
Design Doc for CSS ::part and ::theme
Status: under construction (2018-02-06)
Author: fergal@chromium.org
Reviewers: hayato@chromium.org, kochi@chromium.org, futhark@chromium.org

Background

Docs
Part and Theme spec

● This design doc assumes a theme= attribute for use with ::theme() (spec is not yet
updated)

● This design doc ignores the bulk part mapping syntaxes as they are in flux
Explainer
Selectors 3 Spec
Selectors 4 Spec
CSS Scoping spec

Terminology
A reminder of keys terms

● Rule, selector, declaration: - a Rule is a ‘,’-separated list of Selectors followed by a {}
containing a ‘;’-separated list of Declarations

::part cases
The spec provides for a number of ways of giving part-names to elements and this is still in flux
but fundamentally it reduces to a base case and a recursive case

● An element directly inside a shadow tree attached at host is given a part name by it’s
part=”part-name” attribute and is selected by host::part(part-name).

● An element contained inside a shadow tree attached at host2 which is itself inside a
shadow tree attached at host1 is given a name inside host2 by a part=”part-name”
attribute on the element. It is then given a name inside host1 by a
part=”external-part-name => part-name” attribute on host1. It is not necessary to
change the name in this mapping and syntax for bulk-mapping names and prefixing etc
will exist.
<body>

<host1>

mailto:fergal@chromium.org
mailto:hayato@chromium.org
mailto:kochi@chromium.org
mailto:futhark@chromium.org
https://drafts.csswg.org/css-shadow-parts/
https://meowni.ca/posts/part-theme-explainer/
https://www.w3.org/TR/css3-selectors/
https://drafts.csswg.org/selectors-4/
https://drafts.csswg.org/css-scoping/#host-element
https://drafts.csswg.org/css-shadow-parts/#part-attr

shadow tree
<host2 part=”part-name => external-part-name”>

shadow tree
<element part=”part-name”>

</host2>
</host1>

</body>

Determining whether a seIector matches an element

Points of note

The part-name of an element depends on scope of the selector being considered
Although each selectable element has a part=”part-name” attribute, the name used in the
::part(selected-part-name) may be different from the matched element’s part name due to the
mappings applied at shadow-hosts. E.g. in the second case above, the element would be
matched by the selector host2::part(part-name) if the selector was used in a rule inside host1
but would be matched by host1::part(external-part-name) if the selector was used in a rule in
the light tree containing host1. E.g.

<body>
<style>

this selector matches span below
host1::part(external-part-name) { color: red; }
this selector does not match span below
::part(part-name) { font-weight: bold; }

</style>
<host1>

shadow tree
part map: external-part-name => [<span…>]
<style>

this selector matches span below
host2::part(part-name) { font-size: 300%; }
this selector does not match span below
::part(external-part-name) { font-family: verdana; }

</style>
<host2 part=”part-name => external-part-name”>

shadow tree
red, 300%, not bold, not verdana

</host2>
</host1>

</body>

We cannot allow the selector ::part(part-name) in body’s scope to find the span inside host2.

At each host, there is a multi-map of part-names to part-names
For the mapped case above, it is possible to map the same name to multiple parts. E.g.
part=”part-name1 => external-part-name, part-name2 => external-part-name”. It is also
possible to just use part=”external-part-name” directly on an element inside the shadow tree.

Favoured Proposal - ascend tree to find the right name

Store part data in element
Change ElementRareData so that it stores a list of part names similar to the current list of class
names.
https://chromium-review.googlesource.com/c/chromium/src/+/958311

Change ShadowRoot (or ElementRareData?) to store a shadow part name map, a map from
string to list of strings mapping internal part names to external part names.

Update resolver to find part rules
Add a new call to MatchScopedRules to match part rules.
https://chromium-review.googlesource.com/c/chromium/src/+/972766
https://chromium-review.googlesource.com/c/chromium/src/+/972788

Make CheckOne match parts
Add new case to CheckPseudoElement to match ::part() against the element

● Reject if the element has no part=
● Ascend through treescopes until we reach the scope containing the selector being

matched
○ At each level apply mappings to the part names of this element to find out what

it’s name is in this scope (it seems possible for an element to be given multiple
names by a host, so we need to keep a set of names. the use case for giving a
part 2 different names in the mapping is e.g. migrating to a new scheme or
providing compatibility with alternative component).

○ Reject if it has no name in this scope
● Having reached the scope containing the selector, succeed if any of the names of the

element in this scope match the name in the ::part() component
https://chromium-review.googlesource.com/c/chromium/src/+/972772

Add implicit relation between host and part
Add a new combinator/RelationType for kShadowPart this combinator is inserted automatically

https://cs.chromium.org/chromium/src/third_party/WebKit/Source/core/dom/ElementData.h?sq=package:chromium&l=60
https://cs.chromium.org/chromium/src/third_party/WebKit/Source/core/dom/ElementData.h?sq=package:chromium&l=60
https://chromium-review.googlesource.com/c/chromium/src/+/958311
https://chromium-review.googlesource.com/c/chromium/src/+/972766
https://chromium-review.googlesource.com/c/chromium/src/+/972788
https://chromium-review.googlesource.com/c/chromium/src/+/972772

before ::part() it does not have any syntax. It’s behaviour is to ascend the tree from the element
matched by ::part() to find the shadow host element that is within the same scope as the rule
being matched. It does not consider any renaming etc as this has already been considered by
the code that matched ::part().
https://chromium-review.googlesource.com/c/chromium/src/+/970925

Discussion

E.g. for host1::part(external-part-name) in body we would descend into host1 and then
host2, finding a span with part=”part-name”. We would then ascend the tree, applying the
mapping and see that the name is now external-part-name. We would ascend the tree once
more, with no mapping applied, keeping the name the same and we have reached the selectors
tree, so we match.

