
SWORDv3 Profile Working Document
V2 - 10th January 2018

This version is now frozen, there’s a new version in progress at:
https://docs.google.com/document/d/1kZu-LMkZfdgx5-OBJoBaO02sChmBUdru55F0U
ej9AGk/edit

This document outlines a proposed specification for SWORDv3. It outlines the protocol
operations to be supported in the new version, with all their behaviours, HTTP headers,
payload and response bodies, and response codes. It also defines the documents that will
form the basis of the REST API that is this new version of SWORD, and outlines some
responsibilities and other processes involved.

The proposal is that SWORDv3 move away from the Atom specification, to a pure
JSON-LD-based API, using good REST principles. Some of the original flavour of the
SWORDv2 profile may be retained, but the overall expression of the documents will be
significantly different.

Please see the usage patterns and requirements analysis documentation upon which this
new version has been based:
https://docs.google.com/spreadsheets/d/1qUiO9Rl_rNoiy7SmTcXnb6T330ENmivP-MTTJIdjq
ow/edit

There is no pretense that this document is a full specification at this stage (though in this
second iteration it is closer) - it exists for review and comment on the essential components
of the protocol. A fuller specification will be produced in time, once this document represents
the path forward desired by the community.

Please add your comments using the “Insert > Comment” feature of Google Docs, attached
to the relevant section of this document.

Definitions

URLs
●​ Service-Document - the location of the document which describes the server’s

capabilities for the user
●​ Deposit-Endpoint - the location where new content can be created
●​ Object - an Object that exists on the server, probably as a result of a deposit

operation
●​ Metadata - the metadata associated with the Object

https://docs.google.com/document/d/1kZu-LMkZfdgx5-OBJoBaO02sChmBUdru55F0Uej9AGk/edit
https://docs.google.com/document/d/1kZu-LMkZfdgx5-OBJoBaO02sChmBUdru55F0Uej9AGk/edit
https://docs.google.com/spreadsheets/d/1qUiO9Rl_rNoiy7SmTcXnb6T330ENmivP-MTTJIdjqow/edit
https://docs.google.com/spreadsheets/d/1qUiO9Rl_rNoiy7SmTcXnb6T330ENmivP-MTTJIdjqow/edit

●​ Content - All of the content, in aggregation, associated by the Object - does not
include the metadata

●​ File - a single binary file within the Content of the Object

Document Types
●​ Service Document - Describes the capabilities of the server with respect to the user
●​ Metadata - A format for depositing and retrieving object metadata
●​ Status - A document describing the current status of the object and its content
●​ Binary File - An opaque binary file
●​ Packaged Content - A set of files and metadata packaged according to some

structure.
●​ Error - Describes an error that occurred while processing a request.

Protocol Operations

Discover Server Capabilities and List Deposit Endpoints
Request from the server a list of the collections that the client can deposit to. A Deposit
Endpoint allows the server to support multiple different deposit conditions - each endpoint
may have its own set of rules/workflows behind it; for example, endpoints may be
subject-specific, organisational-specific, or process-specific. It is up to the client to
determine which is the suitable endpoint for its deposit, based on the information provided by
the server. The list of collections may vary depending on the authentication credentials
supplied by the client.

Request
GET Service-Document
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)

Body: None

Responses

●​ 200 - The server has responded with a list of deposit endpoints
○​ Headers: None
○​ Body: Service Document

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to access this resource
●​ 404 - There is no service document available

Deposit new Object with Only Metadata
Create a new object on the server, sending only metadata content (i.e. no binary/file
content).

Request
POST Deposit-Endpoint
Headers:

●​ Content-Type (MUST)
●​ Content-Length (SHOULD)
●​ Digest (SHOULD)
●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ In-Progress (default: false) (MAY)
●​ Slug (MAY)
●​ Metadata-Format (default:sword) (SHOULD)
●​ Content-Disposition (MAY)

Body: Metadata (with optional by-reference deposit files listed)

Responses

●​ 201 - The server has received your request, and has created the associated resource
○​ Headers:

■​ Location (MUST)
■​ ETag (MAY)

○​ Body: Status
●​ 202 - The server has received your request, and has accepted the item, and queued

it for formal creation at some point in the future
○​ Headers:

■​ Location (MUST)
○​ Body: Status

●​ 400 - The server could not understand your request. Either your headers or content
body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Deposit-Endpoint does not exist
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that.

●​ 413 - Your request body exceeds the size allowed by the server
●​ 415 - The metadata format is not the same as that identified in Metadata-Format

and/or it is not supported by the server

Deposit new Object with File or Package
Create a new object on the server, sending a single binary file which may itself be packaged
content.

Request
POST Deposit-Endpoint
Headers:

●​ Content-Type (MUST)
●​ Content-Length (SHOULD)
●​ Digest (SHOULD)
●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ In-Progress (default: false) (MAY)
●​ Slug (MAY)
●​ Content-Disposition (MUST)
●​ Packaging (default:Binary) (SHOULD)

Body:
●​ Binary File which may be Packaged Content
●​ An empty body, if this is a Segment Upload Initialisation request

Responses

●​ 201 - The server has received your request, and has created the associated resource
○​ Headers:

■​ Location (MUST)
■​ ETag (MAY)

○​ Body: Status
●​ 202 - The server has received your request, and has accepted the item, and queued

it for formal creation at some point in the future
○​ Headers:

■​ Location (MUST)
○​ Body: Status

●​ 400 - The server could not understand your request. Either your headers or content
body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Deposit-Endpoint does not exist
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that.

●​ 413 - Your request body exceeds the size allowed by the server
●​ 415 - The packaging format is not the same as that identified in Packaging and/or it is

not supported by the server

Retrieve Object Information/Status
For an object where you have an Object URL, you may request information about the current
state of that resource.

Request
GET Object
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)

Body: None

Responses

●​ 200 - The server has responded with information about the Object
○​ Headers:

■​ ETag (MAY)
○​ Body: Status

●​ 301, 307 - The Object URL has changed, re-send this request and all future requests
to the new URL

○​ Headers:
■​ Location (MUST)

●​ 308 - The Object URL has temporarily changed, re-send this request to the new URL
○​ Headers

■​ Location (MUST)
●​ 400 - There was a problem with your request parameters
●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The requested Object does not exist
●​ 412 - You have requested the resource On-Behalf-Of a user, when the server does

not support that.

Retrieve Object Metadata
Retrieve the descriptive metadata document associated with the Object.

Request
GET Metadata
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ Accept-Metadata-Format (default:sword) (MAY)

Body: None

Responses

●​ 200 - The server has responded with the Metadata document
○​ Headers:

■​ ETag (MAY)
■​ Metadata-Format (SHOULD)

○​ Body: Metadata
●​ 301, 307 - The Object URL has changed, re-send this request and all future requests

to the new URL
○​ Headers:

■​ Location (MUST)
●​ 308 - The Object URL has temporarily changed, re-send this request to the new URL

○​ Headers
■​ Location (MUST)

●​ 400 - There was a problem with your request parameters
●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The requested Object does not exist
●​ 405 - The requested Object does not support metadata retrieval in this context
●​ 412 - You have requested the resource On-Behalf-Of a user, when the server does

not support that.

Retrieve Content as a Package
Retrieve the full object packaged according to some specification.

Request
GET Content
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ Accept-Packaging (default:sword) (MAY)

Body: None

Responses

●​ 200 - The server has responded with the packaged content
○​ Headers:

■​ ETag (MAY)
■​ Packaging (SHOULD)

○​ Body: Packaged content
●​ 301, 307 - The Object URL has changed, re-send this request and all future requests

to the new URL
○​ Headers:

■​ Location (MUST)
●​ 308 - The Object URL has temporarily changed, re-send this request to the new URL

○​ Headers
■​ Location (MUST)

●​ 400 - There was a problem with your request parameters

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The requested Object does not exist
●​ 405 - The requested Object does not support package retrieval in this context
●​ 412 - You have requested the resource On-Behalf-Of a user, when the server does

not support that.

