the weighted sum and further adding bias to it. The purpose of the activation function is to introduce non-linearity into the output of a neuron.
	Variants of Activation Function
	Linear Function
	Sigmoid Function
	https://media.geeksforgeeks.org/wp-content/uploads/20221013120722/1.png

	Types Of Learning Rules in ANN