We would also have to notice that when the part name is not exposed (with either a mapping or
under the same name), we may not ascend to the containing tree but no further.

Pros
● Fits to existing code

Cons
● Selectors using ::part must be considered against every element descended from their

scope. Even components that expose no parts will have their entire tree considered for
rules that can never match (see optimizations).

Optimizations
● For a given element it may be worth caching the part names for each parent scope as

these will be needed for all ::part-using rules
● Similarly, share a cache among elements inside the same shadow root that records for

each scope whether any part names are visible from the current root. So that e.g. if there
is a rule at the document scope and a component which exposes no parts but contains
components that have parts, we can easily tell for the elements of these inner parts that
document-scope rules never match.

● Following on from that add a part_ruleset to RuleSet so that we can skip consider part
rules entirely when we know the rules cannot match any elements in this root. This
saves us iterating one-by-over over each rule. Maybe not enough of a win.

Alternative Proposal - expanding mapped names
When we hit host1 we would search directly inside its light-tree for elements with
part=”external-part-name”. We would also search for hosts and when descending into them,

https://chromium-review.googlesource.com/c/chromium/src/+/970925

transform the selector from ::part(external-part-name) to ::part(part-name) and continue the
descent from there. One problem is that Multiple part-names may have been mapped to the
same name, so we actually have to search for ::part(part-name1|part-name2|...) (or for each in
turn). As we descend through multiple hosts this list will morph, names that are irrelevant to the
host will be dropped, others will be further expanded.

We would also need to flag somehow that the selector is special and if a match is made we
should not start ascending from the matched element but from the outermost host element

Pros
● Lazy
● Simple
● Could be improved with caching at the cost of some complexity

Cons
● The list of names may grow large and be inefficient to match against

Alternative Proposal - maintaining maps of elements
Following the spec literally, each host would maintain a map of part names to the elements
which have those part names, all the way down through all shadow-trees.

Pros
● Matches spec literally

Cons
● Keeping this mapping up to date with every change of the shadow-tree(s) seems hard.

Do we have the infrastructure to do it incrementally?

Conclusion
The first 2 proposals above seem like they are equivalent but just extremes of
laziness/eagerness. The proposal to “ascend tree to find the right name” seems to fit well with
the current implementation

Style Invalidation - WIP
As documented here, Blink has a mechanism for reducing the amount of style recalculation
performed when an element’s properties change. The part= attribute must be accounted for in
that.

https://docs.google.com/document/d/1vEW86DaeVs4uQzNFI5R-_xS9TcS1Cs_EUsHRSgCHGu8/edit?pli=1#

Changes which need invalidation

Changing part=
An element which changes the value of its part= attribute should be invalidated.

Changing partmap=
An element which changes the value of its partmap= attribute should have it’s descendants
considered for invalidation. We could

● invalidate all shadow-including-descendants with a part= attribute
● traverse the tree paying attention to partmap= mappings so that we can prune shadow

trees that did not map the old or new values of the part name

Other changes
If there is a rule like .c c-e::part(partp) and an element changes to/from the class c then we
need to consider invalidating all of the shadow-including-descendents of all of the shadow hosts
which have a part= attribute. Again we could use partmap to prune the tree.

Integration with existing invalidation sets
A rule such as

.a .b .c::part(partname) { … }

Should result in invalidation sets as follows

.a { part(partname) }

.b { part(partname) }

.c { part(partname) }

Where the meaning of .a { part(partname) } is that when an element has the class “a”
added or removed, we find all descendants that could be matched by ::part(partname) and
invalidate them. This could either be

1. All elements with a part attribute (in which case, we do not store partname with the
invalidation set, we just store a flag that indicates the need for part invalidation)

2. All elements with a part attribute but using absence of partmap to prune the descent
3. All elements with a part attribute =partname, using partmap to determine the mapped

names in every tree

Handling ::theme

Examples
Some samples of what would be rendered differently if this was implemented.

Simple ::part
JSFiddle

<!DOCTYPE html>
<html>

<head>
<style>

p { color: blue; }
element-details::part(partp) { color: green; }

</style>
</head>
<body>

<template id="element-details-template">
<style>

p { color: red; }
</style>
<p part="partp">

If this is green, it's working.
</p>

</template>
<p class="f">some text</p>
<element-details />

</body>
<script>

customElements.define('element-details',
class extends HTMLElement {

constructor() {
super();
var template = document

.getElementById('element-details-template')

.content;
const shadowRoot = this.attachShadow({mode: 'open'})

https://jsfiddle.net/wbx4216c/12/

.appendChild(template.cloneNode(true));
}

})
</script>

</html>

Nested ::part
TODO

Simple ::theme
JSFiddle

<!DOCTYPE html>
<html>

<head>
<style>

p { color: blue; }
body::theme(partp) { color: green; }

</style>
</head>
<body>

<template id="element-details-template">
<style>

p { color: red; }
</style>
<p theme="partp">

If this is green, it's working.
</p>

</template>
<p class="f">some text</p>
<element-details />

</body>
<script>

customElements.define('element-details',
class extends HTMLElement {

constructor() {
super();
var template = document

.getElementById('element-details-template')

.content;
const shadowRoot = this.attachShadow({mode: 'open'})

https://jsfiddle.net/fo2eLj42/8/

.appendChild(template.cloneNode(true));
}

})
</script>

</html>

