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UPDATE: We implemented parts of this (mainly the GLR parser) but were unable to prioritize completing it, so
it will shortly be removed from llvm-project.

TL;DR

We propose a clang pseudo-parser, which can approximately parse C++ (including broken code).

It parses a file in isolation, without needing headers, compile flags etc. Ambiguities are resolved heuristically,
like clang-format. Its output is a clang::syntax tree, which maps the token sequence onto the C++ grammar.
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Introduction

Many clang-based tools are built on top of clang AST. For example, refactoring tools traverse it to find the code
pattern they need to change, and later do the desired refactoring transformations.

This AST is built by the clang parser, which has some fundamental limitations due to its accuracy:

- slow: clang must parse all the transitive headers and perform semantic analysis.

(Often 10+ seconds, generating headers takes minutes)

- dependencies: integration with build systems is required (compiled flags, generated files)

- single configuration: code in not-taken #if branches is not analyzed

- broken-code support: clang is optimized to surface nice diagnostics and fixits, but representing
broken code is best-effort. There are hard performance and complexity tradeoffs here.

- stability: clang’s internal model of broken code is poorly-defined and crash-prone. This is largely down
to the complexity of semantic analysis, and to broken code not being a primary design goal.

- incomplete modeling of syntax: for size reasons, the clang AST provides locations of critical tokens
only (e.g. semicolons and const are often missing). Lengths are missing (> vs >> and others). In
places, it models semantics rather than syntax (int x, y;). This makes mutation very awkward.

Addressing these requires a different parser design. Trying to modify clang to achieve both goals would be
unsustainably invasive and complex.

These limitations create hard-to-solve pain points for tool users, e.g. tools are non-functional without an
accurate compile_commands.json; a long warmup time before any features are available; multi-configuration
support is impossible; broken code is not handled well; obscure bugs and crashes are a fact of life.

A notable exception is clang-format. It uses a special-purpose pseudo-parser that infers just enough
structure to allow formatting.

We propose a general-purpose C++ pseudo-parser under clang/Tooling/Syntax. It trades off correctness for
performance and other usability concerns. It aims to provide suitable foundations for fast, error-tolerant
syntax-based analysis and refactoring.

This will be a library separate from the clang front-end, depending on the clang lexer only. Like the rest of
clang/Tooling, it will not be used in the compiler.

We've spent much of this year exploring the ideas in this document, and have built functional prototypes of
many parts of it; preprocessing, bracket recovery, GLR and Earley’s parsers with lazy-bracket behavior, forests
and disambiguation.

Scope

Goals

- operate on a single source file
This is a simple boundary that lets us make useful performance and usability guarantees.

- parse real world C++ code accurately
This is not a research project. A parser that fails on macros, common language extensions etc is much
less useful.

- parse code containing errors
We want to be able to use this directly in IDEs.

- parse at interactive latency (10MB/sec)



- optionally consume clang AST, index etc to improve accuracy

Non-goals
- displace the clang parser
- resolve symbols
The parser can parse x = 1; as an assignment, but will not indicate what x refers to.
- emit diagnostics and fixes
Semantic analysis is usually needed to understand intent. Without intent, diagnostics are poor.
- ensure a correct parse in 100% of cases
The converse of "parse real world C++": pathological cases are less important if they're rare.
- support non-Clang languages (C++ is the initial focus)
Generalizing increases the scope and complexity of the effort.
- share code with clang-format (see "Related work")
clang-format is mature, specialized, and supports non-Clang languages.

Initially we will focus on building the foundation, and validate it with applications in clangd (see work plan
below). We believe this project will enable many applications (e.g. smart-diff tools, fast linter replacing cpplint,
syntactic search/replace tools) that are difficult or impossible to build with the current clang AST.

Design overview

The code is represented in different ways as the parser runs:

Source code a(2);
The input string is a full source file exactly as it might
exist on disk or in an editor buffer.

Token stream .

This is an immutable flat list of tokens. a ident
The initial token stream is produced by the clang lexer. ( | paren
A simple preprocessor strips directives and comments, =

and picks a single path through #ifs, to produce a derived 2 number
token stream for the initial parse.

Bracket pairs are marked in the stream, and missing ) r_paren
brackets are inserted before the parser runs. ; semi

Parse forest

This is a DAG encoding how the code was parsed
according to the language grammar. There is one
sequence node per grammar rule matched.

If multiple parses are possible, ambiguous nodes store

the alternatives. Common subtrees are shared. s
(The representation is a DAG, but it's conventionally
called "forest" because it captures all parse trees). ,/ P
bype-name Bxpr
The forest is built mostly with a grammar-based parser E= N | ;
(GLR/Earley). The algorithm is extended to provide error -
isolation by understanding brackets and sequences. BN E=E b e =N

Fallback parsers are used to recover structure within (grammar simplified for example!)
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broken code.

Once the forest is built, it is disambiguated by
eliminating impossible parses, and by heuristically
scoring the alternatives for remaining ambiguous nodes.