Retrieve individual File from the Object
Retrieve a single file from inside the deposited object; files available for retrieval are listed in
the Status document.

Request
GET File
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)

Body: None

Responses

●​ 200 - The server has responded with the file content
○​ Headers:

■​ ETag (MAY)
○​ Body: File content

●​ 301, 307 - The File URL has changed, re-send this request and all future requests to
the new URL

○​ Headers:
■​ Location (MUST)

●​ 308 - The File URL has temporarily changed, re-send this request to the new URL
○​ Headers

■​ Location (MUST)
●​ 400 - There was a problem with your request parameters
●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The requested File does not exist
●​ 405 - The requested Object does not support file retrieval in this context
●​ 412 - You have requested the resource On-Behalf-Of a user, when the server does

not support that.

Add/Update Object Metadata
Add new metadata or selectively update existing metadata on an item. Metadata provided in
this way should be considered to overlay existing metadata, such that any new metadata
fields are added to the item, and any existing metadata fields are overwritten, and any other
metadata fields held by the server remain untouched.

Request
POST Metadata
Headers:

●​ Content-Type (MUST)
●​ Content-Length (SHOULD)
●​ Digest (SHOULD)
●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ Metadata-Format (default:sword) (SHOULD)
●​ If-Match (MAY)

Body: Metadata (no by-reference file links allowed)

Responses

●​ 204 - The server has received your request, and has updated the associated
resource

○​ Headers:
■​ ETag (MAY)
■​ Location (MUST)

●​ 301, 307 - The Metadata URL has changed, re-send this request and all future
requests to the new URL

○​ Headers:
■​ Location (MUST)

●​ 308 - The Metadata URL has temporarily changed, re-send this request to the new
URL

○​ Headers
■​ Location (MUST)

●​ 400 - The server could not understand your request. Either your headers or content
body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Metadata URL does not exist
●​ 405 - The requested Object does not support metadata update in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that, or your If-Match ETag may not match.

●​ 413 - Your request body exceeds the size allowed by the server
●​ 415 - The metadata format is not the same as that identified in Metadata-Format

and/or it is not supported by the server

Add Packaged Content or other File to Object
Add new content to the Object, on top of existing content which it already contains. Content
may be provided as a complex package or as a simple binary file. In the case of packaged
content, the package may be unpacked by the server and new file resources added.

Metadata may also be updated, if the package contains actionable metadata. In the case of
a binary file, this file will be added as-is to the object’s content.

Request
POST Object
Headers:

●​ Content-Type (MUST)
●​ Content-Length (SHOULD)
●​ Digest (SHOULD)
●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ Content-Disposition (MUST)
●​ Packaging (default:Binary) (SHOULD)

Body:
●​ Packaged content or File content
●​ An empty body if this is a Segment Upload Initialisation request

Responses

●​ 200 - The server has received your request, and has updated the associated
resource

○​ Headers:
■​ ETag (MAY)
■​ Location (MUST)

○​ Body: Status
●​ 202 - The server has received your request, and has accepted the update, and

queued it for formal update at some point in the future
○​ Headers:

■​ Location (MUST)
○​ Body: Status

●​ 301, 307 - The Object URL has changed, re-send this request and all future requests
to the new URL

○​ Headers:
■​ Location (MUST)

●​ 308 - The Object URL has temporarily changed, re-send this request to the new URL
○​ Headers

■​ Location (MUST)
●​ 400 - The server could not understand your request. Either your headers or content

body are wrong or malformed.
●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Metadata URL does not exist
●​ 405 - The requested Object does not support content update in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that.

●​ 413 - Your request body exceeds the size allowed by the server

●​ 415 - The metadata format is not the same as that identified in Metadata-Format
and/or it is not supported by the server

Replace Object Metadata
Replace in its entirety the metadata associated with an Object.

Request
PUT Metadata
Headers:

●​ Content-Type (MUST)
●​ Content-Length (SHOULD)
●​ Digest (SHOULD)
●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ Metadata-Format (default:sword) (SHOULD)
●​ If-Match (MAY)

Body: Metadata (no by-reference file links allowed)

Responses

●​ 204 - The server has received your request, and has updated the associated
resource

○​ Headers:
■​ ETag (MAY)
■​ Location (MUST)

●​ 301, 307 - The Metadata URL has changed, re-send this request and all future
requests to the new URL

○​ Headers:
■​ Location (MUST)

●​ 308 - The Metadata URL has temporarily changed, re-send this request to the new
URL

○​ Headers
■​ Location (MUST)

●​ 400 - The server could not understand your request. Either your headers or content
body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Metadata URL does not exist
●​ 405 - The requested Object does not support metadata update in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that, or your If-Match ETag may not match.

●​ 413 - Your request body exceeds the size allowed by the server

●​ 415 - The metadata format is not the same as that identified in Metadata-Format
and/or it is not supported by the server

Replace Object Content
Replace in its entirety the content of the object (not the metadata). All previous files will be
removed, and new ones will replace them. The server may or may not keep old versions of
the content available.

Request
PUT Content
Headers:

●​ Content-Type (MUST)
●​ Content-Length (SHOULD)
●​ Digest (SHOULD)
●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ Content-Disposition (MUST)
●​ Packaging (default:Binary) (SHOULD)
●​ If-Match (MAY)

Body:
●​ Packaged content or File content
●​ An empty body, if this is a Segment Upload Initialisation request

Responses

●​ 200 - The server has received your request, and has updated the associated
resource

○​ Headers:
■​ ETag (MAY)
■​ Location (MUST)

○​ Body: Status
●​ 202 - The server has received your request, and has accepted the update, and

queued it for formal update at some point in the future
○​ Headers:

■​ Location (MUST)
○​ Body: Status

●​ 301, 307 - The Content URL has changed, re-send this request and all future
requests to the new URL

○​ Headers:
■​ Location (MUST)

●​ 308 - The Content URL has temporarily changed, re-send this request to the new
URL

○​ Headers
■​ Location (MUST)

●​ 400 - The server could not understand your request. Either your headers or content
body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Metadata URL does not exist
●​ 405 - The requested Object does not support content update in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that, or your If-Match ETag may not match.

●​ 413 - Your request body exceeds the size allowed by the server

Replace Content File
Replace an existing file in the Object with a new file. The server may keep the old version of
the file available.

Request
PUT File
Headers:

●​ Content-Type (MUST)
●​ Content-Length (SHOULD)
●​ Digest (SHOULD)
●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ If-Match (MAY)

Body:
●​ File content
●​ An empty body if this is a Segment Upload Initialisation request

Responses

●​ 204 - The server has received your request, and has updated the associated
resource

○​ Headers:
■​ ETag (MAY)
■​ Location (MUST)

●​ 301, 307 - The File URL has changed, re-send this request and all future requests to
the new URL

○​ Headers:
■​ Location (MUST)

●​ 308 - The File URL has temporarily changed, re-send this request to the new URL
○​ Headers

■​ Location (MUST)
●​ 400 - The server could not understand your request. Either your headers or content

body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The File URL does not exist
●​ 405 - The requested Object does not support file replace in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that, or your If-Match ETag may not match.

●​ 413 - Your request body exceeds the size allowed by the server

Delete Object Content
Remove all the content files from an object. This will leave the object and its metadata
intact. The server may keep old versions of the files available.

Request
DELETE Content
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ If-Match (MAY)

Body: None

Responses

●​ 204 - The Content of the Object has been deleted.
○​ Headers:

■​ ETag (MAY)
●​ 301, 307 - The Content URL has changed, re-send this request and all future

requests to the new URL
○​ Headers:

■​ Location (MUST)
●​ 308 - The Content URL has temporarily changed, re-send this request to the new

URL
○​ Headers

■​ Location (MUST)
●​ 400 - The server could not understand your request. Either your headers or content

body are wrong or malformed.
●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Content URL does not exist
●​ 405 - The requested Object does not support content delete in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that, or your If-Match ETag may not match.

Delete Object
Delete the object in its entirety from the server, along with all metadata and content.

