
Unit-2 

SLP & MLP 

A single layer perceptron 

A perceptron is a simple type of neural network that can learn to classify linearly separable 
patterns. It consists of a single layer of weighted inputs and a binary output. A multi-layer 
perceptron (MLP) is a more complex type of neural network that can learn to classify 
non-linearly separable patterns. It consists of multiple layers of perceptrons, each with its own 
weights and activation function. In this article, you will learn about the advantages and 
disadvantages of using a single-layer perceptron versus a multi-layer perceptron for different 
tasks and scenarios. 
 

A single layer perceptron (SLP) is a feed-forward network based on a threshold transfer function. 

SLP is the simplest type of artificial neural networks and can only classify linearly separable cases with a 

binary target (1 , 0). 

 

 

The perceptron consists of 4 parts. 
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o​ Input value or One input layer: The input layer of the perceptron is made of artificial input 
neurons and takes the initial data into the system for further processing. 

o​ Weights and Bias:​
Weight: It represents the dimension or strength of the connection between units. If the 
weight to node 1 to node 2 has a higher quantity, then neuron 1 has a more considerable 
influence on the neuron.​
Bias: It is the same as the intercept added in a linear equation. It is an additional parameter 
which task is to modify the output along with the weighted sum of the input to the other 
neuron. 

o​ Net sum: It calculates the total sum. 

o​ Activation Function: A neuron can be activated or not, is determined by an activation 
function. The activation function calculates a weighted sum and further adding bias with it 
to give the result. 

 

 

There are two types of architecture. These types focus on the functionality of artificial neural 
networks as follows- 

o​ Single Layer Perceptron 
o​ Multi-Layer Perceptron 
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Single Layer Perceptron 
The single-layer perceptron was the first neural network model, proposed in 1958 by Frank 
Rosenbluth. It is one of the earliest models for learning. Our goal is to find a linear decision 
function measured by the weight vector w and the bias parameter b. 

To understand the perceptron layer, it is necessary to comprehend artificial neural networks 
(ANNs). 

The artificial neural network (ANN) is an information processing system, whose mechanism is 
inspired by the functionality of biological neural circuits. An artificial neural network consists of 
several processing units that are interconnected. 

This is the first proposal when the neural model is built. The content of the neuron's local 
memory contains a vector of weight. 

​
Single-layer perceptron advantages 

One of the main advantages of using a single-layer perceptron is its simplicity and efficiency. It 
is easy to implement, train, and understand. It has a clear geometric interpretation as a 
hyperplane that separates two classes of data. It can also perform well on problems that are 
linearly separable, such as logical operations, linear regression, and binary classification. 

2Single-layer perceptron disadvantages 

One of the main disadvantages of using a single-layer perceptron is its limited expressive power 
and generalization ability. It cannot learn to classify non-linearly separable patterns, such as 
XOR, circles, or spirals. It is also prone to overfitting and noise, as it tries to fit a straight line to 
the data. It does not have any hidden layers or activation functions that can introduce 
non-linearity and flexibility to the model. 
 

o​ Multi-Layer Perceptron 
o​ An MLP is a type of feedforward artificial neural network with multiple layers, including 

an input layer, one or more hidden layers, and an output layer. Each layer is fully 
connected to the next. In this article, we will understand MultiLayer Perceptron Neural 
Network, an important concept of deep learning and neural networks. 

 A multilayer perceptron (MLP) Neural network belongs to the feedforward neural network. It is 
an Artificial Neural Network in which all nodes are interconnected with nodes of different 
layers.   

Frank Rosenblatt first defined the word Perceptron in his perceptron program. Perceptron is a 
basic unit of an artificial neural network that defines the artificial neuron in the neural network. It 
is a supervised learning algorithm containing nodes’ values, activation functions, inputs, and 
weights to calculate the output.  

The Multilayer Perceptron (MLP) Neural Network works only in the forward direction. All 
nodes are fully connected to the network. Each node passes its value to the coming node only in 
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the forward direction. The MLP neural network uses a Backpropagation algorithm to increase the 
accuracy of the training model.  

Structure of MultiLayer Perceptron Neural Network  
This network has three main layers that combine to form a complete Artificial Neural Network. 
These layers are as follows:  

Input Layer  
It is the initial or starting layer of the Multilayer perceptron. It takes input from the training data 
set and forwards it to the hidden layer. There are n input nodes in the input layer. The number of 
input nodes depends on the number of dataset features. Each input vector variable is distributed 
to each of the nodes of the hidden layer.   

 
Hidden Layer  
It is the heart of all Artificial neural networks. This layer comprises all computations of the 
neural network. The edges of the hidden layer have weights multiplied by the node values. This 
layer uses the activation function.  