Syntax tree | ExprStmt
Thls is the output exposed by the parser API. == TERMNATOR
It is easier to consume than the parse forest:
e No ambiguity Callupr
e Typed nodes with typed accessors o pre |_
e Fewer intermediate nodes (flatter)
e Sequences are flat lists Eﬂ ‘ ExplrL'-st |
We form the syntax tree from the parse tree according ‘ IntegerLiteral |
to recipes associated with each grammar rule. [vmue
Comments are reattached at this point. |gg;ngﬂ ‘ Lz on | T 53."23’?"| semi |

Design: Grammar-based parser

C++ is a syntactically complicated language. While hand-written recursive-descent parsers are the standard
approach for C++ compilers, this has several downsides:
e a huge surface area to build before real-world code can be parsed
e the "direct" control flow of a recursive-descent implementation is undercut by ambiguity.
clang's parser has some tentative parsing but we'll have much more because we can't resolve
identifiers with certainty up-front
error-correction tends to be duplicated throughout the parser, so the cost of improving it is high
the large gap between the specification and the implementation makes it hard to maintain

The C++ standard defines a formal C++ language grammar. Constructing a parser from the grammar gives us
some hope of supporting the full language with reasonable effort, because basic support for "minor" language
features is cheap to add.

The grammar does not fully specify C++. Formally, the grammar is context-free but ambiguous, while C++
relies on context to forbid certain interpretations and is thus unambiguous. This means we can match the code
against the grammar, and then inspect/guess the context as needed to choose the best interpretation.

Deterministic generated parsers like LL, LR, LALR are efficient (linear time), but cannot handle ambiguous
grammars, limit lookahead etc. We must use "general" parsing algorithms which handle arbitrary context-free
grammars, and can produce multiple parse trees. We consider using GLR or Earley parser in the
pseudo-parser (we're still evaluating the final decision).

GLR parser

In LR parsing, ambiguity within the lookahead window produces conflicts in the state machine.
Generalized LR modifies the algorithm to allow LR state machines with conflicts. When a conflict occurs, it
copies the parse stack and explores both options. (Breadth-first-search of all parses). A simple, weak parser
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like LR(0) is used as we need not avoid conflicts.
The cleverness is in arranging data structures and sequencing work so that subproblems are still shared.
The parser produces the parse forest as a side-effect.

GLR achieves O(n"3) (n is the number of tokens) in the theoretical worst case (highly-ambiguous), practical
performance is near-linear in most real-world cases.

Details of a standard GLR parser can be found here.

enhancement: lazy brackets

The GLR parser should be able to skip contents in brackets, and continue to parse the rest. (See
error-recovery for details and motivations).

Implementation:

- When we construct a LR state from a kernel item “A := { o body [lazy=brackets] }’, we don’t
expand the grammar rules of body. Instead, we record (body, new state) in that state's
lazy-transitions list.

- During parsing, after shifting an open-bracket, we process this list.

For each, we create an opaque node interpreting the bracket contents as e.g. body, and push a new
state onto the stack as if we shifted body as a terminal.

- New states may be further ahead in the token stream vs others at the top of the (forked) stack. These
are ignored until all other states have caught up.

More details can be found in_this doc.

enhancement: support variant start symbols

An LR state machine has a designated start state, corresponding to “start := e translation-unit”.
We wish to be able to parse smaller chunks though, e.g. lazily-parsed function bodies, or expressions isolated
after error-recovery.
We have several options:
- create separate states for ‘start := « expression’ etc, and begin parsing at the appropriate one(s).
(Planned)
- create a single state containing all start symbols. This means we look at all interpretations in parallel,
and pick the one we want after. The main downside is the extra ambiguities introduced we must track.
- create a dedicated parser for each start symbol. This is wasteful if there is much grammar shared
between them, which we expect to be the case (e.g. expressions and declarators appear often).

Earley parser

The Earley parser is another general CFG parsing technique. It moves left-to-right through the tokens, keeping
track at each point of all the partially-applied grammar rules that may contribute to a parse.

After the input token stream has been processed, the chart tells us whether we succeeded, and we traverse
the sequence of states to build a parse forest. More details of the algorithm can be found here.

Unlike the GLR parser which needs to build a LR automaton upfront, the Earley algorithm can be dynamic --
states are generated at runtime.
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Operating directly on grammar rules and tokens rather than compiled states makes the parsing stage easy to
customize:
e supporting variant start symbols is simple, just by adding the given start symbol to the initial state.
e lazy-brackets is similarly simple, a stack keeps track of states to reinject when brackets close.
e under "Structure: brackets" we mention a grammar-driven bracket-repair strategy that can be built on
an Earley parser.
However, reconstructing the parse forest is more intricate, and needs to account for these customizations.

The Earley algorithm is O(n”3) for arbitrary grammars; In practice, it is much better O(n*2) for unambiguous
grammar, O(n) for LR(k) grammar with some optimizations.

Unlike GLR, the constant factor depends on the size of the grammar: considering hundreds of states per token
is typical, and this consumes a lot of memory for large inputs. It's possible to compress the itemsets using
LR-like technigues.

Design: Error resilience and recovery

We should be able to accurately parse code with errors.

The most interesting errors are:
e code that is incomplete as the user hasn't finished editing yet.
This tends to be some truncated construct, like ~for (int x =) {°
Motivation: IDEs see a lot of code in this state. And if batch tools like formatters/linters are fast and
resilient to these errors, they can be used in IDE-like interactive workflows too (clang-format is an
example).
e code that has simple mistakes and won't compile, but whose intent is fairly clear.
This is often missing semicolons or brackets, typos, unresolved names etc.
Motivation: failures due to errors that haven't been diagnosed yet is a poor experience. The
pseudo-parser will not emit diagnostics and should be able to run faster than a diagnostic cycle.
e code that we misinterpreted due to limitations of the parser itself.
For example, if the parser doesn't examine headers, it may not know about some macros used in the
code.
As a rule of thumb, we'd like to handle ~2 incomplete constructs or other simple mistakes per line.

