Уважаемый студент, выполнение указанных заданий строго обязательно!

Группа ПКД1/1 Дата:21.11.2022г.

Дисциплина: ОДП Химия Преподаватель: Воронкова А.А.

Тема 1.6 Химические реакции. Классификация химических реакций

Цель: Закрепить знания о типах химических реакций и закономерностях их протекания

Лекция План

- 1. Реакции соединения, разложения, замещения, обмена.
- 2. Каталитические реакции. Обратимые и необратимые реакции. Гомогенные и гетерогенные реакции.
- 3. Экзотермические и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения

Задание: выполнить работу по алгоритму

Алгоритм работы

- 1.Изучить материал лекции
- 2. Изучить материал видеоурока

https://resh.edu.ru/subject/lesson/4938/main/151110/

3. Решить задание и прислать скрин

https://learningapps.org/23711401

- 4. Ответить на контрольные вопросы (после лекции)
- 5. Пройти тест Классификация химических реакций (Часть 3) и прислать скрин

https://pencup.ru/test/2941

Критерии оценивания:

Выполнение заданий (1-3) - Збалла

Выполнение заданий (1-4) - 4балла

Выполнение заданий (1-5) - 5баллов

Классификация химических реакций

No	Признаки положенные в основу классификации	Типы реакций	Примеры
1	Число и состав исходных веществ и продуктов реакции	1. Реакция соединения 2. Реакция разложения	$2Ca + O_2 = 2CaO$ $CaO + H_2O = Ca(OH)_2$ $2HgO = 2Hg + O_2$ $Cu(OH)_2 = CuO + H_2O$
		3. Реакция замещения	Fe + CuSO4 = Cu + FeSO4 $Cl2 + 2KI = I2 + 2KCl$
		4. Реакция обмена	$AgNO_3 + KBr = AgBr + KNO_3$ $NaOH + HCl = NaCl + H_2O$
2	Изменение степени окисления атомов, входящих в состав реагирующих веществ	1. Не окислительно-восстанов ительные (реакции без изменения степеней окисления атомов)	+1-2 +1 +1+6 -2 +1+6-2 +1-2 2KOH + H2SO4 = K2SO4 + H2O
		2. Окислительно-восстанов ительные (реакции с изменением степеней	+4 -1 $+2$ 0 $MnO_2 + HCl = MnCl_2 + Cl_2 + 2H_2O$

		окисления всех или некоторых атомов)	
3	Направление	1. Необратимые реакции	$Mg + 2HCl = MgCl_2 + H_2$
	протекания реакции	2. Обратимые реакции	$H_2 + I_2 = 2HI$
4	Тепловой эффект	1. Экзотермические	$C + O_2 = CO_2 + Q$
		реакции	
			+
		2. Эндотермические	$CaCO_3 + CaO + CO_2 - Q$
		реакции	
5	Наличие или	1. Гомогенные реакции	$H_2 + Cl_2 = 2HCl$
	отсутствие	2. Гетерогенные реакции	$MgO + 2HNO_3 = Mg(NO_3)_2 + H_2O$
	поверхности раздела между реагентами		†
6	Присутствие	1. Каталитические	$2H_2O_2$ MnO_2 $2H_2O + O_2$
	катализатора	реакции	
		2. Некаталитические	$NaCl + AgNO_3 = AgCl + NaNO_3$
		реакции	-

Энергетика химических реакций

При химических реакциях одни вещества превращаются в другие. При этом происходит разрыв одних химических связей и образование других, поэтому химические реакции сопровождаются выделением или поглощением энергии в различных формах (теплота, свет, работа расширения образовавшихся газов).

Тепловые эффекты химических реакций

Вам известно, что при образовании связей выделяется энергия (см. § 8), поэтому если бы реакции протекали только между свободными атомами, то все они сопровождались бы выделением энергии. Но химические реакции, как правило, протекают между молекулами веществ.

Сравним количество энергии, выделяющейся при образовании молекулы HC1 из атомов водорода H и хлора C1, с количеством энергии, выделяющейся при образовании этой же молекулы из простых веществ H_2 и $C1_2$:

$$H + Cl = HC1 + 431,4$$
 кДж/моль $1/2H_2 + 1/2C1_2 = HC1 + 92,30$ кДж/моль

Энергия взаимодействия простых веществ меньше энергии взаимодействия свободных атомов, так как часть энергии затрачивается на разрыв связей в молекулах водорода (H-H) и хлора (C1-C1).

