

Preprocess splits documents into optimal chunks of text for use in
language model tasks. If you want to learn more about Preprocess
check out preprocess.co

GETTING STARTED
You should have already received an API key, if not please write to
us at support@preprocess.co.

If you want to first give a try to the solution without implementing
code, please have a look at the playground section.

Preprocessing is a time-intensive task, for this reason, the API is
asynchronous. The response to the API call will confirm the
document has been received correctly, and when the chunking is
completed the result will be sent to the indicated webhook. If you
are not in the conditions to set up a webhook we got you covered.

REQUEST
The request for chunking a document:

cURL

cURL
curl --location

https://preprocess.co
mailto:support@preprocess.co

--request POST 'https://chunk.ing' \
--header 'Content-Type: multipart/form-data' \
--header 'x-api-key: your_api_key' \
--form 'file=@"/your_file.ext"'

●​ [header] x-api-key: the 32-character API Key token. If you
don't have one yet, please reach out to support at
support@preprocess.co.

●​ [form] file: the file to be uploaded as binary in the request
form. Maximum file size 30 MB. Allowed file types: pdf, doc,
docx, ppt, pptx, xls, xlsx, odt, ods, odp, eml, html, plain text

Optional query parameters:

●​ webhook: the URL to be called after chunking, where the
result will be posted (GETTING THE RESULT BY WEBHOOK). If
you prefer to get the result through an HTTP request
(GETTING THE RESULT BY HTTP REQUEST), omit this
parameter.

●​ repeat_title: [true, false] [default false]​
If set to true, each chunk will include the title of the parent
paragraph/section.

●​ keep_header: [true, false] [default true]​
If set to false, the content of the headers will be removed.
Headers may include page numbers, document titles, section
titles, paragraph titles, and fixed layout elements.

●​ smart_header: [true, false] [default true]​
If set to true, only relevant titles will be included in the
chunks, while other information will be removed. Relevant

mailto:support@preprocess.co

titles are those that should be part of the body of the page as
a title.​
If set to false, only the keep_header parameter will be
considered. If keep_header is false, the smart_header
parameter will be ignored.

●​ keep_footer: [true, false] [default false]​
If set to true, the content of the footers will be included in the
chunks. Footers may include page numbers, footnotes, and
fixed layout elements.

●​ image_text: [true, false] [default false]​
If set to true, the text contained in the images will be added to
the chunks.

●​ table_output_format: ["text", "markdown", "html"] [default
"text"]​
Specifies the output format for tables.

●​ repeat_table_header: [true, false] [default false]​
If set to true, and if tables are split across multiple chunks,
each chunk will include the table row header.

●​ language: ​
The language in ISO 639-1 format. If not provided, the system
will automatically identify it.

●​ merge: [true, false] [default false]​
If set to true, short chunks will be merged with others to
maximize the chunk length.

RESPONSE

cURL

cURL
curl --location
--request POST 'https://chunk.ing/?repeat_title=true&webhook=https%3A%2F%2Fwebhook.url' \
--header 'Content-Type: multipart/form-data' \
--header 'x-api-key: your_api_key' \
--form 'file=@"/your_file.ext"'

The response to the above curl request:

JSON in case of success

{
 "status": “OK”,
 "success": true,
 "data": {"process":{"id": string }},
 "message": "Chunking started."
}

JSON in case of error

{
 "status": “ERROR”,
 "success": false,
 "error": …object with additional data…,
 "message": "Unsupported file extension"
}

{
 "status": “ERROR”,
 "success": false,
 "error": …object with additional data…,
 "message": "File too large, the allowed max size is 30MB"
}

{
 "status": “ERROR”,
 "success": false,
 "error": …object with additional data…,
 "message": "Unknown error, please try again later"
}

In case of success the response will provide you with an ID that you
can use to keep track of the different jobs you started.

GETTING THE RESULT BY WEBHOOK
If you set up a webhook in the chunking request, Preprocess will
call the URL provided in the webhook parameter when the
chunking of your document is finished. The webhook request will
be a POST in JSON format:

JSON in case of success

{
 "status": "OK",
 "success": true,
 "message": "The file has been chunked successfully."