Incomplete code is particularly challenging to parse without context. An alternative would be to assume we

have access to a recent version of the code that is fairly well-formed, and try to understand what changed.
However such requirements make the parser much harder to deploy in practice.

What does "accurate" mean for broken code?

This is a slippery concept. Humans see hierarchical structure in code:
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void fib(int n) {
int a=1, b = 1;

for (int 1 = @; 1 < n; ++1)

tie(a, b) = make_pair(b, a + b);

return a;

}

This structure is related to the language grammar, but is not purely the grammar. (For example, a function body
is a flat list of statements, whether statement-seq is left- or right- recursive). It's much closer to the Syntax tree
representation.

Accurately parsing broken code means something like:
If you break code in one box, the parse of other boxes should not change.
This is not quite right, it's easy to come up with counterexamples. The real definition is something like
The parse should reflect the structure a human would see in the broken code.
When all interpretations break rules, the parser should ignore the things people ignore.
We'll use both definitions to motivate and evaluate the design.

Structure: brackets

People understand code from the outside in, recognizing first functions, then loops, then statements, then
expressions.

In C++, this mostly follows brace structure. The language is designed this way: we never need to look at what's
inside the braces to parse the outer scope. (This is sometimes true for other brackets). This parser will read
code in the same way.

Parsing of code in braces never affects the parsing of code outside them. This is also true for other
brackets when the interpretation is forced, like “alignof( <expr> ). These are known as lazy brackets
since we may delay parsing their contents.
Rules are annotated in our grammar:

enum-specifier := enum-head { enum-body opt [lazy=brackets] }
At a high level, when a parse head consumes {, it pins a parse state to be restored when it reaches }. Details
will depend on the parsing algorithm.

Incorrectly matching brackets will cause a catastrophic parse failure (in humans too!)
We first detect and repair bracket problems by looking at indentation.

class X
vold fool) {

return m_;

int m_;

(3]



Step 1 is to maximally match existing brackets, optimizing a cost function: the number of brackets left
unmatched plus an indentation-sensitive penalty for each pair.

Step 2 is to choose an optimal insertion point for each unmatched bracket, or decide to delete it if all are bad.
This uses indentation information and simple token-sequence rules.

Alternative: Repair brackets during parsing
Bracket repair can greatly benefit from understanding the grammatical structure of the surrounding
code, only inserting brackets where they would help complete a grammar rule. Example:

if (x[m] { ... }

call([m] { ... }
The token sequence is very similar; simple heuristics will not distinguish these cases.
If we let the parser consume an invisible ) at any point, we can model different repairs as ambiguous
parses.

This requires intrusive modifications to parsing algorithms. It's not clear the performance or
code-complexity are acceptable, this needs prototyping. A design sketch is here.

If the outer scope is so broken we can't assess an inner scope, we make an informed guess.
This may mean parsing the scope a couple of ways and picking the best fit, or scanning for keywords near the
opening bracket, etc.

Structure: sequences

Many bracketed scopes consist of sequences of repeated declarations, statements, expressions etc.
Errors in one sequence element should not affect the parsing of others.
To achieve this we need concepts of plausible boundary points, and restart points.

plausible  restart

foola <« b , c » 8 +, &)
Y
We set up the element parser at the start of the scope, and then reset the parser state after each element.
We accept the longest parse that ends at a plausible boundary point. (In the example, we reject the template
id-expression a<b, c>).
If there's no successful parse then we consider this element broken and advance to the next restart point.

These boundary points are identified with heuristics:
e For delimited lists, the boundary is the next comma that's not in brackets. (With heuristics for <>).
e For sequences of statements and declarations, we must guess when } terminates a statement, infer
missing semicolons etc.

The plausible boundary points affect correct code, so they must include all points where an element may end.

The restart points affect broken code only, so they can use aggressive heuristics (e.g. a newline without a
change in indentation may indicate a new statement).

Recovery: top-down fallback parser

In broken code, the above techniques will often isolate a broken e.g. expression and its bounds.
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We should identify the type of expression and its subexpressions (which may be valid) to make further
progress. We don't know yet exactly what rules will work best here.

Some heuristics may use the partial results from the grammar-based parser:

e |f we parsed a prefix of the code as an expression, accept that and discard the remaining tokens
eg.a+b +

e If the parser was still parsing at the end of tokens, we can force symbols to match the empty string.
eg.a?b:
In particular, this can recover statements that are missing semicolons.

e We may even attempt to run the parser forwards and backwards, and "sandwich" a broken symbol.
e.g. dynamic_cast<4+2>(e)

Ad-hoc heuristics are also possible.

For example, an expression containing an unbracketed = is probably an assignment LHS = RHS, whether
each side is well-formed or not, so we simply split, e.g: a+ = b()

This gains some of the flexibility of a hand-written parser. We only need rules for common cases that affect
recovery, and they need not be strictly correct as it only triggers on broken code.

Recovery: bottom-up fallback parser

In the worst case, we cannot recognize the top-level structure of the broken expression using the grammar or
heuristics. It may still be possible to recognize substrings of it. For example, within an expression foo(...) is
probably a function call or functional-style cast.