Request
DELETE Object
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ If-Match (MAY)

Body: None

Responses

●​ 204 - The Object has been deleted.
●​ 301, 307 - The Object URL has changed, re-send this request and all future requests

to the new URL
○​ Headers:

■​ Location (MUST)
●​ 308 - The Object URL has temporarily changed, re-send this request to the new URL

○​ Headers
■​ Location (MUST)

●​ 400 - The server could not understand your request. Either your headers or content
body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The Object URL does not exist
●​ 405 - The requested Object does not support delete in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that, or your If-Match ETag may not match.

Delete Content File
Delete a single content file from the Object. The server may keep old versions of the file.

Request
DELETE File
Headers:

●​ Authorization (MAY)
●​ On-Behalf-Of (MAY)
●​ If-Match (MAY)

Body: None

Responses

●​ 204 - The File has been deleted.
●​ 301, 307 - The File URL has changed, re-send this request and all future requests to

the new URL
○​ Headers:

■​ Location (MUST)
●​ 308 - The File URL has temporarily changed, re-send this request to the new URL

○​ Headers
■​ Location (MUST)

●​ 400 - The server could not understand your request. Either your headers or content
body are wrong or malformed.

●​ 401 - You have not provided authentication information, please do so
●​ 403 - You are not authorised to carry out this request
●​ 404 - The File URL does not exist
●​ 405 - The requested Object does not support file delete in this context
●​ 412 - There is a problem implementing the request as-is. For example, your

checksums may not match, or you may have requested mediated deposit when the
server does not support that, or your If-Match ETag may not match.

HTTP Headers

Header Default
Value

Usage

Authorization To pass any HTTP authorization headers, such as the
content for basic auth

On-Behalf-Of Username of any user the action is being carried out on
behalf of

Content-Type Mimetype of the content being delivered

Content-Length Length of the depositing content

Digest Checksum for the depositing content. Require
SHA-256, allow for other formats such as MD5 and
SHA-1 if still needed.

In-Progress false Whether this operation is part of a larger deposit
operation, and the server should expect subsequent
related requests before injecting the item into any ingest
workflows

Slug Suggested identifier for the item

Content-Disposition Used to transmit filename and any file segment upload
metadata

Packaging Binary URI unambiguously identifying the packaging profile

Metadata-Format sword URI unambiguously identifying the metadata
format/schema/profile

Accept-Packaging sword URI identifying the packaging profile that the client
would like to receive

Accept-Metadata-Format sword URI identifying the metadata format/schema/profile that
the client would like to receive

Location URI for the location where the requested or deposited
content can be found

ETag Object version identifier, as provided by the server on
GET requests and any requests which modify the object
and return.

If-Match The Object version identifier (ETag) for which this
request should be considered concurrent. If the
supplied ETag does not match, the server should reject
the update.

Documents

Service Document
The Service Document defines the capabilities and operational parameters of the server.

{

 "@context" : {

 "@version" : "1.1",

 "@vocab" : "http://purl.org/net/sword/3.0/terms/",

 "dcterms" : "http://purl.org/dc/terms/",

 "dc" : "http://purl.org/dc/elements/1.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "ServiceDocument" : "http://purl.org/net/sword/3.0/types/ServiceDocument",

 "accept" : { "@type" : "xsd:string" },

 "acceptMetadata" : { "@type" : "xsd:string" },

 "acceptPackaging" : { "@type" : "xsd:string" },

 "authentication" : { "@type" : "xsd:string" },

 "byReference" : { "@type" : "xsd:boolean" },

 "collectionPolicy" : { },

 "collections" : { "@container" : "@list" },

 "concurrencyControl" : { "@type" : "xsd:boolean" },

 "description" : { "@type" : "xsd:string" },

 "digest" : { "@type" : "xsd:string" },

 "endpoint" : { "@type" : "@id" },

 "href" : { "@type" : "@id" },

 "inProgress" : { "@type" : "xsd:boolean" },

 "maxByReferenceSize" : { "@type" : "xsd:nonNegativeInteger" },​

 "maxUploadSize" : { "@type" : "xsd:nonNegativeInteger" },

 "name" : { "@type" : "xsd:string" },

 "onBehalfOf" : { "@type" : "xsd:boolean" },

 "segmentedUpload" : { "@type" : "xsd:boolean" },

 "treatment" : { },

 "version" : { "@type" : "@id" }

 },

 "@id" : "http://example.com/service-document",

 "@type" : "ServiceDocument",

 "version": "http://purl.org/net/sword/3.0",

 "maxUploadSize" : 16777216,

 "maxByReferenceSize" : 30000000000000000,

 "name" : "Site Name",

 "accept" : ["*/*"],

 "acceptPackaging" : ["*"],

 "acceptMetadata" : ["*"],

 "collectionPolicy" : {

 "href" : "http://www.myorg.ac.uk/collectionpolicy",

 "description" : "...."

 },

 "treatment" : {

 "href" : "http://www.myorg.ac.uk/treatment",

 "description" : "..."

 },

​

 "byReference" : true,

 "inProgress" : true,

 "digest" : ["md5", "sha-1", "sha-256"],

 "authentication": ["Basic", "..."],

 "onBehalfOf" : true,

 "concurrencyControl" : true,

 "segmentedUpload" : true,

 "collections" : [

 {​ ​

 "endpoint": "http://swordapp.org/col-iri/43",

​ ​ ​

 "accept" : ["*/*"],

 "acceptPackaging" : ["*"],

 "acceptMetadata" : ["*"],

​ ​ ​

 "collectionPolicy" : {

 "href" : "http://policy",

 "description" : "...."

 },

 "treatment" : {

 "href" : "http://treatment",

 "description" : "..."

 },

​ ​ ​

 "byReference" : true,

 "inProgress" : true,

 "digest" : ["md5", "sha-1", "sha-256"],

 "authentication": ["Basic", "..."],

 "onBehalfOf" : true,

 "concurrencyControl" : true,

 "dcterms:abstract" : "...",

 "collections" : []

 }

]

}

Properties defined at the base of the document should be considered to apply to all
collections unless the collection chooses to override them.

Field Requirement Default Description

@context MUST The JSON-LD context for this
document.

@id MUST The URL of the service document you
are looking at

@type MUST JSON-LD identifier for the document
type, in this case “ServiceDocument”.

accept MUST “*/*” for any content type, or a list of
acceptable content types

acceptMetadata SHOULD sword “*” for any metadata format, or a list of
acceptable metadata formats.
Acceptable metadata formats
SHOULD be an IRI for a known
format.

acceptPackaging SHOULD Binary “*” for any packaging format, or a list
of acceptable packaging formats.
Acceptable packaging formats
SHOULD be an IRI for a known
format.

authentication SHOULD List of authentication schemes
supported by the server. If not
provided the client MUST assume the
server does not support

authentication.

byReference SHOULD false Does the server support by-reference
deposit?

collectionPolicy MAY URL and description of the server’s
collection policy.

collections MUST A list of collections, which may in turn
be nested. There must be at least one
collection at the top level of the service
document.

collections/endpoint MUST For each collection listed there must
be a URL which provides the deposit
endpoint for that collection.

collections/collections MAY A list of sub-collections, which may in
turn be nested.

concurrencyControl SHOULD false Does the server enforce concurrency
control. If so, the client MUST take
note of the ETag and use the If-Match
header in relevant requests.

digest SHOULD sha-256 The list of digest formats that the
server will accept.

inProgress SHOULD false Does the server support in-progress
depositing

maxByReferenceSize SHOULD unlimited Maximum size in kB as an integer for
files uploaded by reference.

maxUploadSize SHOULD unlimited Maximum size in kB as an integer for
files being uploaded

name SHOULD The name of the service.

onBehalfOf SHOULD false Whether the server support deposit on
behalf of other users (mediation).

segmentedUpload SHOULD false Whether the server supports deposit
of files in segments.

treatment MAY URL and description of the treatment
content can expect during deposit.

version MUST The version of the SWORD protocol
this server supports at this endpoint

Metadata
The default sword metadata document allows the deposit of a standard, basic metadata
document constructed using the DCMI terms, as well as provides the capacity to specify files
to be deposited by-reference.

