

Angular Universal Design

author: viks@google.com, arick@google.com
last update: 2017-03-03

Status: Implemented

Objective

Background

Detailed Design
API

Interface
Usage Patterns

Implementation
Platform Server
DOM & Renderer
Http
Location
Metatag Services
Zones
Testing

Caveats

Security Considerations

Performance Considerations / Test Strategy

Documentation Plan

Style Guide Impact

Public API Surface Impact

Developer Experience Impact

Breaking Changes

Deprecations

Rollout Plan

Maintenance Plan

Work Breakdown

Objective
To move/rebuild the functionality of Universal as part of the core of Angular.

Background
Angular allows different renderers for different platforms - like browser, web worker and
server. Angular Universal refers to the API and tools that allow for rendering of an Angular
application on the server platform. Developers want to render Angular applications on the
server side for different reasons:

●​ Faster App load
●​ SEO
●​ Link Preview / AMP

The current implementation of Angular Universal exists as a separate package outside of
the core Angular project. We want to bring Angular Universal into the core Angular project
so that server side rendering is better supported by Angular. It allows for a cleaner design
of the Angular Universal API. It allows for better support for Universal by making necessary
changes to the implementation of the core packages(Ex. Http module, Metatag service).
Also, this would allow us to keep Angular Universal in sync with changes in the core Angular
platform as it follows the same release process as rest of Angular. Finally it provides a solid
platform to develop next set of features in Angular Universal.

This document describes the design of the API for Angular Universal that will be part of
core Angular, along with common usage patterns in Universal apps. It also provides the
implementation details of the server side platform and renderer that will be part of angular
core.

There would be a separate guides that details the support tools in Angular Universal and
migration of apps from the prior version of Angular Universal to the one that will be part of
core Angular.

Detailed Design

API

Interface

The primary interface to Universal will be a new method on platformServer() called
renderModuleFactory(). This method takes a previously compiled factory, bootstraps the
Angular application into a virtual DOM tree parsed from the document, and serializes the
resulting DOM state to a string.

https://github.com/angular/universal
https://github.com/angular/angular

platformServer() itself will be extended to take in an initial state vector, consisting initially of
an HTML document that will be parsed into the initial DOM tree and a URL that will seed
the location service. If either one of these is not provided, platformServer()will utilize that
option’s current default.

The whole operation can be thought of as a transformation from the static index.html
contents to an index.html with the Angular application pre-rendered.

import {platformServer} from '@angular/platform-server';

import {AppServerModuleNgFactory} from './server.ngfactory';

…

// Per Request to avoid cross-talk.

const platform = platformServer([

 {provide: INITIAL_CONFIG, useValue: {

 url: '...',

 document: '...',

 }}

]);

// Long-form rendering

platform

 .bootstrapModuleFactory(MyAppModuleFactory)

 .then((ref: ApplicationRef) => ref.isStable.filter(v => v).toPromise())

 .then(() => platform.injector.get(PlatformState).renderToString())

 .then(html => ...)

 .then(() => platform.destroy());

We will have a JIT mode that will be strictly for dev-mode only since the performance cost of
doing JIT per request will be high.

platform

 .bootstrapModule(MyAppModule)

 .then((ref: ApplicationRef) => ref.isStable.filter(v => v).first().toPromise())

 .then(() => platform.injector.get(PlatformState).renderToString())

 .then(html => ...)

 .then(() => platform.destroy());

There will be helper methods that will provide a shorter way to render to string.

Import {renderModuleFactory, renderModule} from '@angular/platform-server'

// Short-form rendering

renderModuleFactory(MyAppModuleFactory, {url: '...', document: '...', providers:

[..]}).then(html => …);

// Short-form with JIT compilation(For dev mode only)

renderModule(MyAppModule, {url: '...', document: '...', providers: [..]});

Server → Client Transitions

While not necessary, many applications will want to bootstrap a client-side application “on
top of” the server-side rendered app. There are two concerns when doing so: replacement
of the server-rendered root component with the client rendered version, and removal of
the <style>s which are added to the client side app.

The first concern is addressed naturally by the function of the root element in index.html.
Contents of the root element are naturally replaced by the client rendered application on
bootstrap.

The second concern is more challenging. <style> tags added to <head> during server
rendering need to be removed when the client app is bootstrapped. To do this, Angular
needs to be able to associate the bootstrap of server and client applications, so the client
can clean up leftover state from the server.

This is accomplished by using BrowserModule.withServerTransition() in the client app,
which requires the provision of an APP_ID and sets up additional providers to correctly
transition server to client apps.

Usage Patterns

We expect most applications will have a specific module for each platform (browser, server)
on which they will run. This module will be used to configure the application specifically for
this platform. It will install the platform module (BrowserModule or ServerModule), set
providers for any services which have platform-specific implementations, and specify the
component to be bootstrapped.

Also expected is that most applications will share the majority of their configuration
between environments, by “extending” the application module (which imports
BrowserModule) by importing it into the application server module.

For a hypothetical news application, this structure looks like this:

// app/platform/browser.ts:

@NgModule({

 bootstrap: [NewsApp],

 declarations: [NewsApp],

 imports: [

 BrowserModule.withServerTransition({appId: ‘news’}),

 MaterialModule,

 HttpModule,

 NewsAppRouteModule,

],

 providers: [

 NewsAggregationService,

 {provide: AuthService, useClass: OauthAuthService},

 {provide: NewsService, useClass: ClientNewsService},

],

})

export class NewsAppBrowserModule {}

// app/platform/server.ts:

@NgModule({

 bootstrap: [NewsApp],

 imports: [

 NewsAppBrowserModule,

 ServerModule,

],

 providers: [

 {provide: AuthService, useClass: CookieAuthService},

 {provide: NewsService, useClass: ServerNewsService},

],

})

export class NewsAppServerModule {}

This design allows customization of the providers and specific modules used for each
platform while allowing most of the application configuration to live in a single module.