We can recognize these by scanning for local token patterns, and represent them in the parse forest and
eventually syntax tree as a special type of "token soup" node.

Call
Cal e ., Args
Reference E.‘-"lpl"LiSt
| Element
SoupExpr
?
Call

I

Even though the hierarchy is broken, representing local properties of the call can still be useful. (Consider
semantic highlighting, or indexing references).

Design: Combining parsers

From the above descriptions, the lazy-parsing technique allows the parser to skip (or delay parsing) contents in
brackets when parsing outer-scope code. And we have two major parsers: the grammar-based parser (for
parsing variant symbols), the fallback parser (for parsing chunks of broken code). We need to combine them.



One implementation is to use a hierarchical parsing algorithm:

- we run a grammar-based parser at one time for one scope;
Forest::Node* parse(TokenRange scope_range, grammar::Symbol start_symbol);

- skipped contents are modeled as an opaque node in the parse forest; The opaque node will be
replaced by a concrete node when the inner-scope code is parsed;
- we parse outer-scope code first, then descend recursively into inner scopes;

Consider the following correct code:

class A {
void foo() {
int a;
}
}

It will be parsed hierarchically from outermost scope to innermost scope:

Step 1 -- parse the top-level TU-scope: class A {
o)

The resulting parse forest is shown as right. The
parser skipped tokens in the class body, and
emitted an opaque node.

The opaque node presents the skipped tokens
(tokens[3-11]), and has a grammar symbol

tramstation-wnit

class-specifier |
= clipoi-himd | marmbespctocn
.-'/fi::_ T
B . —
.-"--- | --"--._ -
- . N
! : s
| member-specification “,
- " | !

AN Y
|

We will get a concrete member-specification
forest node. And it will replace the opaque node
generated in step1.

In this node, there is an opaque node
“statement-seq”, so we continue to parse its
associated tokens (tokens[8-10])

member-specification, which guides how we ) | | -~ ~

should parse these tokens. mﬁ’n e | | foumus | |ma |
After the forest is built, we traverse the forest and [ rerminal [ oeave [ sequence

find all opaque nodes. For each opaque node, we

parse their associated tokens independently.

Step 2 -- parse the class-scope: void foo() { ... } | e T T T |

function-definition

= dechepaciber-sen dedamior isckon-hody
T

1

- - "//
./'--.-- 4
|d=cl-sp¢¢iﬁer-s¢q | | declaralor | y .
_a'l A ! ™,

L Fal i | | / T }
void | [fao | [ e |1 ] e Mo
TOKIN 3 TOHER & coseMe | | Tosmua || TokewT TOSEM B TOREN 11 TOKEN 11
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Step 3 -- parse the function-scope: int a;
P P pe-1 statement-seq

We end up with a simple-declaration node which \
has no opaque node inside, so the whole parsing

is finished. simple-declaration
= gecl-specifier-seq init-declarator-list |
— ]
decl-specifier-seq init-declarato r—h
)
| '.
int a i
TOKEM & TOKEM & TOKEN 10

In presence of errors, consider the example from the above “Structure: sequence” section:
foo(a < b, c >0 +, e);

Our parser will hit an error when parsing the argument list, particularly at the second expression. When the
lookahead reaches the “+” token, there is no valid action. The parser will apply heuristics mentioned above to
determine the range of the broken code, move forward to the restart point, and continue parsing.

We end up with a parse tree:

| expression-list |

) / H\ ;
| axpression i | expression | . eHpression
™ lII -'I‘ ™, !
__.-"" . | A \
| - ) ',
ey -, - , \
- - / ., |

= b ) 1] N ' 8
TOREN 1 TCaEN 2 TAEHA TimEn 4 TE#EH F TiEN R TimEn 13

a
T

|:| Terminal | Opague [Erroe) |:| Sequence

The broken expression is modeled as an opaque node.
In the later step, we invoke a fallback parser to parse the “broken-expression” tokens. One strategy is to
discard the extra trailing “+” token, and we get a valid expression 'c > @".

An alternative implementation is to use a switch-back-and-forth strategy, e.g. when the main parser hits a start
bracket, it switches a parser to parse the contents in the bracket, wait for it to finish and continue. We will get a
complete forest in one run without paying a cost of traversing forest to find opaque nodes. But it is less intuitive
and might be harder for debugging.

Design: Parse forest

Parse forest is the output of a grammar-based parser. It is a DAG which presents all possible parse trees
without duplicating structures.

Common subtrees are shared: if several trees treat the token range [4, 10) as an expression then there is a
single shared node representing that subparse.

This avoids exponential space requirements, and allows analysis (e.g. disambiguating internals of that
expression) to be reused.



Consider a simple grammar for addition:
expr := expr + expr
expr :=n
It is ambiguous because associativity is unspecified.
For the input n + n + n, there are two parse trees: (n+n)+n, n+(n+n). Here's the forest:

ax
AMBIGLOUE

expr

= @Ngr = axgr

TOKEHW O TOKEM 1 TOKEMN 2 TOKEM 3 TOKEM 4

|:| Terminal |:| Ambiguous |:| Sequence

Each node binds a token range to a particular grammar symbol. There are four kinds:
- terminal: one token in the token stream matches a terminal in the grammar.
- sequence: a non-terminal symbol is parsed from a grammar rule.
IftheruleisA := X Y Z, the node is for A and has 3 children X, Y, Z.
- ambiguous: the children are alternative parses of the same symbol
- opaque: a placeholder; we don't know how the tokens should be parsed.
These are used for lazy-parsing (not parsed yet), or error-recovery (invalid).