{

 "@context" : {

 "@version" : "1.1",

 "@vocab" : "http://purl.org/net/sword/3.0/terms/",

 "dcterms" : "http://purl.org/dc/terms/",

 "dc" : "http://purl.org/dc/elements/1.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "Metadata" : "http://purl.org/net/sword/3.0/types/Metadata",

 "metadata" : { },

 "files" : { "@container" : "@list" },

 "contentDisposition" : { "@type" : "xsd:string" },

 "contentLength" : { "@type" : "xsd:nonNegativeInteger" },

 "contentType" : { "@type" : "xsd:string" },

 "dereference" : { "@type" : "xsd:boolean" },

 "digest" : { "@type" : "xsd:string" },

 "href" : { "@type" : "@id" },

 "packaging" : { "@type" : "xsd:string" },

 "ttl" : { "@type" : "xsd:dateTime" }

 },

 "@id" : "http://example.com/object/1/metadata",

 "@type" : "Metadata",

 "metadata" : {

 "dcterms:abstract" : "....",

 "dcterms:contributor" : "...",

 "etc..." : "...."

 },

 "files" : [

 {

 "href" : "http://www.otherorg.ac.uk/by-reference/file.zip",

 "contentType" : "application/zip",

 "contentLength" : 123456,

 "contentDisposition" : "attachment; filename=file.zip",

 "digest" : "sha-256:....",

 "ttl" : "[timestamp]",

 "dereference" : true,

 "packaging" : "http://purl.org/net/sword/packaging/SimpleZip"

 }

]

}

http://www.otherorg.ac.uk/by-reference/file.zip

Field Requirement Default Description

@context MUST The JSON-LD context for this
document.

@id MAY The Metadata URL for this document,
if it was supplied by the Server.
Clients MAY provide this URL if
updating an existing record, though it
is not required. Clients MUST NOT
provide this when depositing metadata
for the first time.

@type MUST JSON-LD identifier for the document
type, in this case “Metadata”.

metadata MAY The container for the DCMI metadata
terms.

files MAY A list of files to be deposited by
reference.

files/href MUST Ever file must provide a URL from
which it can be obtained.

files/ttl MAY unlimited A timestamp which indicates when the
file will no longer be available (Time To
Live). If no date is provided, it is
assumed the file will be available
indefinitely.

files/dereference MUST Should the server dereference the file
(i.e. download it and store it locally) or
should it simply maintain a link to the
external resource. Note that servers
may choose to do both, irrespective of
the value here, though if “true”, the
server should make the external link
available to users accessing the
resource.

files/contenType MUST Content type of the resource being
referenced.

files/packaging SHOULD Binary The packaging format of the file, or the
Binary file identifier.

files/contentDispositio
n

MUST Content-Disposition as it would have
been supplied if this were a by-value
file deposit.

files/contentLength SHOULD Content-Length as it would have been
supplied if this were a by-value
deposit.

files/digest SHOULD Digest as it would have been supplied
if this were a by-value deposit.

Status
The status document is provided in response to deposit operations on the Collection or the
Object, and tells the client detailed information about the content and current state of the
item.

{

 "@context" : {

 "@version" : "1.1",

 "@vocab" : "http://purl.org/net/sword/3.0/terms/",

 "dcterms" : "http://purl.org/dc/terms/",

 "dc" : "http://purl.org/dc/elements/1.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "Status" : "http://purl.org/net/sword/3.0/types/Status",

 "actions" : "@nest",

 "addContent" : { "@type" : "xsd:boolean" },

 "byReference" : { "@type" : "@id" },

 "contentEndpoint" : { "@type" : "@id" },

 "contentPackaging" : { "@type" : "xsd:string" },

 "contentType" : { "@type" : "xsd:string" },

 "deleteContent" : { "@type" : "xsd:boolean" },

 "deleteObject" : { "@type" : "xsd:boolean" },

 "deleteFile" : { "@type" : "xsd:boolean" },

 "depositedBy" : { "@type" : "xsd:string" },

 "depositedOn" : { "@type" : "xsd:dateTime" },

 "depositedOnBehalfOf" : { "@type" : "xsd:string" },

 "derivedFrom" : { "@type" : "@id" },

 "description" : { "@type" : "xsd:string" },

 "expecting" : { "@type" : "xsd:positiveInteger" },

 "forwarding" : { },

 "getContent" : { "@type" : "xsd:boolean" },

 "getFile" : { "@type" : "xsd:boolean" },

 "getMetadata" : { "@type" : "xsd:boolean" },

 "href" : { "@type" : "@id" },

 "lastAction" : { },

 "links" : { },

 "log" : { "@type" : "xsd:string" },

 "metadata" : { },

 "metadataEndpoint" : { "@type" : "@id" },

 "metadataFormat" : { "@type" : "xsd:string" },

 "metadataFormats" : { "@type" : "xsd:string" },

 "objectEndpoint" : { "@type" : "@id" },

 "packaging" : { "@type" : "xsd:string" },

 "received" : { "@type" : "xsd:positiveInteger" },

 "rel" : { "@type" : "xsd:string" },

 "replaceContent" : { "@type" : "xsd:boolean" },

 "replaceFile" : { "@type" : "xsd:boolean" },

 "replaceMetadata" : { "@type" : "xsd:boolean" },

 "segments" : { },

 "sequenceId" : { "@type" : "xsd:string" },

 "size" : {"@type" : "xsd:positiveInteger" },

 "state" : { },

 "status" : { "@type" : "xsd:string" },

 "timestamp" : { "@type" : "xsd:dateTime" },

 "treatment" : { },

 "updateMetadata" : { "@type" : "xsd:boolean" },

 "versionReplaced" : { "@type" : "xsd:dateTime" },

 "dcterms:relation" : { "@type" : "@id" },

 "dcterms:replaces" : { "@type" : "@id" },

 "dcterms:isReplacedBy" : { "@type" : "@id" }

 },

 "@id" : "http://example.com/object/1",

 "@type" : "Status",

 "objectEndpoint" : "http://www.myorg.ac.uk/sword3/object1",

 "metadataEndpoint" : "http://www.myorg.ac.uk/sword3/object1/metadata",

 "metadataFormats" : ["sword", "mods", "..."],

 "contentEndpoint" : "http://www.myorg.ac.uk/sword3/object1/content",

 "contentPackaging" : ["Binary", "SimpleZip", "SWORDBagIt", "..."],

 "metadata" : {

 "dcterms:abstract" : "....",

 "etc..." : "..."

 },

 "lastAction" : {

 "timestamp" : "[xsd:dateTime]",

 "log" : "description of the event that occurred, with any verbose information",

 "treatment" : {

 "href" : "http://www.myorg.ac.uk/treatment",

 "description" : "treatment description"

 }

 },

 "links" : [

 {

 "@id" : "http://www.myorg.ac.uk/col1/mydeposit.html",

 "rel" : ["alternate"],

 "contentType" : "text/html"

 },

 {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/package.zip",

 "rel" : ["http://purl.org/net/sword/3.0/terms/originalDeposit"],

 "contentType" : "application/zip",

 "packaging" : "http://purl.org/net/sword/3.0/packaging/SimpleZip",

 "depositedOn" : "[timestamp]",

 "depositedBy" : "[user identifier]",

 "depositedOnBehalfOf" : "[user identifier]",

 "byReference" : "http://www.otherorg.ac.uk/by-reference/file.zip",

 "status" : "pending|downloading|unpacking|error|ingested",

 "log" : "[any information associated with the deposit that the client should know]"

 },

​ {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/file1.pdf",

 "rel" : ["http://purl.org/net/sword/3.0/terms/derivedResource"],

 "contentType" : "application/pdf",

 "derivedFrom" : "http://www.myorg.ac.uk/sword3/object1/package.zip",

 "dcterms:relation" : "http://www.myorg.ac.uk/repo/123456789/file1.pdf",

 "dcterms:replaces" : "http://www.myorg.ac.uk/sword3/object1/versions/file1.1.pdf"