 "info": {
 "file":{"name": string }
 },
 "data": {
 "process":{
 "id": string
 },
 "detected_language": string ,
 "chunks": [
 "first chunk …",
 "second chunk …",
 …
]
 }
}

JSON in case of error

{
 "status": “ERROR”,
 "success": false,
 "error": …object with additional data…,
 "message": "An error happened during the chunking of your document,
please try again later"
}

Some details on the data you will receive:

●​ data > process > id: the ID you received in the response of the
chunking request.

●​ data > detected_language: the language you provided in the
chunking request, or the one automatically identified.

●​ data > chunks: the list of chunks the document has been
divided into.

●​ info > file > name: the name of the file you uploaded.

GETTING THE RESULT BY HTTP
REQUEST
If you have not provided a webhook, you can get the result via an
API request. This endpoint will provide you with the information
related to the ID of the chunking request you initiated. Once the
chunking is completed, the endpoint will return the result in the
response.

cURL

cURL
curl --location
--request GET 'https://chunk.ing/get_result?id=id_of_the_chunking_request' \
--header 'x-api-key: your_api_key'

Depending on the status of the chunking process you will get
different responses:

JSON in case of chunking not finished yet

{
 "status": “OK”,
 "success": false,

 "message": "The file chunking has not finished yet."
}

JSON in case of success

{
 "status": "OK",
 "success": true,
 "message": "The file has been chunked successfully."
 "info": {
 "file":{"name": string }
 },
 "data": {
 "process":{
 "id": string
 },
 "detected_language": string ,
 "chunks": [
 "first chunk …",
 "second chunk …",
 …
]
 }
}

JSON in case of error

{
 "status": “ERROR”,
 "success": false,
 "error": …object with additional data…,
 "message": "An error happened during the chunking of your document,
please try again later"
}

​
Please keep in mind that every file and result will be deleted 24
hours after the chunking request.

Some details on the data you will receive:

●​ success: false if the process is not yet finished, true
otherwise.

●​ data > process > id: the ID you received in the response of the
chunking request.

●​ data > detected_language: the language you provided in the
chunking request, or the one automatically identified.

●​ data > chunks: the list of chunks the document has been
divided into.

●​ info > file > name: the name of the file you uploaded.

EXAMPLES

PYTHON
Coming soon!

LANGCHAIN
If you want to integrate Preprocess results in your Langchain flow
just load the chunks as Documents using the following snippet.

Langchain example

from langchain.document_loaders import JSONLoader

loader = JSONLoader(file_path="result.json", jq_schema='.data.chunks[]')
data = loader.load()

In the above example “result.json” is a JSON file containing the
information posted in the webhook you provided.

Alternatively, you can execute the above logic on the webhook you
provided that received the results of the chunking process.

LLAMAINDEX
If you want to integrate Preprocess results in your llamaindex flow
just load the chunks as Documents using the following snippet.

llamaindex example

import json
from llama_index.readers.schema.base import Documents
from llama_index import VectorStoreIndex

with open('result.json', 'r') as f:
 result = json.load(f)

index = VectorStoreIndex([])
for chunk in result['data']['chunks']:
 index.insert(Document(text=chunk, extra_info={}))
query_engine = index.as_query_engine()

In the above example “result.json” is a JSON file containing the
information posted in the webhook you provided.

PLAYGROUND
We have released a playground to easily test our solution. Go to
https://playground.chunk.ing insert your API key, upload a file, and
see the results.

SUPPORT
For any doubt, issue, or request, please write at
support@preprocess.co , we are at your disposal.

https://playground.chunk.ing
mailto:support@preprocess.co

	GETTING STARTED
	REQUEST
	RESPONSE
	GETTING THE RESULT BY WEBHOOK
	GETTING THE RESULT BY HTTP REQUEST

	EXAMPLES
	PYTHON
	LANGCHAIN
	LLAMAINDEX

	PLAYGROUND
	SUPPORT