There can be one or two hidden layers in the model.   

Several hidden layer nodes should be accurate as few nodes in the hidden layer make the model 
unable to work efficiently with complex data. More nodes will result in an overfitting problem.  

Output Layer 
This layer gives the estimated output of the Neural Network. The number of nodes in the output 
layer depends on the type of problem. For a single targeted variable, use one node. N 
classification problem, ANN uses N nodes in the output layer.  

Working of MultiLayer Perceptron Neural Network  
●​ The input node represents the feature of the dataset.   

●​ Each input node passes the vector input value to the hidden layer.  

●​ In the hidden layer, each edge has some weight multiplied by the input variable. All the 
production values from the hidden nodes are summed together. To generate the output  

●​ The activation function is used in the hidden layer to identify the active nodes.  

●​ The output is passed to the output layer.  

●​ Calculate the difference between predicted and actual output at the output layer.  

●​ The model uses backpropagation after calculating the predicted output.  

Advantages of MultiLayer Perceptron Neural Network  
1.​ MultiLayer Perceptron Neural Networks can easily work with non-linear problems.  

2.​ It can handle complex problems while dealing with large datasets.  

3.​ Developers use this model to deal with the fitness problem of Neural Networks.  

4.​ It has a higher accuracy rate and reduces prediction error by using backpropagation.  
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5.​ After training the model, the Multilayer Perceptron Neural Network quickly predicts the 
output.  

Disadvantages of MultiLayer Perceptron Neural Network 
1.​ This Neural Network consists of large computation, which sometimes increases the overall 

cost of the model.  

2.​ The model will perform well only when it is trained perfectly.  

3.​ Due to this model’s tight connections, the number of parameters and node redundancy 
increases.  

           

 
Difference between single layer perceptron and multi layer perceptron 

Adaptive Filtering Problem 

Adaptive filtering  is  of  central  
importance  in  many  applications  of  
signal  processing, such as the 
modelling, estimation  and  detection  of  
signals.  Adaptive  filters  also play a 
crucial role  in  system 
modelling and  control. These 
applications  are  related to 
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communications,  radar,  sonar, 
biomedical 
electronics, geophysics, etc. 
A general  discrete-time filter  defines a 
relationship  between an input  time 
sequence  {u(n), u(n–1), 
…}  and  an  output  time  sequence  
{y(n),  y(n–1),  …},  u(n)  and  y(n)  being  
either  uni  or 
multidimensional signals. In the following, 
we consider filters having one input and 
one output. The 
generalization to multidimensional 
signals is straightforward. 
There are two types of filters: (i) 
transversal filters (termed Finite Impulse 
Response or FIR filters in 
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linear  filtering)  whose outputs  are 
functions  of the  input signals  only; and  
(ii) recursive  filters 
(termed Infinite Impulse Response or IIR 
filters in linear filtering) whose outputs 
are functions both 
of the  input  signals  and  of  a delayed  
version  of  the  output signals.  Hence,  
a  transversal  filter  is 
defined by: 
y(n) =[u(n), u(n-1), ..., u(n-M+1)],   (1) 
where M is the length of the finite 
memory of the filter, and a recursive filter 
is defined by 
y(n) =[u(n), u(n-1), ..., u(n-M+1), 
y(n-1), y(n-2), ...., y(n-N)]   (2) 
where N is the order of the filter. 
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The ability  of a filter  to  perform the 
desired  task  is expressed by  a  
criterion; this criterion  may be 
either quantitative,  e.g.,  maximizing  the  
signal  to  noise  ratio  for spatial filtering 
[see for instance 
Applebaum and Chapman 1976], 
minimizing the bit error rate in data 
transmission [see for instance 
Proakis 1983],  or  qualitative, e.g. 
listening  for  speech prediction [see  for  
instance Jayant and  Noll 
1984].  In  practice, the  criterion is  
usually expressed  as a  weighted sum  
of squared  differences 
between the output of the filter and the 
desired output (e.g. LS criterion). 
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An adaptive filter is a system whose 
parameters are continually updated, 
without explicit control by 
the  user. The  interest  in  adaptive  
filters  stems  from two  facts:  (i)  
tailoring  a  filter  of  given 
architecture to perform a specific task  
requires a priori knowledge of the 
characteristics of  the input 
signal; since this knowledge may be 
absent or partial, systems which can 
learn the characteristics of 
the signal are desirable; (ii) filtering 
nonstationary signals necessitates 
systems which are capable of 
tracking the variations of the 
characteristics of the signal. 
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The bulk of adaptive filtering theory is 
devoted to linear adaptive filters, defined 
by relations (1) and 
(2), where is a linear function. Linear 
filters have been extensively studied, and 
are appropriate for 
many purposes in signal processing. A 
family of particularly efficient adaptation 
algorithms has bee 
Adaptive filtering  is  of  central  
importance  in  many  applications  of  
signal  processing, such as the 
modelling, estimation  and  detection  of  
signals.  Adaptive  filters  also play a 
crucial role  in  system 
modelling and  control. These 
applications  are  related to 
communications,  radar,  sonar, 
biomedical 