 },

 {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/package.1.zip",

 "rel" : ["http://purl.org/net/sword/terms/packagedContent"],

 "contentType" : "application/zip",

 "packaging" : "http://purl.org/net/sword/3.0/packaging/SimpleZip"

 },

 {

 "@id" : "http://www.swordserver.ac.uk/col1/mydeposit/metadata.xml",

 "rel" : ["http://purl.org/net/sword/3.0/terms/formattedMetadata"],

 "contentType" : "text/json",

 "metadataFormat" : "http://purl.org/net/sword/3.0/metadata/SWORD"

 },

 {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/versions/file1.1.pdf",

 "rel" : ["http://purl.org/net/sword/3.0/terms/derivedResource"],

 "contentType" : "application/pdf",

 "dcterms:isReplacedBy" : "http://www.myorg.ac.uk/sword3/object1/file1.pdf",

 "versionReplaced" : "[xsd:dateTime]"

 },

 {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/big.zip",

 "rel" : [

 "http://purl.org/net/sword/3.0/terms/segmentedDeposit",

 "http://purl.org/net/sword/3.0/terms/originalDeposit",

 "http://purl.org/net/sword/3.0/terms/contentReplacement"

],

 "contentType" : "application/zip",

 "packaging" : "http://purl.org/net/sword/3.0/packaging/SwordBagIt",

 "depositedOn" : "[xsd:dateTime]",

 "depositedBy" : "[user identifier]",

 "depositedOnBehalfOf" : "[user identifier]",

 "segments" : {

 "sequenceId" : "1234",

 "received" : [1,2,4],

 "expecting" : [3,5],

 "size" : 10000000

 }

 },

 {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/reference.zip",

 "rel" : [

 "http://purl.org/net/sword/3.0/terms/referenceDeposit",

 "http://purl.org/net/sword/3.0/terms/originalDeposit"

],

 "status" : "pending|downloading|unpacking|error|ingested",

 "byReference" : "http://www.otherorg.ac.uk/by-reference/file2.zip",

 "log" : "Any information on the download, especially if it failed"

 }

],

 "state" : [

 {

 "@id" : "http://purl.org/net/sword/3.0/state/inProgress",

 "description" : "the item is currently inProgress"

 }

],

 "actions" : {

 "replaceMetadata" : true,

 "replaceContent" : true,

 "deleteContent" : true,

 "deleteFile" : true,

 "replaceFile" : true,

 "addContent" : true,

 "updateMetadata" : true,

 "deleteObject" : true,

 "getContent" : true,

 "getMetadata" : true,

 "getFile" : true

 },

 "forwarding" : [

 {

 "objectEndpoint" : "http://www.otherorg.ac.uk/sword3/object12",

 "links" : [

 {

 "@id" : "http://www.otherorg.ac.uk/col2/yourdeposit.html",

 "rel" : ["alternate"],

 "contentType" : "text/html"

 }

]

 }

]

}

Field Requirement Default Description

@context MUST The JSON-LD context for this
document.

@id MAY The Object URL for this document.

@type MUST JSON-LD identifier for the document
type, in this case “Status”.

actions MUST Container for the list of actions that are
available against the object for the
client.

actions/replaceMetad
ata

MUST Whether the client can issue a request
to replace the item metadata

actions/replaceConte
nt

MUST Whether the client can issue a request
to replace the item content

actions/deleteContent MUST Whether the client can issue a request
to delete the content of the item

actions/deleteFile MUST Whether the client can issue a request
to delete an individual file

actions/replaceFile MUST Whether the client can issue a request
to replace an individual file.

actions/addContent MUST Whether the client can issue a request
to add content to the object

actions/updateMetad
ata

MUST Whether the client can issue a request
to add/update existing metadata.

actions/deleteObject MUST Whether the client can issue a request
to delete the entire object.

actions/getContent MUST Whether the client can issue a request
to retrieve the entire content of the
item

actions/getMetadata MUST Whether the client can issue a request
to retrieve the metadata of an item

actions/getFile MUST Whether the client can issue a request
to retrieve an individual file.

contentEndpoint MUST The Content URL for the Object

contentPackaging SHOULD The list of packaging formats that this
item can be exported as.

lastAction SHOULD Container for information about the
last action taken on the object by the

client.

lastAction/timestamp SHOULD When the last action was taken by the
client

lastAction/log MAY Detailed log information about the last
action

lastAction/treatment MAY Container for information about the
treatment the item received in the last
action

lastAction/treatment/h
ref

MAY URL for information about the
treatment the item received

lastAction/treatment/d
escription

MAY Description of the treatment the item
received.

links SHOULD List of link objects referring to the
various files, both content and
metadata, available on the object

links/@id MUST The URL of the resource

links/rel MUST The relationship between the resource
and the object. Note that multiple
relationships are supported.

links/contentType SHOULD Content type of the resource

links/packaging See Below The package format identifier if the
resource is a package.

links/depositedOn See Below Timestamp of when the deposit
happened

links/depositedBy See Below Identifier for the user that deposited
the item

links/depositedOnBeh
alfOf

See Below Identifier for the user that the item was
deposited on behalf of.

links/byReference See Below The external URL of the location a
by-reference deposit was retrieved
from

links/log See Below Any information associated with the
deposit that the client should know.
Especially if there are asynchronous
errors with things like unpacking or
download.

links/status See Below ingested The status of the resource, with regard

to ingest. For example, packaged
resources which are still being
unpacked and ingested may announce
their status here. Likewise,
by-reference deposits may do the
same. MUST be one of
pending|downloading|unpacking|error|i
ngested.

Any associated information to go
along with the status, especially if the
status is an error, should be in link/log.

link/derivedFrom See Below Reference to URL of resource from
which the current resource was
derived, in particular a single file from
a package.

link/dcterms:relation MAY URL to a non-sword access point to
the file. For example, the URL from
which an end-user would download
the file via the website. This related
URL does not need to support any of
the SWORD protocol operations, and
indeed may even be on a server or
application which has no sword
support. Primary use case is to
redirect the user to the web front end
for the repository.

links/dcterms:replace
s

SHOULD URL to an older version of the file in
the same Object, if this is also present
as a resource.

links/metadataFormat See Below Identifier for a metadata format that
the resource conforms to

links/dcterms:isRepla
cedBy

SHOULD URL to a newer version of the file in
the same Object, if this is present as a
resource

links/versionReplaced SHOULD Date that the current resource was
replaced by a newer resource

links/segments See Below Container for information on
segmented upload files

links/segments/seque
nceId

See Below The client-supplied sequence ID for
this segmented upload

links/segments/receiv
ed

See Below The list of integers identifying the
segments that have been successfully

uploaded so far.

links/segments/expec
ting

See Below This list of integers identifying the
segments which are expected and that
have not yet been depoisted

links/segments/size See Below The size in bytes of the final resulting
assembled file.

state MUST List of states that the item is in on the
server. At least one state MUST be
present, using the SWORD state
vocabulary. Other states using
server-specific vocabularies may also
be used alongside.

state/@id MUST Identifier for the state. At least one
such identifier MUST be from the
SWORD state vocabulary.

state/description MAY Human readable description of the
state the item is in

forwarding MAY List of other locations where the object
is available. The inner structure of the
forwarding element is to have an
objectEndpoint element for the new
system (MAY) and zero or more link
fields for the object in the new
location.