Forest nodes are compact: 8 bytes per node, plus 8 per edge. They are allocated on an arena with edges as
trailing objects. Based on an estimate of an average 10 nodes per token, 1.5 child per node, and 4 characters
per token, the forest will be 50x bigger than the preprocessed source code, which is acceptable. (1MB is a
large source file).

Probably we can live without mutability. Carefully ordering operations in the parsers lets gather all ambiguous
alternatives as a batch.

After building, the main operations we will perform on the forests are scoring, disambiguation, and conversion
to syntax trees. These are naturally expressed as bottom-up graph traversals, with disambiguation copying the
selected pieces of the forest.

Design: Resolving ambiguity

The parse forest describes many interpretations, we need to pick one.
We do this by removing ambiguous nodes, and replacing them with a single alternative.



Ambiguous Expr

AAD_ A

The chosen alternative should yield the best interpretation, so the B subtree should be the best interpretation
of that range of tokens as an Expression.

(For correct code, the clang parser can provide ground truth for "best interpretation”, and we can evaluate our
algorithm in this way).

Likely and unlikely patterns

Some patterns are ambiguous with the information we're likely to have, and we must make a pure guess.
aaa bbb(ccc); // vexing parse: declaring a function or variable?
At function scope, this is probably a variable. At file scope, probably a function. We can assign scores to these

alternatives. (If we know what ccc is we can disambiguate better, see below.)

X<Y, Z>::iW;
This expression could be a pair of comparisons, but things that look like templates usually are.

foo(m);
This could be calling a function (likely), a constructor (less likely), or declaring m (very unlikely).

These will be encoded as ad-hoc rules, informed by gathering statistics on a large codebase.

Such common ambiguities can be identified by ad-hoc pattern-matching the children of ambiguous nodes.

Ambiguities in identifiers

Many ambiguities in the C++ grammar start with interpretation of identifiers, e.g:

namespace-name := identifier

class-name := identifier

template-name := identifier

id-expression := unqualified-id := identifier

In a typical parser, the "lexer hack" resolves this: the lexer can look up an identifier to classify it. (This uses the
results of semantic analysis and so violates layering.)
But in the pseudo-parser, names are often defined in headers we don't see.

We have some tricks for resolving these ambiguities though:
e multiple occurrences of the same identifier often refer to the same thing
We can use less-ambiguous occurrences to disambiguate others.
Unlike the lexer hack, these hints can flow forwards or backwards in the code!



e identifiers often have textual features (case, underscores) that hint at their role
We can infer these style rules from unambiguous parts of the file.

e t's often easy to build and look up indexes of identifiers
Even for standalone tools, knowledge of the standard library helps.

For each occurrence of an identifier we combine possible interpretations to form a probability vector:
Foo(42); (class-name=0.3, namespace-name=0, id-expression=0.7, ...)
Interpretation: what does the grammatical context indicate about this identifier?
And for each identifier, we combine occurrences and other signals (case, indexes, baseline distribution):
Foo (class-name=0.1, namespace-name=0, id-expression=0.9, ...)
Interpretation: how should we interpret a random occurrence of Foo in this file, out of context?
Finally, we combine the contextual and global information to score an interpretation for the identifier.
This process lets us combine ambiguous information to make a decision without choosing an ambiguity to
resolve "first", and encouraging but not forcing a consistent interpretation of each identifier.

False grammatical ambiguities

The formal grammar does not encode all rules of C++: it allows some parses that are semantically invalid.
For example: "static static int x;° is grammatically OK: the idea that only certain decl-specifiers can
be combined is expressed in spec text, not the decl-specifier-seq grammar rules.

This is fairly harmless except where it causes ambiguity. Types may be repeated in a decl-specifier-seq for
the same reason. The declaration "x y;’ can parse as a declaration with two types, declaring no values!

We identify these bad interpretations with custom tree walks that e.g. count types to prove that parsing "x y°
as a decl-specifier-seq cannot be valid.
Later we will attempt to eliminate such nodes when we resolve ambiguities.

Two cases this doesn't handle well:
e There's one grammatical parse, but it's semantically incorrect.
We'll use it anyway, where ideally maybe we'd start error-recovery.
e There's too much ambiguity to prove that semantic rules are violated up-front.
This would require carefully sequenced disambiguation to untangle.

Using the Clang AST

In some cases we may have a clang AST we can use for disambiguation. e.g.:
e latency-insensitive batch refactorings that don't need fast parsing.
We can run the clang parser to improve accuracy, but still use the mutable syntax tree.
e stale state (like a cached AST in clangd, or a kythe index extracted from an AST)
This is likely to be accurate for unmodified sections of the file.
Information about the boundaries and kinds of AST nodes in the clang AST can be translated into hints for the
parse forest.

Mechanics of disambiguation

All the above techniques let us associate penalties/rewards with certain nodes in the forest.



We want to choose the tree that is as positive as possible.

To do this we simply walk the forest bottom-up, aggregating scores of nodes. When we reach an ambiguous
node, we choose the child with the highest score.

If scores are equal, we can pick arbitrarily. In practice this probably means that no pattern heuristics matched
at all, so we should log this in debug mode and attempt to add more.