10 
 



electronics, geophysics, etc. 
A general  discrete-time filter  defines a 
relationship  between an input  time 
sequence  {u(n), u(n–1), 
…}  and  an  output  time  sequence  
{y(n),  y(n–1),  …},  u(n)  and  y(n)  being  
either  uni  or 
multidimensional signals. In the following, 
we consider filters having one input and 
one output. The 
generalization to multidimensional 
signals is straightforward. 
There are two types of filters: (i) 
transversal filters (termed Finite Impulse 
Response or FIR filters in 
linear  filtering)  whose outputs  are 
functions  of the  input signals  only; and  
(ii) recursive  filters 

11 
 



(termed Infinite Impulse Response or IIR 
filters in linear filtering) whose outputs 
are functions both 
of the  input  signals  and  of  a delayed  
version  of  the  output signals.  Hence,  
a  transversal  filter  is 
defined by: 
y(n) =[u(n), u(n-1), ..., u(n-M+1)],   (1) 
where M is the length of the finite 
memory of the filter, and a recursive filter 
is defined by 
y(n) =[u(n), u(n-1), ..., u(n-M+1), 
y(n-1), y(n-2), ...., y(n-N)]   (2) 
where N is the order of the filter. 
The ability  of a filter  to  perform the 
desired  task  is expressed by  a  
criterion; this criterion  may be 

12 
 



either quantitative,  e.g.,  maximizing  the  
signal  to  noise  ratio  for spatial filtering 
[see for instance 
Applebaum and Chapman 1976], 
minimizing the bit error rate in data 
transmission [see for instance 
Proakis 1983],  or  qualitative, e.g. 
listening  for  speech prediction [see  for  
instance Jayant and  Noll 
1984].  In  practice, the  criterion is  
usually expressed  as a  weighted sum  
of squared  differences 
between the output of the filter and the 
desired output (e.g. LS criterion). 
An adaptive filter is a system whose 
parameters are continually updated, 
without explicit control by 

13 
 



the  user. The  interest  in  adaptive  
filters  stems  from two  facts:  (i)  
tailoring  a  filter  of  given 
architecture to perform a specific task  
requires a priori knowledge of the 
characteristics of  the input 
signal; since this knowledge may be 
absent or partial, systems which can 
learn the characteristics of 
the signal are desirable; (ii) filtering 
nonstationary signals necessitates 
systems which are capable of 
tracking the variations of the 
characteristics of the signal. 
The bulk of adaptive filtering theory is 
devoted to linear adaptive filters, defined 
by relations (1) and 

14 
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To design a multiple 
input-single output model of 
the unknown  dynamical 
system,  it is by  
building it around a single 
linear neuron.The neuronal 
model operates under the 
influence  
of an algorithm that controls 
necessary adjustments to 
the synaptic weights of the 
neuron.  
With the following points in 
mind:  
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Multiple Neuron Adaptive Filters 
You might want to use more than one neuron in an adaptive system, so you need some additional 
notation. You can use a tapped delay line with S linear neurons, as shown in the next figure. 

 

Alternatively, you can represent this same network in abbreviated form. 
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If you want to show more of the detail of the tapped delay line—and there are not too many 
delays—you can use the following notation: 

 

Here, a tapped delay line sends to the weight matrix: 

●​ The current signal 
●​ The previous signal 
●​ The signal delayed before that 
You could have a longer list, and some delay values could be omitted if desired. The only 
requirement is that the delays must appears in increasing order as they go from top to bottom. 
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Least Mean Square Algorithm 
The ADALINE (adaptive linear neuron) networks discussed in this topic are similar to the perceptron, but 
their transfer function is linear rather than hard-limiting. This allows their outputs to take on any value, 
whereas the perceptron output is limited to either 0 or 1. Both the ADALINE and the perceptron can solve 
only linearly separable problems 

The LMS algorithm adjusts the weights and biases of the ADALINE so as to minimize this mean square 
error. 

Fortunately, the mean square error performance index for the ADALINE network is a quadratic function. 
Thus, the performance index will either have one global minimum, a weak minimum, or no minimum, 
depending on the characteristics of the input vectors. Specifically, the characteristics of the input vectors 
determine whether or not a unique solution exists. 