Available “rel” types and their meanings

alternate
An alternate, non-SWORD URL which will allow the user to access the same object. For
example, this could be the URL of the landing page in the repository for the item.

http://purl.org/net/sword/3.0/terms/originalDeposit
The resource (file or package) was explicitly deposited via some deposit operation. The
properties of the link section for any resource with this rel must be (beyond those already
defined in the table above):

Field Conditions

packaging MAY include this if the original deposit was a packaged item

depositedOn SHOULD

depositedBy SHOULD

depositedOnBehalfOf SHOULD if this was an OnBehalfOf deposit

byReference MAY if this was a by-reference deposit

status MUST

log SHOULD if the status is “error”

dcterms:relation MAY

dcterms:replaces SHOULD if this file replaces another file. Principally this is of
use for individual file deposits.

dcterms:isReplacedBy SHOULD if this file is replaced by another file. Principally this
is of use for individual file deposits.

versionReplaced SHOULD if this file is replaced by another file. Principally this
is of use for individual file deposits.

segments MUST if also a segmentedDeposit (see below)

http://purl.org/net/sword/3.0/terms/derivedResource
A file which was unpacked or otherwise derived from another deposited resource, and which
itself was not explicitly deposited through some deposit operation. The main usage would
be to identify files which were extracted from a deposited zip file.

The properties of the link section for any resource with this rel must be (beyond those
already defined in the table above):

Field Conditions

derivedFrom SHOULD

dcterms:relation MAY

dcterms:replaces SHOULD if this file replaces another file. Principally this is of
use for individual file deposits.

dcterms:isReplacedBy SHOULD if this file is replaced by another file. Principally this
is of use for individual file deposits.

versionReplaced SHOULD if this file is replaced by another file. Principally this
is of use for individual file deposits.

http://purl.org/net/sword/terms/packagedContent

A resource which makes this object available packaged in the specified package format on
HTTP GET. This is not a resource which has been deposited or derived (though it may be
very similar to an originally deposited package), it is one which the server makes available
as a service to the client. Packages may be pre-built or assembled on the fly - that
responsibility rests with the server.

The properties of the link section for any resource with this rel must be (beyond those
already defined in the table above):

Field Conditions

packaging MUST

http://purl.org/net/sword/3.0/terms/formattedMetadata
A resource which makes this object’s metadata available, serialised in the specified
metadata format on HTTP GET. This is not a resource which has been deposited or derived
(though it may be very similar to the originally deposited metadata), it is one which the server
makes available as a service to the client. Metadata documents may be pre-built or
assembled on the fly - that responsibility rests with the server.

The properties of the link section for any resource with this rel must be (beyond those
already defined in the table above):

Field Conditions

metadataFormat MUST

http://purl.org/net/sword/3.0/terms/segmentedDeposit
A file which is actively being deposited in segments. Often will also have the rel for
originalDeposit, and once all segments have been uploaded the segmentedDeposit rel can
be removed.

The properties of the link section for any resource with this rel must be (beyond those
already defined in the table above, and the originalDeposit table):

Field Conditions

segments MUST

segments/sequenceId MUST

segments/received MUST

segments/expecting MUST

segments/size MUST

http://purl.org/net/sword/3.0/terms/referenceDeposit
A file which is currently being downloaded from an external reference. Often will also have
the rel for originalDeposit, and once all segments have been uploaded the referenceDeposit
rel can be removed.

This rel does not require any additional fields than those already defined for originalDeposit.

http://purl.org/net/sword/3.0/terms/contentReplacement
A segmentedDeposit or referenceDeposit which is also going to replace all of the current
Object’s content when it is completely uploaded/downloaded, reassembled (if needed) and
unpacked (if needed). This value MUST only appear alongside a segmentedDeposit rel or
referenceDeposit rel.

Required SWORD State Information

state/@id MUST contain one of:

●​ http://purl.org/net/sword/3.0/state/accepted - for records accepted for processing but
not yet created

●​ http://purl.org/net/sword/3.0/state/inProgress - for records that have been deposited,
but for which the deposit has not yet completed

●​ http://purl.org/net/sword/3.0/state/inWorkflow - for records that are in the server’s
ingest workflow

●​ http://purl.org/net/sword/3.0/state/inArchive - for records that are in the server’s
archive state, whatever that might mean (e.g. published to the web)

●​ http://purl.org/net/sword/3.0/state/rejected - for records that have been rejected from
the server’s workflow

●​ http://purl.org/net/sword/3.0/state/deleted - for tombstone records

The state field is a list, so it may also contain other states that are server-specific in addition
to the sword ones.

Error
An error document is returned at any point that a synchronous operation fails.

{

 "@context" : {

 "@version" : "1.1",

 "@vocab" : "http://purl.org/net/sword/3.0/terms/",

 "dcterms" : "http://purl.org/dc/terms/",

 "dc" : "http://purl.org/dc/elements/1.1/",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "ContentError" : "http://purl.org/net/sword/3.0/error/ContentError",

 "ChecksumMismatch" : "http://purl.org/net/sword/3.0/error/ChecksumMismatch",

 "BadRequest" : "http://purl.org/net/sword/3.0/error/BadRequest",

 "OnBehalfOfNotAllowed" : "http://purl.org/net/sword/3.0/error/OnBehalfOfNotAllowed",

 "MethodNotAllowed" : "http://purl.org/net/sword/3.0/error/MethodNotAllowed",

 "MaxUploadSizeExceeded" : "http://purl.org/net/sword/3.0/error/MaxUploadSizeExceeded",

 "error" : { "@type" : "xsd:string" },

 "log" : { "@type" : "xsd:string" },

 "timestamp" : { "@type" : "xsd:dateTime" }

 },

 "@type" : "BadRequest",

 "timestamp" : "[xsd:dateTime]",

 "error" : "error summary",

 "log" : "text log of any debug information for the client"

}

Field Requirement Default Description

@context MUST The JSON-LD context for this
document.

@type MUST JSON-LD identifier for the document
type. There are a variety of Error
Document types, which can be
provided, depending on the nature of
the error.

error MUST A short summary/title for the error

log SHOULD Some detail as to the error, with any
information that might help resolve it.

timestamp MUST When the error occurred.

Authentication and Authorisation
It is strongly RECOMMENDED that SWORD servers support authentication and
authorisation for requests.

SWORD servers are not restricted in the forms of authentication that they employ, and there
is no minimum requirement or default supported approach.

Servers SHOULD enumerate the authentication schemes that they support in the Service
Document, in the field “authentication”, and MUST draw from the IANA registry of HTTP auth
scheme names where one is available:
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

For example, a Server which supports Basic, Digest and OAuth authentication could indicate
as follows:

{

 …

 “authentication” : [“Basic”, “Digest”, “OAuth”]

 …

}

Where an authentication scheme is in use by the server which is not covered by the IANA
registry - such as a custom API-token-based approach, the server MAY indicate this in
whatever way seems most appropriate.

For example:

{

 …

 “authentication” : [“Basic”, “APIKey”]

 …

}

When carrying out authenticated requests, Authorization headers MUST be sent with every
request to the server - the server is not responsible for maintaining state for the client. The
server is responsible for authenticating and authorising every request individually. Clients
may choose also to send Cookie headers, and servers may support these, but support for
Cookies is explicitly outside this specification.

Servers MAY choose to support On-Behalf-Of deposit, which means that the authenticating
user is providing content to the server, as if another user were actually carrying out this
request. A use case for this would be when a known third-party deposit tool is sending
content to a server and has been authorised by another user to add content on their behalf.

If a server supports On-Behalf-Of deposit, it SHOULD indicate this in the Service Document
with the field “onBehalfOf” set to true. If this field is not present clients MUST assume that
the server does not support On-Behalf-Of deposit.

{

 …

 “onBehalfOf” : true

 …

}

https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

When an On-Behalf-Of deposit is received, the server MUST ensure that the user identified
in that header is valid with respect to the associated Authorization header. For example,
when using OAuth2, the On-Behalf-Of user MUST match the user for which the token in the
Authorization header was granted.

Transport Security
It is strongly RECOMMENDED that servers implement modern transport layer security in
any case. If you are carrying out authenticated protocol operations you MUST implement
TLS.

