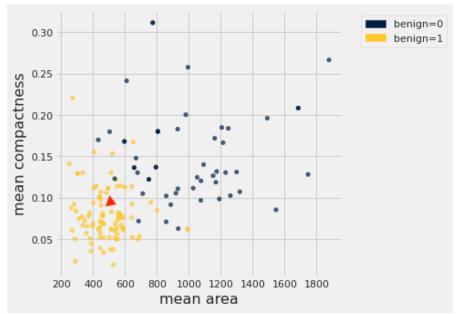

Data 8 Summer 2021

Discussion: Classification, k-Nearest Neighbors and Conditional Probability (Disc14)


Given the text of an email, how would you determine whether the email is malicious or safe? Perhaps the kinds of words that are used, or the time the email is sent? In this worksheet, we'll discuss *classification*, a term that describes a set of methods and techniques to answer questions like the one above.

Question 1. Significant research has been done to understand whether a breast tumor is benign or malignant. Alvin wants to create a classifier that predicts whether a tumor is benign or not.

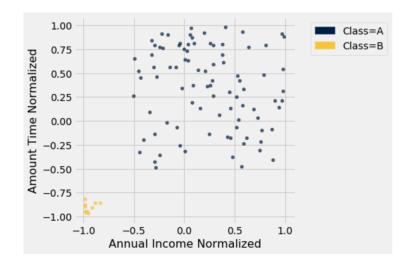
a. Alvin begins by attempting to classify a new tumor based off of the average compactness and average area of the tumor. Draw the decision boundary that the k nearest neighbors algorithm (with k = 3) would generate for this problem.

b. Now Alvin wants to classify a new tumor (represented as a triangle in the scatter plot on the next page). Describe the steps he would take to classify this new point based on a k nearest neighbors classifier with k=3.

c. Deven suggests that Alvin should use a different k for his classifier because he says 3 is too small. What values of k should he avoid?

d. When trying to develop a classifier, we split our original dataset into a training and a test set. We don't look at or use the test set until we have finished training. Why is that a good idea in general? What might happen if we didn't?

e. Suppose Alvin chooses k=1 and calculates the accuracy on the training set. Assume that he does **not** remove the point he's trying to classify from the training set when calculating the accuracy. What will the accuracy be on the training set? Will it be representative of the accuracy on the test set?


f. What are the tradeoffs between small values of k and large values of k?

Question 2. After seeing how successful Alvin's K-NN classifier is, Gregory, the owner of an e-commerce store, wants to classify all customers in one of two classes A or B. To do that he will use the following features.

- Annual income of each customer (in dollars)
- The average amount they spend every time they visit his website.
- Their age
- a. Gregory wants to run a k nearest neighbors classifier but his friend Roshan claims that he may need to preprocess your data somehow before doing that. What could the problem be and how should he resolve it?

- b. Suppose the training set has 100 customers and has the following distribution:
 - A: 90% of customers
 - B: 10% of customers

We produce the following scatterplot of the training set:

Gregory builds a k-NN classifier for this data with k = 21. What would the accuracy of the classifier be in this scenario?

After implementing his classifier with a different k, Gregory runs the classifier on 1000 customers and finds that:

- 501 of the A customers were classified correctly
- 208 of the B customers were classified correctly
- 104 of the A customers were classified incorrectly
- 187 of the B customers were classified incorrectly
- c. Find the following probabilities:
 - I. Given that a customer was classified incorrectly, the likelihood that they are a B type customer
 - II. The probability that a customer is an A type customer
 - III. The probability that a customer is classified correctly
 - IV. The probability that a customer is classified correctly given that they are an A type customer.