LMS Algorithm (learnwh) 
Adaptive networks will use the LMS algorithm or Widrow-Hoff learning algorithm based on an 
approximate steepest descent procedure. Here again, adaptive linear networks are trained on 
examples of correct behavior. 

The LMS algorithm, shown here, is discussed in detail in Linear Neural Networks. 

W(k + 1) = W(k) + 2αe(k)pT(k) 

b(k + 1) = b(k) + 2αe(k) 

Adaptive Filtering (adapt) 
The ADALINE network, much like the perceptron, can only solve linearly separable problems. It 
is, however, one of the most widely used neural networks found in practical 
applications. Adaptive filtering is one of its major application areas. 
Tapped Delay Line 
You need a new component, the tapped delay line, to make full use of the ADALINE network. 
Such a delay line is shown in the next figure. The input signal enters from the left and passes 
through N-1 delays. The output of the tapped delay line (TDL) is an N-dimensional vector, made 
up of the input signal at the current time, the previous input signal, etc. 
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Adaptive Filter 
You can combine a tapped delay line with an ADALINE network to create the adaptive 
filter shown in the next figure. 

 

The output of the filter is given by 

α(k)=purelin(Wp+b)=R∑i=1w1,iα(k−i+1)+b 

In digital signal processing, this network is referred to as a finite impulse response (FIR) filter 
[WiSt85]. Take a look at the code used to generate and simulate such an adaptive network. 
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Learning Curves 

A learning curve is a correlation between a learner’s performance on a task and the number of attempts 

or time required to complete the task; this can be represented as a direct proportion on a graph 

The learning curve theory proposes that a learner’s efficiency in a task improves over time the more the 

learner performs the task 
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Bias:​
It is basically nothing but the difference between the average prediction of a model and the 
correct value of the prediction. Models with high bias make a lot of assumptions about the 
training data. This leads to over-simplification of the model and may cause a high error on both 
the training and testing sets. However, this also makes the model faster to learn and easy to 
understand. Generally, linear model algorithms like Linear Regression have a high bias. 
Variance:​
It is the amount a model’s prediction will change if the training data is changed. Ideally, a 
machine learning model should not vary too much with a change in training sets i.e., the 
algorithm should be good at picking up important details about the data, regardless of the data 
itself. Example of algorithms with high variance is Decision Trees, Support Vector Machines 
(SVM) 
The Artificial Neural Network literature has used the term to show the diverging behavior of in 
and out-of-sample performance as a function of the number of training iterations for a given 
number of training examples. 
General Machine Learning uses learning curves to show the predictive generalization 
performance as a function of the number of training examples. Both graphs in Figure 3 are 
examples of such learning curves. 

 
 

Learning curve formula:- Y = aXb 

Where:​
Y is the average time over the measured duration​
a represents the time to complete the task the first time​
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X represents the total amount of attempts completed​
b represents the slope of the function 

The formula can be used as a prediction tool to forecast future performance. 

Learning Rate Annealing Techniques  

•​ Changing the learning rate for your stochastic gradient descent optimization technique can 

improve performance while also cutting down on training time.  

•​ This is also known as adaptable learning rates or learning rate annealing.  

•​ This method is referred to as a learning rate schedule since the default schedule updates 

network weights at a constant rate for each training period. 

•​ These have the advantage of making big modifications at the start of the training procedure 

when larger learning rate values are employed and decreasing the learning rate later in the 

training procedure when a smaller rate and hence smaller training updates are made to weights. 

 

Methods of Learning Rate Annealing 

1A Learning Rate Decay 

2Adaptive Learning Rate 

3Learning-Rate Warmup 

 

Learning-Rate Decay 

A schedule defines how things will change over time. In general, learning rate scheduling 

specifies a certain learning rate for each epoch and batch. There are two types of methods for 

scheduling global learning rates: the decay, and the cyclical one. The most preferred method is 

the learning rate annealing that is scheduled to gradually decay the learning rate during the 

training process 

Adaptive Learning Rate 
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In the gradient-based optimization, it is desirable to determine the step-size automatically based 

on the loss gradient that reflects the convergence of each of the unknown parameters 

However, the adaptive method is usually inferior to SGD in accuracy for unknown data in 

supervised learning, such as the image classification with conventional shallow model 

Learning-Rate Warmup  

The learning rate warmup, is a recent approach that uses a relatively small step size at the 

beginning of the training. The learning rate is increased linearly or non-linearly to a specific value 

in the first few epochs, and then shrinks to zero. The observations behind the warmup are that: 

the model parameters are initialized using a random distribution, and thus, the initial model is 

far from the ideal one; thus, an overly large learning rate causes numerical instability; and 

training a initial model carefully in the first few epochs may enable us to apply a larger learning 

rate in the middle stage of the training, resulting in a better regularization  The bottom row of 

Figure  provides the learning rate schedules by the conventional annealing methods with 

warmup. 