Server Responsibilities
●​ Deposited files should be available for retrieval by the original depositor immediately

(this may be limited to the actual deposited bitstreams, so the contents of a package
may not be available individually, but the package itself should be)

●​ File replacements should be available for retrieval by the original depositor as the
latest version of that file immediately (see R-030)

File Segment Upload

Announcing Support for File Segment Upload

Servers MAY support segmented file upload. If a server supports segmented upload it
SHOULD indicate this in the Service Document using the field “segmentedUpload”:

{

 …

 “segmentedUpload” : true

 …

}

Outline of Process for Segmented Upload
Segmented upload MUST follow the pattern:

1.​ Create an object on the server first. The object may be created in a number of ways:
a.​ As a metadata-only object
b.​ Via some previous deposit operation of metadata or content
c.​ With a “Segment Upload Initialisation” request (see below)

2.​ The client should receive, or obtain with a GET to the Object URL, the Status
document.

a.​ If the Object was not created with a “Segment Upload Initialisation” request,
then the client should now make such a request to the Object URL (POST) or
Content URL (PUT) in line with the usual protocol operations

b.​ Once a “Segment Upload Initialisation” request has completed, there will be a
File record for the upload with the “rel” “segmentedUpload”, and this provices
you with a File URL for which to send file segments.

3.​ The client may now send file segments in any order, and in parallel if so desired, to
the File URL, in line with the specification below.

Segment Upload Initialisation
Before sending any segments to the server, the client must initialise the process.
Initialisation requests can be sent to the following locations:

●​ Deposit-Endpoint (POST) - this will create a new object, and at the same time
initialise a segmented upload. In this case, In-Progress will default to true on the
server.

●​ Object (POST) - this will create a File which will ultimately be added to the object as
a new file, as per the protocol operation “Add Packaged Content or other File to
Object”

●​ Content (PUT) - this will create a File which will ultimately replace all the existing
content in the Object, as per the protocol operation “Replace Object Content”. Note
that existing content MUST NOT be removed by the server until all file segments
have been uploaded and validated.

●​ File (PUT) - this will create a new File which will ultimately replace the existing file, as
per the protocol operation “Replace Content File”. Note that existing content MUST
NOT be removed by the server until all file segments have been uploaded and
validated.

In the case of all the above requests, the following conditions on the deposit MUST be met:

Header Requirement Description

Content-Type MUST application/octet-stream

Content-Disposition MUST The Segment Upload Initialisation parameters

The Content-Disposition header contains the following parameters:

Property Requirement Description

sequence_id MUST The client-supplied sequence ID. MUST be a UUID4.

The server will use this to tie subsequent requests to
this segmented upload.

size MUST The total size of the final file. This MUST be sent so
that the server can determine when all the bytes of the
file have been uploaded.

digest SHOULD The Digest information for the resulting file as a whole,
after assembly. This MUST be in the same form as if it
were the HTTP header you would use if depositing this
file as a whole.

segment_count MUST The total number of segments that will be sent to this
sequence. Later, any segment uploads with
segment_number greater than this number MUST be
rejected by the server.

content_type MUST The content type of the resulting object

packaging SHOULD The packaging format of the resulting object

filename SHOULD The filename of the resulting object. If not provided,
the server will assign a filename of its choosing.

The Content-Disposition header can be expressed as follows:

Content-Disposition: attachment; sequence_id=<uuid4>; size=<s>; digest=<d>;

segment_count=<N>; content_type=<mime>; packaging=<packaging>; filename=<filename>

The body of the request MUST be empty. This, in combination with the Content-Disposition
header, will alert the server to prepare for a segmented upload, and respond accordingly in
the Status document.

A full example of a request to create an Object with a Segment Upload Initialisation request
is as follows:

Request:

POST Deposit-Endpoint

Content-Type: application/octet-stream

Content-Disposition: attachment; sequence_id=51747c4a49ac4063a4c14a88b7d67612;

size=10000000; digest=SHA256=skdfskdafjkasdhfakjshdfa; segment_count=5;

content_type=application/zip; packaging=http://purl.org/net/sword/package/SimpleZip;

filename=file.zip

Content-Length: 0

Response:

HTTP 1.1 201 Created​
Content-Type: application/json

{

 "@context" : "...",

 "@id" : "http://example.com/object/1",

 "@type" : "Status",

 "objectEndpoint" : "http://www.myorg.ac.uk/sword3/object1",

 "metadataEndpoint" : "http://www.myorg.ac.uk/sword3/object1/metadata",

 "metadataFormats" : ["sword", "mods", "..."],

 "contentEndpoint" : "http://www.myorg.ac.uk/sword3/object1/content",

 "contentPackaging" : ["Binary", "SimpleZip", "SWORDBagIt", "..."],

 "metadata" : "..."

 "lastAction" : {

 "timestamp" : "2018-01-01T00:00:00Z",

 "log" : "object created; segment upload started",

 "treatment" : {

 "href" : "http://www.myorg.ac.uk/treatment",

 "description" : "treatment description"

 }

 },

 "links" : [

 {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/big.zip",

 "rel" : [

 "http://purl.org/net/sword/3.0/terms/segmentedDeposit",

 "http://purl.org/net/sword/3.0/terms/originalDeposit",

 "http://purl.org/net/sword/3.0/terms/contentReplacement"

],

 "contentType" : "application/zip",

 "packaging" : "http://purl.org/net/sword/package/SimpleZip",

 "depositedOn" : "2018-01-01T00:00:00Z",

 "depositedBy" : "sword",

 "segments" : {

 "sequenceId" : "51747c4a49ac4063a4c14a88b7d67612",

 "received" : [],

 "expected" : [1,2,3,4,5],

 "size" : 10000000

 }

 }

],

 "state" : "...",

 "actions" : "..."

}

Now segments themselves can be uploaded to the link at
http://www.myorg.ac.uk/sword3/object1/big.zip

Uploading Segments
Segments may be uploaded in any order and may also be parallelised.

Each request MUST be POSTed to the File URL. The following HTTP headers are needed:

Header Requirements Description

Content-Disposition MUST See below

Content-Length MUST The size of the current segment being uploaded

Digest SHOULD The Digest of the segment being uploaded

Content-Type MUST application/octet-stream

The properties of the Content-Disposition header required when uploading a segment are:

Property Requirement Description

sequence_id MUST The client-supplied sequence ID. MUST be the
UUID4 provided in the initialisation request.

segment_number MUST The position in the full sequence of this segment.
MUST be an integer, MUST start counting at 1. Full
list of segments MUST be a sequential list of
integers.

The Content-Disposition header can be expressed as follows:

Content-Disposition: attachment; sequence_id=<uuid4>; segment_number=<n>

For example:

POST File

Content-Type: application/octet-stream

Content-Disposition: attachment; sequence_id=51747c4a49ac4063a4c14a88b7d67612;

segment_number=2

Digest: SHA256=lskdfaioerqwjfkwqjfeqjwefijqwf

Content-Length: 10000

[Binary Content]

Aborting an Upload
If, part way through a segmented upload you wish to abort, you can send an HTTP DELETE
request to the URL of the segmentedDeposit, which can be retrieved from the Status
document.

Incomplete Upload Retention
Servers MAY delete incomplete segmented uploads after an unspecified amount of time, if
they are not finalised with all segments within a reasonable amount of time. Clients should
retrieve the Status document for the object to review the current state of their segmented
uploads.

Errors
Servers MUST respond with Error documents under the following circumstances:

1.​ More bytes have been sent than indicated in the total_size field
2.​ A request is sent after the total_size has been reached
3.​ A request is sent after the segment_count has been reached.

If any other errors occur asynchronously, such as in reassembling or unpacking the resulting
file, servers MUST provide an error “status” field and suitable “log” information in the link
record in the Status document.

By Reference Deposit

Announcing Support for By Reference Deposit
Servers MAY support by-reference deposit. If a server supports by-reference it SHOULD
indicate this in the Service Document using the field “byReference”:

{

 …

 “byReference” : true

 …

}

Options By Reference Deposit
There are 4 ways that by-reference deposits may be used in SWORD:

1.​ Create the Object (POST to Deposit-Endpoint) and pass the references at the same
time. References and metadata can be sent together in the Metadata document. In
this case In-Progress will default to true.