Design: Forming Syntax trees

With ambiguities eliminated, the parse tree consists of sequence nodes and terminals.

We walk the tree bottom-up, constructing a syntax tree to describe each sequence node:
Syntax::Tree* buildTree(grammar::RuleID rule, vector<Syntax::Tree*> RHS)

Local differences

There are several differences between the syntax tree representation and the grammar-based parse forest for
the same code.

Syntax trees name the syntactic constructs and relationships.
Consider the rule
postfix-expression := postfix-expression ( expression-list opt )
A human can understand that this is a call expression, and that the expression-list is the arguments. The
syntax tree exposes these as node kinds and edge roles.

Syntax trees omit nodes for uninteresting grammar rules.

An example here is trivial rules for the cascade of expression precedence.
postfix-expression := primary-expression

If the RHS forms an IDExpression, then it also represents the postfix-expression.

Syntax trees have flat lists, rather than recursive ones.
decl-specifier-seq := decl-specifier
decl-specifier-seq := decl-specifier decl-specifier-seq

Grammar annotations

The simplest way to describe these conversions is to annotate the grammar.
Particularly as the conversion logic attaches to grammar rules, which have no names!

We can encode kinds/roles in the grammar with annotations on the symbols:
postfix-expression [kind=CallExpr] :=
postfix-expression [role=Callee]
( expression-list opt [role=Args] )
Omitted nodes are a special case on the LHS:
postfix-expression [kind=inline] := primary-expression
And lists are a special case on the RHS:
decl-specifier-seq [kind=DSList] := decl-specifier [role=Element]



decl-specifier-seq [kind=DSList] :=
decl-specifier [role=Element] decl-specifier-seq [role=Rest]

Design: Preprocessor

C++ source code mixes two languages: core C++ and the preprocessor.
The main preprocessor features we have to understand are:

#include and other directives

conditional compilation with #if

macro uses

comments

We need to be able to handle each of these in the input, even though they're not part of the C++ grammar.
We need to represent them in the output syntax tree, without disrupting its structure too much.

The standard approach is to preprocess first, and parse C++ afterwards. This requires more information than
we have (macro definitions), and the output describes only a single configuration with poor representation of
preprocessor structure.

Nevertheless we try a modified version: we heuristically derive a (mostly) preprocessed token stream, parse it,
and then try to layer the things we dropped back on top.

Comments

For parsing, comments are simply dropped from the derived stream.
Once the syntax tree is built, we attach them at the appropriate place, guided by their left/right neighbors.
There may be a choice of which node to attach comments to:

Compound

#
.
L -

&=

{ [*increment*/ ++ X : }

Applications care which comments document which entities, so we use heuristics.
We prefer to attach to the beginning of a node. We prefer certain node types that humans understand (e.g.
Type) over others that are more abstract (DeclSpecList). We prefer to attach further up the tree.

Attributes

While not actually part of the preprocessor language, attributes have much in common with comments.



Attributes can be used almost anywhere in a C++ program, and attached to many constructs: types, functions,
variables etc. Their contents are largely left unparsed.

Attributes have a variety of different syntaxes (standard C++11/C2x attributes, GNU __attribute__, MSVC
declspec).
We could add these to the grammar, but:
e it adds a significant number of grammar rules to maintain
e it adds a significant branching factor and subgrammar (runtime size/complexity) to the grammar
e much real-world attribute use is non-standard, so we'd need to deviate (quite a bit) from the C++
standard grammar
e we'd rather accept code that puts attributes in the wrong place

Attributes can mostly be recognized lexically, and are always optional. We plan to treat them like comments:

strip them from the token stream before parsing, and then reattach them afterwards.
The arguments of attributes will not be parsed, they're just tokens.

Directives

Most directives (#include, #define) etc are stripped and reattached like comments.
These are represented as nonterminals:

PPDefine

Conditional compilation with #if, #ifdef etc

Conditional directives (#if.. . #else...#end) are different. They break a region of code into alternatives, and we
only get valid C++ by selecting one. The model is a tree:

|y (e v )

#if WIN32 [ #else

#endif ]

&

(I

Initially, we select conditional chunks arbitrarily to produce a primary token stream, which we parse.



https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
https://docs.microsoft.com/en-us/cpp/cpp/declspec?view=msvc-160#grammar

declarator ]

initializer J ' R
expression : expression ] '
| | | g
literal literal ] |
[ i |
sep = Hif . "W #else " #endif

v ¥
. ¥

L -

Later we find a chunk that was not selected ('/'). In the primary parse, its alternative (' \\ ') was parsed as an
expression, so we parse this chunk as an expression also. (This secondary parse cannot affect the
interpretation of code outside the #if - only the primary parse gets to do that.)

Syntax tree representation

When the syntax tree is formed, these get stitched together and the directives attached:

—

/ PPIf Lit:aral FFPElse Literal -. F-"ql-:"End
77/ () G o) ) (o)

s2p = #if, .. W Helse iy #endif

Here only the first literal gets to be the initializer of the declarator. Syntax trees require that only a single child
of a sequence node like declarator has a particular role. The return type of Declarator::getlnitializer() is
Expression®, so we really have to pick one.

Alternative: represent conditional blocks as nodes

The case above would be neatly modeled by having a PPConditionalExpr node in the tree, which
would be the declarator's initializer and contain all the PPIf... PPEnd as children.

However this can't easily model #if around elements in a list, and this is the common case.