 

Perceptron –Convergence Theorem 
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Relation Between Perceptron and Bayes Classifier for a Gaussian Environment 

•​ Bayesian decision theory is a fundamental statistical approach to the problem of classification as 

for pattern recognition.  

•​ It makes the assumption that the decision problem is posed in probabilistic term, and all of the 

relevant probability values are known. 

•​  To minimize the error probability in classification problem, one must choose the state of nature 

that maximizes the posterior probability. 

•​ Classification techniques employ a learning algorithm to identify a model that best fits the 

relationship between attribute set and class label for the input data. 

•​ Its clear that the Bayesian Decision Rule(BDR) has great role in statistical data analysis for various 

directions in our live, specially in stochastic processes. 

•​ This can be done when one needs to make classification among some classes come from several 

populations, to return to their origin. 

•​ This criteria can be done by using what is so called (Perceptron) 
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Back Propagation Algorithm  

A neural network is a group of connected I/O units where each connection has a weight 

associated with its computer programs. 

 It helps you to build predictive models from large databases.  

This model builds upon the human nervous system.  

Backpropagation is the essence of neural network training. It is the method of fine-tuning the 

weights of a neural network based on the error rate obtained in the previous epoch (i.e., 

iteration). 

 Proper tuning of the weights allows you to reduce error rates and make the model reliable by 

increasing its generalizationBackpropagation in neural network is a short form for “backward 

propagation of errors.”  

It is a standard method of training artificial neural networks.  

This method helps calculate the gradient of a loss function with respect to all the weights in the 

network 

 

Among various logical gates, the XOR or also known as the “exclusive or” problem is one of the logical 

operations when performed on binary inputs that yield output for different combinations of input, and 

for the same combination of input no output is produced.  

The outputs generated by the XOR logic arenot linearly separable in the hyperplane.  

Working of Back Propagation Algorithm 
The goal of the back propagation algorithm is to optimize the weights so that the neural network can learn 
how to correctly map arbitrary inputs to outputs. Here, we will understand the complete scenario of back 
propagation in neural networks with the help of a single training set. 
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In order to have some numbers to work with, here are initial weights, biases, and training input 
and output. 
1 
2 
3 

Inputs(i1): 0.05                          Output (o1): 0.01 
  
Inputs(i2): 0.10                          Output(o2):0.99 

Step 1: The Forward Pass: 

 
 

The total net input for h1: The net input for h1 (the next layer) is calculated as the sum 
of the product of each weight value and the corresponding input value and, finally, a 
bias value added to it. 

 

  

The output for h1: The output for h1 is calculated by applying a sigmoid function to the 
net input Of h1. 

The sigmoid function pumps the values for which it is used in the range of 0 to 1. 

It is used for models where we have to predict the probability. Since the probability of 
any event lies between 0 and 1, the sigmoid function is the right choice. 

Carrying out the same process for h2 
1 out h2 = 0.596884378 
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The output for o1 is: 

 

  

Carrying out the same process for o2: 
1 out o2 = 0.772928465 

Calculating the Total Error: 

We can now calculate the error for each output neuron using the squared error function and sum 
them up to get the total error: E total = Ʃ1/2(target – output)2 

The target output for o1 is 0.01, but the neural network output is 0.75136507; therefore, its error 
is: 
1 E o1 = 1/2(target o1 - out o1)2 = 1/2(0.01 - 0.75136507)2 = 0.27481108 ……………..……………. (Equat

By repeating this process for o2 (remembering that the target is 0.99), we get: 
1 E o2 = 0.023560026 

Then, the total error for the neural network is the sum of these errors: 
1 E total = E o1 + E o2 = 0.274811083 + 0.023560026 = 0.298371109 

Step 2: Backward Propagation: 

Our goal with the backward propagation algorithm is to update each weight in the network so 
that the actual output is closer to the target output, thereby minimizing the error for each 
neuron and the network as a whole. 
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XOR Problem 

The XOR logic  is used to and how to integrate the XOR logic using neural networks. 

 

XOR or Exclusive OR is a classic problem in Artificial Neural Network Research. An XOR 
function takes two binary inputs (0 or 1) & returns True if both inputs are different & False if 
both inputs are same. 