2.​ Add new by-reference files to an existing object by sending (POST) them to the
Object URL

3.​ Replace the entire content of an Object with a by-reference deposit to the Content
URL (PUT)

4.​ Replace an individual file in an Object with a by-reference deposit to the File URL
(PUT)

In each of the above requests, the following conditions on the deposit MUST be met:

Header Requirement Description

Content-Type MUST application/json

Content-Disposition MUST attachment; by-reference=true

For example:

Request:
POST Deposit-Endpoint

Content-Type: application/json

Metadata-Format: sword

Content-Disposition: attachment; by-reference:true

{

 “metadata” : “....”

 “files” : [

 {

 "href" : "http://www.otherorg.ac.uk/by-reference/file.zip",

 "contentType" : "application/zip",

 "contentLength" : 123456,

 "contentDisposition" : "attachment; filename=file.zip",

 "digest" : "SHA256=....",

 "ttl" : "2019-01-01T00:00:00Z",​
 "dereference" : true,

 "packaging" : "http://purl.org/net/sword/packaging/SimpleZip"

 }

]

}

Response:
{

 "@context" : "...",

 "@id" : "http://example.com/object/1",

 "@type" : "Status",

 "objectEndpoint" : "http://www.myorg.ac.uk/sword3/object1",

http://www.otherorg.ac.uk/by-reference/file.zip

 "metadataEndpoint" : "http://www.myorg.ac.uk/sword3/object1/metadata",

 "metadataFormats" : ["sword", "mods", "..."],

 "contentEndpoint" : "http://www.myorg.ac.uk/sword3/object1/content",

 "contentPackaging" : ["Binary", "SimpleZip", "SWORDBagIt", "..."],

 "metadata" : "....",

 "lastAction" : {

 "timestamp" : "2018-01-01T00:00:00Z",

 "log" : "metadata and files deposited by reference",

 "treatment" : {

 "href" : "http://www.myorg.ac.uk/treatment",

 "description" : "treatment description"

 }

 },

 "links" : [

 {

 "@id" : "http://www.myorg.ac.uk/sword3/object1/reference.zip",

 "rel" : [

 "http://purl.org/net/sword/3.0/terms/referenceDeposit",

 "http://purl.org/net/sword/3.0/terms/originalDeposit",

 "http://purl.org/net/sword/3.0/terms/contentReplacement"

],

 "status" : "pending",

 "byReference" : "http://www.otherorg.ac.uk/by-reference/file2.zip"

 }

],

 "state" : "...",

 "actions" : "...",

}

Server-Side Processing of By Reference Deposits
1.​ The server receives a by-reference deposit document with one or more files listed
2.​ It creates records for each of these files that it plans to dereference, which are visible

in the Status document. Files marked by the client not to be dereferenced are
considered metadata, and MAY NOT appear in the Status document. These Files all
have the status “pending”.

3.​ At its own pace, taking into account the ttl of the files, the server downloads all the
files that are marked for dereference. During the download the server SHOULD set
the status to “downloading”. The server SHOULD be able to resume and interrupted
download.

4.​ Once the Files are downloaded and processed, the server MUST set the status to
“ingested”. If the files need unpacking first, the server SHOULD set the status to
“unpacking”. The server MUST also remove the referenceDeposit and
contentReplacement rels, as needed.

5.​ If there is an error in downloading or otherwise processing the file, the server MUST
set the status to “error” and SHOULD provide a meaningful “log” message.

6.​ The server MAY continue to record the original URL of the file if desired.

Responsibilities of the client/reference server

To provide deposit by reference, the reference server SHOULD:

1.​ Support resumable downloads
2.​ Hold the file for long enough for the repository to retrieve it

To use by reference, the client SHOULD:

1.​ Follow up on the deposit to determine if the dereference of the file has been
successful

2.​ Be able to take suitable onward action if there is an error

Packaging Formats

There are 3 packaging formats the all SWORD implementations MUST support.

Binary
URI: http://purl.org/net/sword/3.0/package/Binary

This format indicates that the package should be interpreted as an opaque blob, and the
server SHOULD NOT attempt to extract any content from it. This is typically for use when
depositing single files, which do not need unpacking of any kind.

Servers MAY choose, nonetheless, to extract content from Binary packages, if they have the
capabilities, such as metadata from images, structural information from text documents, etc.

SimpleZip
URI: http://purl.org/net/sword/3.0/package/SimpleZip

This format indicates that the package is a compressed set of one or more files in an
arbitrary directory structure. The nature of the compression and the structure of the
compressed content is not specified.

Servers MAY choose to extract the content from SimpleZip packages, and present the
individual file components as “derivedResource”s, if desired.

SWORDBagIt
URI: http://purl.org/net/sword/3.0/package/SWORDBagIt

This format is a profile of the BagIt package structure, which has in turn been compressed.
The nature of the compression is not specified.

SwordBagIt

| -- bag-info.txt

| -- bagit.txt

| -- data

| -- | -- bitstreams ...

| \ -- directories ...

| \ bitstreams ...

| -- manifest-sha256.txt

| -- metadata

| \-- sword.json

\ -- tagmanifest-sha256.txt

This allows us to represent the item as a combination of an arbitrary structure of bitstreams
in the data directory (similar to SimpleZip), and the metadata in the sword default format in
metadata/metadata.json. A manifest (and tagmanifest) of sha-256 checksums is required,
as well as the bagit.txt file and a bag-info.txt file.

The content of metadata.json is exactly as defined in the Metadata file, including the ability
to supply by-reference files during deposit in this way. Note that use of fetch.txt is not
supported here.

The server SHOULD unpack this file, and action at least the metadata. The contents of the
data directory MAY be unpackaged into “derivedResource”s if the server desires. It is
RECOMMENDED that the contents of the data directory be a flat file structure, to aid mutual
comprehension by servers/clients.

TODO: Create a profile for this format using https://github.com/ruebot/bagit-profiles

Depositing Other Metadata Formats
In addition to the standard SWORD metadata format described above, SWORD can support
the deposit of arbitrary metadata schemas and serialisations. For example:

POST Deposit-Endpoint

Content-Type: application/xml

Metadata-Format: http://www.loc.gov/mods/v3

<mods xmlns:mods="http://www.loc.gov/mods/v3">

 <originInfo>

 <place>

 <placeTerm type="code" authority="marccountry">nyu</placeTerm>

 <placeTerm type="text">Ithaca, NY</placeTerm>

 </place>

 <publisher>Cornell University Press</publisher>

 <copyrightDate>1999</copyrightDate>

 </originInfo>

</mods>

If the server supports the MODS Metadata-Format, then it will be able to create a new object
from this XML document, and populate the metadata from the data therein.

TODO List
A list of observations about the specification which we could do to make it better, and which
are not directly related to the actual specification itself:

1.​ All SWORD terms should resolve to a web page which describes the term.

http://www.loc.gov/mods/v3
http://www.loc.gov/mods/v3

	SWORDv3 Profile Working Document
	Definitions
	URLs
	Document Types

	Protocol Operations
	Discover Server Capabilities and List Deposit Endpoints
	Deposit new Object with Only Metadata
	Deposit new Object with File or Package
	Retrieve Object Information/Status
	Retrieve Object Metadata
	Retrieve Content as a Package
	Retrieve individual File from the Object
	Add/Update Object Metadata
	Add Packaged Content or other File to Object
	Replace Object Metadata
	Replace Object Content
	Replace Content File
	Delete Object Content
	Delete Object
	Delete Content File

	HTTP Headers
	Documents
	Service Document
	Metadata
	Status
	Available “rel” types and their meanings
	Required SWORD State Information

	Error

	Authentication and Authorisation
	Transport Security
	Server Responsibilities
	File Segment Upload
	Announcing Support for File Segment Upload
	Outline of Process for Segmented Upload
	Segment Upload Initialisation
	Uploading Segments
	Aborting an Upload
	Incomplete Upload Retention
	Errors

	By Reference Deposit
	Announcing Support for By Reference Deposit
	Options By Reference Deposit
	Server-Side Processing of By Reference Deposits
	Responsibilities of the client/reference server

	Packaging Formats
	Binary
	SimpleZip
	SWORDBagIt

	Depositing Other Metadata Formats
	TODO List