В зависимости от соотношений энергий разрыва и образования соответствующих связей наблюдается выделение или поглощение теплоты.

Реакции, которые протекают с выделением теплоты, называют экзотермическими, например:

$$H_2 + C1_2 = 2HC1 + 184,6$$
 кДж

На разрыв связей в молекулах H_2 ($E(H_2) = 435,9$ кДж/моль) и $C1_2$ ($E(C1_2) = 242,3$ кДж/моль) затрачивается меньше энергии, чем ее выделяется при образовании связей в молекулах HC1 (E(HC1) = 431,4 кДж/моль):

$$2 * 431,4 > 435,9 + 242,3$$

Реакции, которые протекают с поглощением теплоты, называют **эндотермическими**, например:

$$N_2 + O_2 = 2NO$$
 - 180,74 кДж

На разрыв связей в молекулах N_2 ($E(N_2) = 945,43$ кДж/моль) и 0_2 ($E(0_2) = 498,38$ кДж/моль) энергии затрачивается больше, чем ее выделяется при образовании связей в молекулах N0 (E(N0) = 631,5 кДж/моль):

Количество теплоты, которое выделяется или поглощается при протекании реакции, называют тепловым эффектом реакции. Его обозначают символом «Q» и выражают в килоджоулях (кДж). Для экзотермических реакций Q > O (+ Q), для эндотермических реакций Q < O (- Q).

Тепловой эффект реакции зависит от условий ее протекания, поэтому его определяют при давлении 101,3 кПа, или 1 атм, и температуре 25 °C, или 298 К. Эти условия называют *стандартными*.

Тепловой эффект реакции при стандартных условиях выражают через изменение энтальпии Н°реакции

Энтальпия H — это величина, которая характеризует запас энергии вещества. Если энергия продуктов реакции меньше, чем исходных веществ, то H < 0. Это экзотермическая реакция. Если же энергия продуктов реакции больше, чем исходных веществ, то H > 0 — реакция эндотермическая. Следовательно, знак величины H противоположен знаку Q:

- \bullet экзотермическая реакция +Q и H° ;
- lack эндотермическая реакция -Q и $+ H^{\circ}$.

Термохимические уравнения

Уравнения реакций, в которых указаны тепловые эффекты реакций и агрегатное состояние веществ, называют термохимическими.

В термохимических уравнениях обязательно указывают агрегатное состояние исходных веществ и продуктов реакции: г – газообразное, ж – жидкое, тв. – твердое. Значение теплового эффекта реакции Н записывают после уравнения и отделяют от него точкой с запятой. Например, термохимическое уравнение образования жидкой воды из простых веществ может быть записано двумя способами.

$$H_2(\Gamma) + O_2(\Gamma) = 2H_2O(\kappa) + 571,68 кДж$$

$$H_2(\Gamma) + O_2(\Gamma) = H_2O(\kappa);$$
 $H^\circ = -571,68 \text{ кДж}$

Это термохимическое уравнение показывает, что при взаимодействии 2 моль водорода и 1 моль кислорода образуется 2 моль воды и выделяется 571,68 кДж теплоты. Следовательно, в данном случае энергия продуктов реакции меньше, чем исходных веществ.

Чтобы показать тепловой эффект образования 1 моль вещества, в термохимических уравнениях применяют *дробные коэффициенты*:

$$H_2(\Gamma) + 1/2O_2(\Gamma) = H_2O(\kappa);$$
 $H^\circ = -285,84 \text{ кДж}$

Очевидно, что если реакция соединения протекает с выделением теплоты, то обратная ей реакция разложения будет идти с поглощением теплоты. Так, изменение энтальпии при образовании одного моля воды равно -285,84 кДж, а при разложении одного моля воды +285,84 кДж.

По термохимическим уравнениям реакций можно проводить различные расчеты.

Закон Гесса

Большинство термохимических расчетов основано на законе Гесса:

- тепловой эффект химической реакции при постоянном давлении или постоянном объеме зависит только от природы и физического состояния

исходных веществ и продуктов, но не зависит от пути перехода из начального состояния в конечное.