Usually an #if section is in a list like StatementList, and all children can retain the element role.

StatementList

vold fool) {
char®* file = "temp.txt";

#if WIN32 ’_:‘ In'r —
DeleteFile(file); ] T

Felse elemeat—" -~ _elenjent ~slemEnt—__
unlink({file);

#endif [ Decl3tmt I PPIf J[ ExprStmt ] [ PPElse ] [ Exprstmt [ PPEnd ]

}

TBD: for applications that want to understand preprocessing structure, is the presence of directives in the
syntax tree sufficient? Options include:



e exposing the directive tree itself
e providing an API to get the PP branch path of a token/node, compare paths etc
It's not clear how to keep these data structures up to date after syntax tree mutations.

Pathological cases

Things can go wrong if our assumptions fail.

The nesting structure of #if...#end can be malformed
For now we won't attempt any clever repair. #else and #endif outside #if will be ignored, and missing #endif will
be inferred at the end of the file.

The conditional section may not cover a grammar rule cleanly
remove (
#if WIN32
"c:\temp");
#else
"/tmp");
#endif
In this case we'll end up unable to perform a secondary parse, and the tokens will just be "token soup" in the
parent scope.

The primary path through the conditional blocks may produce unparseable garbage
Similar to the previous case, we'll be unable to perform a secondary parse.

Macros

Unlike directives and comments, usages of macros can't be completely recognized and handled before
parsing. This is because:

e we don't always know which identifiers refer to macros and whether they have arguments

e we don't always know what they expand to

e if we expand macros and parse the result, it's hard to relate the parse tree to the source code

Instead, we attempt to handle macros in the parser. Although any identifier could potentially be a macro, and a
macro could potentially appear in any context and expand to anything, most uses follow common patterns we

can infer.

Our goal is to produce syntax tree nodes that model the macro expansions themselves with as rich a structure

as possible:
MacroStmt |

CHECK || ( 1 )




Placing macros directly in the grammar

The simplest possible approach is to treat hardcoded macros as if they were keywords, and refer to them in
grammar rules. e.g.

decl := TEST (identifier , identifier ) compound-stmt
This obviously doesn't scale well but will enable us to parse real-world code in early stages of the project,
before a more general handling of macros. It's likely we won't get past this stage for some time (see work
plan).
It also allows us to handle macros that have a strange grammatical structure, like gtest's TEST.

Recognizing macro tokens

Precisely because macros are hard to recognize, using ALL_CAPS_NAMES is a strong convention. We consider
any such name a likely macro. (The weakness of this heuristic is a single WORD).

assert() is an example of a macro that defies this convention. We need not recognize it as a macro at all, it
resembles a function and we can parse it that way. This is not a coincidence.

We can also scan #defines from the current file, consult an index, or a clang AST/Preprocessor if available.
This is probably not important, the naming convention is likely sufficient.

Parsing macro usages

Armed with logic to recognize which tokens may be macros, we can add grammar rules:
macro := identifier [guard=LikelyMacro]
macro := identifier [guard=LikelyMacro] ( macro-arg-list_opt )
macro-arg-list := macro-arg
macro-arg-list := macro-arg , macro-arg-list

expr :
stmt :

macro
macro ;

macro-arg := expression
macro-arg := identifier

This is likely to generate many ambiguous interpretations each time we see a macro, which reflects reality!
Choosing one requires us to understand the macro's structure.

Understanding macro signatures

The signature of a macro is:

e whether a macro has arguments (function-like vs object-like)

e what grammatical symbol each argument is (e.g. expression)

e what grammatical symbol the macro expands to
Example:

offsetof(expression, identifier) — expression

In principle macros arguments or results don't need to be whole (or consistent) grammatical constructs. In
practice, they usually are, or can be interpreted that way.



If we can obtain a macro's signature, we can use this in disambiguation. (Alternative: Using the macro

signature during parsing would be more efficient, though complex).

Possible sources for macro signatures are:

a configured or hardcoded list (e.g. EXPECT_EQ or _Atomic)

#defines from current file (partial info, e.g. number of arguments)

correlating multiple uses of the same macro

an index which correlates #defines and usages seen in multiple files
an index built from examining clang ASTs, which contains uses of the macros

Macros that expand to empty

Some macros expand to nothing, or are best treated that way.
For example, macros like ALWAYS_INLINE that conditionally expand to attributes.

These need special support in the parser to allow skipping over them. This is simple to implement in a parser

that handles ambiguity; it requires looking ahead 1-2 tokens.

If such a parse "wins", it is represented in the syntax tree by a NullMacro node.

Work plan

Milestones 1-5 are essential to this being generally usable at all.

Milestone 6 is key to accuracy. Milestones 7 and 8 are nice-to-have.

Milestone application enabled (clangd)
M1 | Project design doc & RFC accepted in LLVM
M2 | Token stream LSP Folding ranges
Bracket matching improve clang bracket recovery
Simple preprocessor (strip directives, heuristically pick
one #if branch)
M3 | Parse correct (preprocessed) code — ambiguous forest
Dummy disambiguation (pick first alternative)
M4 | Baseline error isolation:
- brackets
- lazy parsing
- sequences
Placeholder for fallback parsing
M5 | Forming syntax trees file outline without AST
fast indexing
M6 | Disambiguation based on index/AST/heuristics large accuracy boost
more features available before first
parse




M7 | Advanced error recovery: improve broken-code handling
- fallback parsing
- parser-based bracket repair

M8 | Parsing macro uses
Including #if branches
Comments, attributes

Related work and history

There are 3rd-party pseudo parsers (e.g. tree-sitter) which share similar goals. An alternative is to use them in
LLVM. Our community is conservative in introducing and using external dependencies in LLVM unless there is
a strong reason. Using 3rd-party code in LLVM might cause licensing problems; 3rd-party is less well
integrated with LLVM (code style, ADT data-structure, clang-syntax tree); customization is needed to fit our use
cases (high maintenance cost). Therefore, we decided to write our own parser.

