
Project 1 Description

Retrospective Board
Due Date: April 1, 2019 1

For your first project, you will be creating a retrospective board. A retrospective board is used
within the Scrum workflow. Scrum is the most popular Agile style of software project
management used to guide the software development lifecycle. Scrum style management is
based on four basic ceremonies for each sprint or software release: the 1.) Sprint Planning
meeting, 2.) Daily Stand-up, 3.) Sprint Review, and 4.) Sprint Retrospective. As a part of the
Sprint Retrospective, team members will use a retrospective board to reflect on what went well
and what they need to improve on for next time.

This project is inspired by FunRetro. If you are not familiar with a retrospective board, please
visit the FunRetro website and create a new board.

1 The project is due on this date, but as long as you make a valid attempt, you can resubmit your work by
the last day of class (May 1, 2019) for a better grade.

https://funretro.io/

Project Requirements
Your retrospective board must meet the following requirements:

UI Requirements

The Retro Board should have three categories: 1.) Went Well 2.) To Improve and 3.) Action
Items. The categories must be displayed in this order. They must be arranged in such a way
that the user can easily tell what UI elements on the page belong to what category.

Each category should contain an add button or another type of UI element. When clicked or
activated, the app will add a new retrospective item to the given category.

The user should be able to type text inside of each retrospective item. This text will be stored
in state. The only time the text can change is when the user is typing inside the retrospective
item.

The user should be able to delete each retrospective item. When deleted, the retrospective
item should be removed from state.

The user should be able to move the retrospective item into a different category by clicking on
a left or right arrow. If there is not a category to the left, then clicking the arrow should move
the retrospective item to the rightmost category. The same applies to if there is no category to
the right but in reverse. When the item moves from one category to the next, the retrospective
item’s user input, visual structure, and appearance (with the exception of color) should stay
the same.

For the final UI requirement, you must pick one of the following:

1.​ Add a “thumbs up” and “thumbs down” button or clickable elements to your
retrospective items. Clicking on one of these buttons should increase the number of
“thumbs up” or “thumbs down” votes. Display the number of “thumbs up” and “thumbs
down” votes in each retrospective item.

2.​ Validate user input. Make text within the retrospective item required. When the
retrospective item loses focus or is submitted (the type of event will depend on how
you design the functionality of your app), the text should be validated in some way.
Suggestions are to remove the retrospective item from the board or display an error
message.

3.​ Add functionality to change the layout of the retrospective board. Include some type
“layout switcher” UI element or elements. When clicked or activated, the layout of the
categories will change between a horizontal and vertical layout. For an example,
please visit the FunRetro website and create a new board.​
​

​
An example of a “layout switcher” from FunRetro.

Code Requirements

This application should contain at least two React components. At least one of the React
component should extend the React Component class.

This application should use state within the React component and update state correctly with
this.setState().

The application should handle events within React components.

Styling must be included, but you will not be graded on how visually appealing your app is or
how well your CSS is written.

An example of HTML and CSS can be found within are GitHub repository within the
projects/project1/example-styles. If you copy all or a majority of the HTML and CSS, you must
credit Matina Patsos and Jamal Taylor on your project.

Tips
Work on one or both of these two things first before diving in: 1.) rendering static, unfunctional
JSX with dummy data 2.) designing your data model (what your state will look like and how you
will modify state).

https://funretro.io/

If you need to, design your data model in isolation. Remember, this.setState uses
Object.assign().

Make use of high order functions with arrays (e.g. map, filter, find, reduce) when setting state.
E.g. this.setState({ myObj: this.state.myObj.reduce(...) });

If you find using more than one component challenging, begin with a single component. Then
break your component down into at least two separate components later.

With your event handlers (methods), log the value first before modifying state e.g.
console.log(e.target.value). This way, you know whether or not your event handler is working.

When looping through an array, you may find it helpful to put in placeholder data first before
using real data.

If you need to loop through an object inside JSX, convert it into an array with Object.values() or
Object.entries().​

Project Submission
You must create a new git repository for your first project. Within your project, you will need to
include a package.json and README.md file in the project root directory. All files must be
included to install, build, and run your application. You are limited to Node.js packages.
Instructions on how to install or start your application must be written in the README.md. You
can find an example template of a README.md here:
https://gist.github.com/PurpleBooth/109311bb0361f32d87a2

While not required to do so, you can style your README.md with Markdown. A cheatsheet for
Markdown can be found here:
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet)

Before or on the day the project is due, you must share a link to your GitHub repository to both
on the instructors in Slack.

Grading Rubric
You will need to complete all the coding requirements and receive 24 out of 27 points in order to
pass. Note that if we cannot start or install your application, it is an automatic failure. For full
descriptions, please see the UI and coding requirements above.

https://gist.github.com/PurpleBooth/109311bb0361f32d87a2
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Short Description Points

Application Setup

Is the application easy to install and start?
REQUIRED

TO PASS

Does the application include a README.md file within the root of the git repository
and with clear instructions on how to install and start? 1

Application Functionality

Does it work? Are there any major bugs? 1

Code Quality

Does the code run without errors or warnings in the console? 1

Meeting Requirements (THIS IS NOT THE FULL DESCRIPTION. REFER TO UI
REQUIREMENT ABOVE.)

The Retro Board should have three categories ... 4

Each category should contain an add button or ... 4

The user should be able to type text inside ... 4

The user should be able to delete each retrospective item ... 4

The user should be able to move the retrospective item ... 4

For the final UI requirement, you must pick one of the following ... 4

Does it meet all the coding requirements?
REQUIRED

TO PASS

	Retrospective Board
	Due Date: April 1, 2019
	
	Project Requirements
	Tips
	Project Submission
	Grading Rubric