Implementation

Platform Server

ApplicationRef will have an extra isStable Observable that indicates when the Application is
stable. We will reuse the whenStable from the Testability class.

PlatformState will have methods to get the string through renderToString() and getDOM()
method to get access to the DOM tree in tests.

DOM & Renderer

We will use the current Angular server renderer which uses parse5 DOM Adapter to render
to a string. We will make changes to the renderer as needed to support further Universal
use cases.

Http

The changes in @angular/http necessary for Universal support are being reviewed
separately, and are covered in the Stable HTTP Design Doc.

Location

Currently platformServer() provides no support for location. ServerPlatformLocation is
provided to satisfy dependencies on PlatformLocation, but it throws a not-implemented
error when any methods are invoked. @angular/platform-server will need a proper
implementation of PlatformLocation on the server side, with emulated push/pop state
behavior.

Angular also has a LocationStrategy interface, which provides a higher level location
abstraction on top of PlatformLocation. These two interfaces align fairly well. This is
important because a MockLocationStrategy class exists already that has most of the logic
for pushing/popping state already implemented.

As part of porting Universal, then, ServerPlatformLocation will be rewritten to properly
support a platform-level location state on the server, using the code from
MockLocationStrategy to accelerate the process.

Metatag Services

We would reuse the metatag service in platform-browser to manipulate meta tags needed
to support SEO/link preview.

Zones

Universal is already Zone aware with Zone.js patching the core Node APIs like setTimeout,
setInterval and Promises. However Zone doesn’t handle async tasks in custom Node library
like XHR2 that provides the server XHR implementation for Http Module.

We will add hooks to the implementation of XHR in platformServer that will explicitly call
scheduleMacroTask in Zone in order to track outstanding XHR requests.

We will provide guidelines on how to do the same for any other Node libraries that your
application might end up using.

Testing

We would have to provide a way to allow component developers to write unit tests that
verify that their component does the initial rendering properly in platformServer

https://docs.google.com/document/d/1C_wzuuQEjIktJxrTlUTjTCDEZR8YduGTfbpe4WsNfNk/edit#

environment along with their Server specific AppModule. The unit test can then verify that
the DOM from the PlatformState contains expected nodes. (We might have to provide
some helper functions to make it easier to write such unit tests similar to the short form
render method)

Protractor should not need any changes to work with prerendered Angular applications.
End to end tests will just verify that the final client bootstrapped application works as
expected.

Caveats

This doc does not address the changes that will be needed to other parts of the current
Universal ecosystem, such as the Express middleware.

Security Considerations
In Angular, the platform is the highest level of singleton. Every instance of platformServer()
will contain a separate instance of the running Angular application. Re-use of the same
platform for a second rendering will throw an error automatically.

Utilized in this way, state from one instance of a server-side rendered Angular app should
be prevented from leaking across into another instance of the app.

Performance Considerations / Test Strategy

Other than the unit tests, there will be end to end tests using Protractor that the initial
render through Universal works as expected.

We should have performance tests to track the initial render time from a browser (Need to
figure what tools we can use for this, external to Google)

We should consider load testing for concurrent requests to render Angular apps and make
sure there are no issues here.

Documentation Plan
The new APIs will need to be documented, with code samples.

The docs team will put together a guide for angular.io on use of Universal with an
Express-based node server, for the SSR and prerendering cases.

We should also have a Best Practices doc to avoid issues around memory/resource leaks
and how developers can load test their server application.

Style Guide Impact
It might be prudent to document the structure of application entrypoint described above
for advanced/larger applications that may wish to ensure compatibility with Universal as a
best practice.

Public API Surface Impact
Yes, changes to platformServer() are described above. Changes to the Http package as
mentioned above.

Developer Experience Impact
Ideally, the developer experience of setting up an application for server-side rendering
becomes easier.

Breaking Changes
It should not be a breaking change for users of platformServer() as new APIs will be
additive.

The changes to @angular/http may be breaking for users who configure Http for DI
manually (for example, if overriding functionality). These APIs are @experimental.

Deprecations
The old Universal(angular2-universal) can be deprecated and removed at will.

Rollout Plan
All API changes will be part of Angular 4.0.

We will scope out the Google rollout after 4.0 (in Q2). We will have a separate design doc
for that.

Maintenance Plan
The core team will handle maintenance of the new APIs in platformServer().

Work Breakdown
●​ Http module refactoring
●​ Refactor platform independent parts (DOM Adapter/Metatag service) out of

platformBrowser
●​ Implement Location in platform server
●​ Implement platform server API and ServerModule
●​ E2E tests

​

	Angular Universal Design
	Objective
	Background
	Detailed Design
	API
	Interface
	Server → Client Transitions
	Usage Patterns

	Implementation
	Platform Server
	ApplicationRef will have an extra isStable Observable that indicates when the Application is stable. We will reuse the whenStable from the Testability class.
	DOM & Renderer
	Http
	Location
	Metatag Services
	Zones
	Testing

	Caveats
	Security Considerations
	Performance Considerations / Test Strategy
	Documentation Plan
	Style Guide Impact
	Public API Surface Impact
	Developer Experience Impact
	Breaking Changes
	Deprecations
	Rollout Plan
	Maintenance Plan
	Work Breakdown