Syntax trees

Syntax trees was an attempt to define a regular syntax-oriented representation of source code that could
support such edits. It has not been completed, but we expect to complete the library as part of this work.

This idea came out of the need to produce source edits based on clang ASTs.

Since the dawn of man, tool authors have been refactoring code by inspecting the AST and trying to make
logical changes by pasting strings together. (see clang::tooling::Replacement). Our own experience is with
clang-tidy and clangd.

Syntax trees from ASTs

The original plan was to translate the clang AST into Syntax Trees which would then be mutable.

This worked somewhat: by combining the relationships between AST nodes, the token locations stored in
them, and the token sequence, we could infer the syntactic constructs and their ranges. (It did involve a bit of
ad-hoc parsing, hunting for the locations of const qualifiers and semicolons that the AST merely implied).

However this approach failed on broken code, which is important to clangd. Big chunks of code were not
represented in the AST at all because the semantic invariants of their nodes were not satisfied. Clang would
infer missing punctuation and keep going, but this info is not stored in the AST. Since the AST didn't fully
correspond to the token sequence, we couldn't use it directly to interpret the tokens.

The next idea was to parse the code using the ASTs as a rough guide only. (Is this word a class or a variable?).
But if we were going to build a whole parser, it makes sense for this guide to be optional. Clangd has a long
warmup time (building an AST) when it'd be great to offer partial functionality. clang-format shows that many
C++ ambiguities can be resolved heuristically in practical code, and that speed is a feature. So this led to the
current project.


https://docs.google.com/document/d/161XftOcF-ut1pGQr5ci9kXd_y0jRQl3y9sVyvuEkLDc/edit

LibFuzzy

LibFuzzy is a C++ pseudo-parser project from 2014.

It shares many of the same high-level goals: single file parse, detail down to the token level.
There was an REC on adding this to the clang tree, and sentiment that this would be useful.
However the review stalled, and the implementation is very incomplete.

It is written in recursive-descent style, and so far covers only the most common nodes and has limited
error-recovery. Our sense is that this is a good design for the 80% point. The cost of completing and
maintaining a second hand-written parser that covers the long tail of C++ syntax and error-recovery would be
high, and comparable to the clang parser itself. For our purposes we'd like to have a parser that can represent
all real-world code, and a design that scales better to that.

clang-format

In order to format code, clang-format needs to understand much of its structure, both macro (for mandatory line
breaks and indentation) and micro (for optimal line-wrapping and spacing within lines).

Therefore clang-format does have a form of pseudo-parser, built atop the clang Lexer. For us, this was the
strongest evidence that single-file parsing works in real-world workflows.

However this parser is itself not suitable for our purpose:
e it is special-purpose, obtaining only information that influences formatting. (Roughly: block/line
structure, plus role annotations on individual tokens)
e its implementation is coupled to clang-format internals in a way that is hard to extract. (And risky in a
mature product).
e it has support for various non-clang languages (Java, C#, Javascript, Protobuf) that we don't wish to
build a general-purpose AST for but cannot drop from clang-format.
The last point is particularly painful, because it suggests that even if successful this pseudo-parser will never
replace that of clang-format.

tree-sitter

Tree-sitter is a GLR-based parsing library for general programming languages. It is developed by GitHub to
improve features (code-folding, outline, syntax-highlighting) in Atom editor, power code navigation in GitHub
website etc.

Tree-sitter shares most of the high-level goals: parse a single file, robust on error code. It supports C++, C and
other programming languages. We investigated it before starting writing our own parser, it is a nice framework,
it gives us strong evidence that GLR can parse real-world C++ well. But at the same time, it has some weak
points:

- its C++ grammar is built on top of the C grammar, not following the one from C++ specification. While it
works for 95% of real-world code, it is not general and requires ad-hoc patching on the grammar file to
fix missing cases;

- Ambiguities are simply resolved by (dynamic/static) precedence which is hard-coded in the grammar.
While it is a good and simple model for general purposes, it doesn’t suit our purpose. We'd like to parse
the code as precisely as possible, therefore we need a more powerful mechanism which can allow us
to implement/inject different strategies during the ambiguity resolution;


https://github.com/kapf/clang-highlight/blob/master/docs/LibFuzzy.rst
https://lists.llvm.org/pipermail/cfe-dev/2014-July/038326.html
https://reviews.llvm.org/D4725
https://lists.llvm.org/pipermail/cfe-dev/2014-July/038332.html
https://tree-sitter.github.io/tree-sitter/
https://github.com/tree-sitter/tree-sitter-cpp

limited support of preprocessor elements: only top-level directives are supported by adding

preprocessor-specific grammar rules;
the generated parser is C code, and requires some runtime code to use, checking a bunch of

third-party code in LLVM repo is not a common practice in LLVM,;
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