Week 11 **Centrality 2**

Agenda

Last time we focused on algebraic measures. Today we add graph-theoretic measures, among other measures

inverse -weighted degree Closeness Betweenness Induced centralities Group centralities key player

INverse-weighted degree

Negative ties

- Receiving negative ties is bad, but not from people that hate everybody
- · Weight ties inversely by outdegree of sender

Positive ties too

- Receiving positive ties from people who give them indiscriminately isn't as rewarding a receiving ties from those that give few
- ->coldb = colstoch(dbconet) //columps of coldb all add to one
- ->dsp rowsums(coldb)

Closeness

Freeman closeness is sum of geodesic distances to all other nodes

->draw borg4cent

- ->g = geodesic(borg4cent)
- ->dsp rowsums(g)

Note that closeness is inverse measure :bigger numbers mean less centrality

Disconnected networks

- ->women = xxt(davis) //multiply davis by its transpose
- ->women3 = dichot(women gt 3)
- ->draw women3

- ->g = geo(women3)
- ->rg = reciprocal(g)
- ->clo = rowsum(rg)
- ->dsp clo

Note that bigger numbers mean more centrality

Directed data

Directed networks are usually disconnected, so we use the reciprocal method

- ->rg = recip(geo(campnet))
- -> dsp marginals(rg) // display row and column sums

```
1 2
Rows Cols
HOLLY 6 8.733
BRAZEY 5.588 2.917 //brazey can reach others easily. Reverse not true
CAROL 5.333 6.819
PAM 4.983 9.150
PAT 5.667 8.650
JENNIE 5.333 7.152
```

```
7 PAULINE 5.333 7.819
      ANN 4.983 6.652
9 MICHAEL 5.333 8.150
     BILL 5.167
10
11
     LEE 5.588 4.333
12
     DON 5.333 8.067
13
    JOHN 8.250
14 HARRY 5.333 7.050
15
     GERY 7.500 3.667
16 STEVE 6.150 5.500
17
   BERT 6.150
18
     RUSS 6.633
                    5
```

<u>Issues</u>

- Low variance in large datasets
- Disconnected pairs introduce a great deal of noise / hard to interpret

Betweenness

Betweenness of node k is Share of all geodesic paths from all i to all j that go through k.

$$b_k = \sum_{i,j} \frac{g_{ikj}}{g_{ij}}$$

g(i,j) = number of geodesic paths from i to j g(i,k,j) = no. of geodesic paths from i to j that pass through k

If there are two equally short paths from i to j, and k is along one of them, k gets ½ point for that.

- ->bet = betweenness(campnet)
- ->draw campnet bet

Pitts use case

Pitts, F. R. (1978). The medieval river trade network of Russia revisited. Social networks, 1(3), 285-292.

Comparison with structural holes

• SH limited to direct contacts; betweenness is global

Restricting or weighting length of paths

Node 1 has same structural holes score in both networks above. But betweenness does not.

Issues

- Std measure is restricted to dichotomous networks
- Works well with disconnected and directed graphs

Of course, can run multiple measures at the same time using centrality function

->dsp centrality(campnet)

Induced centralities

Normally think of centrality as something the network gives to the node. Induced centrality views things the other way around: how much does the node contribute to the network? I.e., to what extent are the network's characteristics due to each node?

Steps:

- 1. Calculate graph invariant X(G) (any structural statistic that describes the whole graph)
- 2. Remove node k
- 3. Recalculate graph invariant X(G-k)
- 4. Centrality = X(G) X(G-k)

Measures the contribution of each node to some overall network property such as average reciprocal distance.

Rev 26 Mar 2024

In the case of "inverse invariants" (where numbers are expected to get larger when you remove a node) we calculate step 4 as X(G-k) - X(G) instead.	,
Group centrality	
KeyPlayer 	