 

 

On the surface, XOR appears to be a very simple problem, however, Minksy and Papert 
(1969) showed that this was a big problem for neural network architectures of the 1960s, 
known as perceptrons. A limitation of this architecture is that it is only capable of 
separating data points with a single line. This is unfortunate because the XOR inputs are not 
linearly separable. This is particularly visible if you plot the XOR input values to a graph. As 
shown in the figure, there is no way to separate the 1 and 0 predictions with a single 
classification line. 
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Solution 

The backpropagation algorithm begins by comparing the actual value output by the 
forward propagation process to the expected value and then moves backward through 
the network, slightly adjusting each of the weights in a direction that reduces the size of 
the error by a small degree. Both forward and back propagation are re-run thousands of 
times on each input combination until the network can accurately predict the expected 
output of the possible inputs using forward propagation. 

As mentioned before, the neural network needs to produce two different decision planes 

to linearly separate the input data based on the output patterns. This is achieved by 

using the concept of hidden layers. The neural network will consist of one input layer 

with two nodes (X1,X2); one hidden layer with two nodes (since two decision planes are 

needed); and one output layer with one node (Y). Hence, the neural network looks like 

this: 
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Model 

 

 

Inputs 

 

2 hidden neurons are used, each takes two inputs with different weights. After each 
forward pass, the error is back propogated. I have used sigmoid as the activation function 
at the hidden layer. 
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Heuristics 

•​ Heuristics are strategies often used to find a solution that is not perfect, but is within an 

acceptable degree of accuracy for the needs of the process. 

 In computing, heuristics are especially useful when finding an optimal solution to a problem is 

impractical because of slow speed or processing power limitations 

The heuristic ANN design approach is made up of the following steps: knowledge-based 
selection of input values, selection of a learning method, and design of the hidden layers 
(quantity and nodes per layer). 

A heuristic technique is a problem specific approach that employs a practical method that often 
provides sufficient accuracy for the immediate goals. From: Numerical Methods  

Types of Heuristics 

●​ Affect Heuristics. Affect heuristics are based on positive and negative feelings that are 
associated with a certain stimulus. ... 

●​ Availability Heuristics. ... 
●​ Representative Heuristics. 
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Heuristic algorithms are used in a variety of industries, including transportation, logistics, and finance. 
For example, heuristic algorithms can be used to optimize delivery routes for packages or to minimize 
risk in financial investments 

Heuristic evaluations are certainly useful in some instances and can provide crucial insights into how your 
site is meeting its objectives without the time, expense and potential problems of real user evaluation. It 
can. However, be risky to rely on it as the sole means of testing your concept and product. 

the neural network’s predictions are responsible for Combining heuristics with neural networks 

 

Output Representation and Decision Rule 

•​ To balance the accuracy of neural networks and the interpretability of decision rules, we propose 

a hybrid technique called rule-constrained networks. 

 Namely, neural networks that make decisions by selecting decision rules from a given ruleset 

 learning about a new classifier is what kind of decision boundaries can this classifier learn. We 
have explored this question in HW1 for the case of 1-KNN and decision trees, and showed that 
both of them can vary their decision boundary either on a data-driven way for 1-KNN or based 
on the size of the tree for decision trees. In this question we will explore these issues for the case 
of a 2-layer Neural Network (NN). Recall from class that the input aj for a node j is given by: 
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1.1​Decision Boundary  

Consider the classification task shown in figure 1 where ’+’ and ’o’ denotes positive and 
negative classes, respectively. This data is available in the file data.mat, also please read NN 
readme.txt which contains a simple code to draw the figure below. For this part of the problem, 
you might want to write really a few lines of matlab code to evaluate the network and get the 
necessary plots. Consider the 2-layer network in Figure 1. This network has 9 weights and a 
logistic activation function for both the hidden and output layers. 

 

Figure 1: (a) 2-layer NN with logistic activation functions at both the hidden and output layers.  

(b) A 2-class dataset: ’+’ and ’o’ marks positive and negative labels respectively. (1) [2 points] 
For each of the following classifiers, state with a one-line explanation whether or not they can 
learn the decision boundary illustrated in Figure 1: 1-KNN, decision tree, Naive 1 Bayes, and 
logistic regression. Solution: NB and LR can only learn linear decision boundaries thus they can 
not learn the decision boundary in Figure 1. 1-KNN can learn that boundary. For decision trees, 
you can argue either way, if you consider the approach we discussed in HW1, then if you don’t 
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constrain the depth of the tree, then definitely DT can learn that boundary with a very large tree 
(which is not practical), thus you can argue that using a bounded-size tree, the decision boundary 
in Figure 1 can not be learned. 

 

 

of the input space (x1, x2) is non-linear though. (c) [2 points] Overlay the decision boundary 
explicitly over the curve your drew in part (a) in terms of o1 and o2. State your observations. 
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Solution: Note that the last layer is a logistic regression classifier over the input (o1, o2), thus the 
decision rule is: w31o1 + w32o2 + w30 = 0. Which you can easily draw as in Figure 2. (e) Lets 
assume that we removed the logistic function form the hidden layer ONLY and instead used an 
identity function, i.e o1 = a1 and o2 = a2, while maintaining the same weight values. (i) [2 
points] repeat (a) and (b) and state your observations. 