Например, тепловой эффект реакции окисления углерода до оксида углерода (1У) не зависит от того, проводят ли это окисление в одну стадию, сжигая уголь, или в две стадии, получая сначала угарный газ, а затем сжигая его до углекислого газа:

в одну стадию С (тв.) +
$$O_2$$
 (г.) = CO_2 (г.); H_1°

первая стадия С (тв.) +
$$1/2O_2$$
 (г.) = CO (г.); H_2°

вторая стадия
$$CO(\Gamma) + 1/2O_2(\Gamma) = CO_2(\Gamma)$$
; H_3°

Согласно закону Гесса тепловые эффекты связаны между собой соотношением $H_1^{\circ} = H^{\circ}_2 + H_3$, пользуясь которым можно определить один из них, если другие два известны. Таким образом, на основании закона Гесса можно рассчитать тепловые эффекты реакций, для которых экспериментально измерить их невозможно. Например, практически невозможно измерить теплоту окисления углерода до оксида углерода (II), так как продукт реакции всегда будет состоять из смеси оксидов углерода. Но экспериментально можно измерить теплоту полного сгорания углерода до углекислого газа ($H_1 = -393,52$ кДж/моль) и теплоту сгорания угарного газа до углекислого ($H_2 = -283$ кДж/моль). Имея эти данные, по закону Гесса легко рассчитать теплоту окисления углерода до оксида углерода (Π), т. е. H_2° :

$$H_2 = H_1 - H_3^\circ;$$
 $H = -393,52 - (-283) = -110,52$ (кДж/моль).

Теплоты образования химических соединений. Термохимические расчеты

При расчетах тепловых эффектов химических реакций на остове закона Гесса используют теплоты (энтальпии) образования соединений, которые определены при стандартных условиях.

Контрольные вопросы

- 1. Назовите признаки, по которым классифицируют химические реакции.
- 2. Какое вещество называют катализатором? Какое явление называют катализом? Приведите примеры каталитических реакций.
- 3. На какие типы делятся химические реакции по числу и составу исходных веществ и продуктов реакции? Приведите примеры.
- 4. Из предложенного перечня типов реакций выберите два, которые характеризуют реакцию между сернистым газом и бромной водой, запишите реакцию
 - 1. гомогенная
 - 2. реакция нейтрализации
 - 3. каталитическая
 - 4. гетерогенная
 - 5. окислительно-восстановительная
- 5.Из предложенного перечня типов реакций выберите два типа реакций, к которым можно отнести взаимодействие щелочных металлов с водой, запишите реакцию
 - 1. каталитическая
 - 2. гомогенная
 - 3. необратимая
 - 4. окислительно-восстановительная
 - 5. реакция нейтрализации

Для максимальной оценки задание нужно прислать до 15.00 ч. 21.11.2022г.

Выполненную работу необходимо сфотографировать и отправить на почтовый ящик <u>voronkova20.88@gmail.com</u>, или <u>Александра Александровна (vk.com)</u>, добавляемся в <u>Блог преподавателя Воронковой А.А. (vk.com)</u> -здесь будут размещены видео материалы

-ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО

Список литературы

Рудзитис Г. Е., Фельдман Ф. Г. Химия. 11 класс: учеб. для общеобразоват. организаций базовый уровень / Г. Е. Рудзитис, Ф. Г. Фельдман. — М.: Просвещение, 2014.-224c: ил. — ISBN 978- 5- 09-028570- 4

Дополнительная литература:

- 1. Габриелян О.С. Химия в тестах, задачах, упражнениях: учеб. Пособие для студ. сред. проф. учебных заведений / О.С. Габриелян, Г.Г. Лысова М., 2012.Рудзитис Г. Е., Фельдман Ф. Г. Химия. 11 класс: учеб. для общеобразоват. организаций с прил. на электрон.носителе (DVD) базовый уровень / Г. Е. Рудзитис, Ф. Г. Фельдман. М.: Просвещение, 2014. 224с.: ил. ISBN 978-5-09 028570-4.
- 2. Габриелян О.С. Химия. 11 класс. Базовый уровень: учеб. Для общеобразоват. Учреждений. – М., 2010.

Интернет-ресурсы: (Перечень адресов интернет-ресурсов с кратким описанием)

- 1. http://www.chem.msu.su/rus/school/ школьные учебники по химии для 8-11 классов общеобразовательной школы
- 2. http://experiment.edu.ru/catalog.asp естественнонаучные эксперименты
- 3. chem.msu.su портал фундаментального химического образования России 4.alhimik.ru образовательный сайт по химии