 

(ii) [2 points] Can you tweak the weights in this case to learn the correct decision boundary? If 
yes, then find such weights and repeat (i), if NO, then re-express the network in this case using a 
simpler network (or classifier) and argue why it can not learn this decision boundary. 

Solution: The answer is NO, since you can simplify the 2-layer NN into a singlelayer NN with a 
logistic unit (i.e. a logistic regression classifier) which can only a linear decision boundary over 
(x1, x2). To see this: 
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Computer experiment 

Nowadays there is a great interest in artificial neural networks, but the materials on this topic are 
either incomprehensible for high school students or offer ready-made solutions using high-level 
functions such as TensorFlow. The purpose of this work: the development of a computer program 
that allows conducting a series of experiments using mathematical modeling methods, as a tool 
for studying the features of neural networks functioning with a reasonable combination of 
mathematics and practice in order to be apprehensible for high school students. The work 
includes the following steps: Developing a list of more than 20 parameters and metrics used to 
control the neural network. Some of them were developed by the author of this work. 
Developing a computer program in Python with a plan of 12 different experiments. 
Experimenting with the neural network the user can evaluate how various parameters of the 
neural network affect the efficiency of its work, assess the impact of the training sample size on 
the training of the neural network, etc. It is possible to compare the neural network and the naive 
Bayes classifier. The program can work autonomously and in the Google Colaboratory 
environment. The results of the program are displayed in form of graphs, tables and images of 
matrices. Animation of the images improves perception of the dynamics of weights matrix 
changes 

 

Feature Detection 
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•​ Feature detection is a low-level image processing operation.  

•​ That is, it is usually performed as the first operation on an image, and examines every pixel to 

see if there is a feature present at that pixel. 

•​  If this is part of a larger algorithm, then the algorithm will typically only examine the image in 

the region of the features. 

•​ Feature detection is a process by which the nervous system sorts or filters complex natural 

stimuli in order to extract behaviorally relevant cues that have a high probability of being 

associated with important objects or organisms in their environment, as opposed to irrelevant 

background or noise. 

 

 

 

 

 

 

 

ASSIGNMENT-2 

SHORT ANSWERS(1 MARK) 

1.​ Write a short note on perceptron. 

2.​ Briefly describe about Learning Curves. 

3.​  Write a short note on Heuristics. 

4.​ Briefly describe about Output Representation and Decision Rule. 

5.​ Write a short note on Computer Experiment. 

6.​ Write a short note on Feature Detection. 

LONG ANSWERS(5 MARKS) 

1.​ Explain about Adaptive Filtering Problem in detail. 

2.​ Explain in depth about Least Mean Square Algorithm. 

3.​ Explain about Learning Rate Annealing Techniques in detail. 
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4.​ Explain in depth about Perceptron –Convergence Theorem. 

5.​ Explain about Back Propagation Algorithm XOR Problem in detail. 

6.​ Explain in depth about Unconstrained Organization Techniques. 

7.​ Explain about  Linear Least Square Filters in detail. 

8.​ Explain in depth about Relation Between Perceptron and Bayes Classifier for a 

Gaussian Environment  Multilayer Perceptron. 

9.​ Explain about SLP and MLP in detail. 

 

 

 

 

 

ACTIVATION FUCTION: 
The activation function decides whether a neuron should be activated or not by calculating the 
weighted sum and further adding bias to it. The purpose of the activation function is to introduce 
non-linearity into the output of a neuron.  
Variants of Activation Function  
Linear Function  
●​ Equation : Linear function has the equation similar to as of a straight line i.e. y = x 
●​ No matter how many layers we have, if all are linear in nature, the final activation function of 

last layer is nothing but just a linear function of the input of first layer. 
●​ Range : -inf to +inf 
●​ Uses : Linear activation function is used at just one place i.e. output layer. 
●​ Issues : If we will differentiate linear function to bring non-linearity, result will no more 

depend on input “x” and function will become constant, it won’t introduce any 
ground-breaking behavior to our algorithm. 
 

Sigmoid Function  
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●​ It is a function which is plotted as ‘S’ shaped graph. 
●​ Equation : A = 1/(1 + e-x) 
●​ Nature : Non-linear. Notice that X values lies between -2 to 2, Y values are very steep. This 

means, small changes in x would also bring about large changes in the value of Y. 
●​ Value Range : 0 to 1 
●​ Uses : Usually used in output layer of a binary classification, where result is either 0 or 1, as 

value for sigmoid function lies between 0 and 1 only so, result can be predicted easily to 
be 1 if value is greater than 0.5 and 0 otherwise. 
 

Tanh Function  

             
●​ The activation that works almost always better than sigmoid func 
●​ tion is Tanh function also known as Tangent Hyperbolic function. It’s actually 

mathematically shifted version of the sigmoid function. Both are similar and can be derived 
from each other. 

  
●​ Value Range :- -1 to +1 
●​ Nature :- non-linear 
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●​ Uses :- Usually used in hidden layers of a neural network as it’s values lies between -1 to 
1 hence the mean for the hidden layer comes out be 0 or very close to it, hence helps 
in centering the data by bringing mean close to 0. This makes learning for the next layer 
much easier. 
 

RELU Function  
●​ It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly 

implemented in hidden layers of Neural network. 
●​ Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise. 
●​ Value Range :- [0, inf) 
●​ Nature :- non-linear, which means we can easily backpropagate the errors and have multiple 

layers of neurons being activated by the ReLU function. 
●​ Uses :- ReLu is less computationally expensive than tanh and sigmoid because it involves 

simpler mathematical operations. At a time only a few neurons are activated making the 
network sparse making it efficient and easy for computation. 

In simple words, RELU learns much faster than sigmoid and Tanh function. 
 
Softmax Function 
●​ It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly 

implemented in hidden layers of Neural network. 
●​ Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise. 
●​ Value Range :- [0, inf) 
●​ Nature :- non-linear, which means we can easily backpropagate the errors and have multiple 

layers of neurons being activated by the ReLU function. 
●​ Uses :- ReLu is less computationally expensive than tanh and sigmoid because it involves 

simpler mathematical operations. At a time only a few neurons are activated making the 
network sparse making it efficient and easy for computation. 

In simple words, RELU learns much faster than sigmoid and Tanh function. 
Softmax Function 
●​ It Stands for Rectified linear unit. It is the most widely used activation function. Chiefly 

implemented in hidden layers of Neural network. 
●​ Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise. 
●​ Value Range :- [0, inf) 
●​ Nature :- non-linear, which means we can easily backpropagate the errors and have multiple 

layers of neurons being activated by the ReLU function. 
●​ Uses :- ReLu is less computationally expensive than tanh and sigmoid because it involves 

simpler mathematical operations. At a time only a few neurons are activated making the 
network sparse making it efficient and easy for computation. 

In simple words, RELU learns much faster than sigmoid and Tanh function. 
 
Softmax Function 
 

58 
 



 
The softmax function is also a type of sigmoid function but is handy when we are trying to 
handle multi- class classification problems. 

●​ Nature :- non-linear 
●​ Uses :- Usually used when trying to handle multiple classes. the softmax function was 

commonly found in the output layer of image classification problems.The softmax function 
would squeeze the outputs for each class between 0 and 1 and would also divide by the sum 
of the outputs.  

●​ Output:- The softmax function is ideally used in the output layer of the classifier where we 
are actually trying to attain the probabilities to define the class of each input. 

●​ The basic rule of thumb is if you really don’t know what activation function to use, then 
simply use RELU as it is a general activation function in hidden layers and is used in most 
cases these days. 

●​ If your output is for binary classification then, sigmoid function is very natural choice for 
output layer. 

●​ If your output is for multi-class classification then, Softmax is very useful to predict the 
probabilities of each classes. 
 
 
 
 
 
 
LEARNING 

An action a learner can engage in on their own to acquire a piece of knowledge or master a skill. 

To summarize, neural networks, inspired by the human brain, learn patterns and make 
predictions based on data through interconnected neurons in input, hidden, and output layers. 
They learn by adjusting weights and biases using forward propagation, loss computation, 
backpropagation, and parameter updates. 
Types of Learning in Neural Networks 
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●​ Supervised Learning : 
●​ Unsupervised Learning : 
●​ Reinforcement Learning : 

 
Types Of Learning Rules in ANN 

Learning rule enhances the Artificial Neural Network’s performance by applying this rule over 
the network. Thus learning rule updates the weights and bias levels of a network when certain 
conditions are met in the training process. it is a crucial part of the development of the Neural 
Network. 

 

TRAINING 

Neural network training is the process of teaching a neural network to perform a task. Neural 
networks learn by initially processing several large sets of labeled or unlabeled data. By using 
these examples, they can then process unknown inputs more accurately 
Key Steps for Training a Neural Network 

●​ Pick a neural network architecture. ... 
●​ Random Initialization of Weights: The weights are randomly intialized to value in between 0 and 

1, or rather, very close to zero. 
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