
Dictionaries

References
Dictionaries
Safe access
Iterating
Updating
Key sorting / random access

References

●​ tutorialspoint:Python Dictionaries

Dictionaries

●​ In a nutshell, dictionaries are lists in which the elements are accessed by a string rather
than index number.

○​ Dictionaries are also called associative arrays, maps, or hashes.
●​ A dictionary entry is composed of a key/value pair.

○​ The string used to access the element is called the key.
○​ The element is called the value.

make an empty dictionary​
use curly braces to distinguish from standard list​
words = {}​
​
add a key / value pair to words
words['python'] = "A scary snake"​
​
print the whole thing​
print(words)​
​
print one value by key
val = words['python']​
print(val)

Safe access

●​ The in operator can be used to check if a key exists in a dictionary.
●​ alternatively, you could attempt the access in a try statement and catch the error if one

occurs.
●​ Or you could use the get method of dict

key = 'python'​

​

http://www.tutorialspoint.com/python/python_dictionary.htm

method 1: ask for permission​
if key in words:
 val = words[key]​
 print(val)​
else:​
 print('key', key, 'not found')​
​
method 2: ask for forgiveness​
try:
 val = words[key]​
 print(val)​
except KeyError:​
 print('key',key,'not found')

method 3: use get method, returns None if key not present
val = words.get(key)
if val:
 print(val)
else:
 print('key not found')

Iterating

●​ You can iterate using keys, values, or both.

iterate with keys, 2 ways​
#for key in words.keys():​
for key in words:
 val = words[key]​
 print(key, ':', val, end=', ')​
print()​
​
iterate with values​
for value in words.values():​
 print(value, end=', ')​
print()​
​
iterate with keys and values​
for key, value in words.items():​
 print(key, ':', value, end=', ')
print()

Updating

●​ the update method can be used to:
○​ merge two dictionaries
○​ add multiple entries at once
○​ change the value for an existing key

●​ The pop method is used to remove a key/value pair.
○​ pop also returns the value

words = {}

define another dict​
words2 = {
 'dictionary': 'a heavy book.', ​
 'class': 'a group of students.'
}​
​
add items from one dict to another​
words.update(words2)

add another key/item​
words.update({ 'object': 'something'})​
​
change a definition​
words.update({ 'class': 'an echelon of society'})

remove a key/value pair
value = words.pop('dictionary')

Key sorting / random access

●​ to get a list of the keys, you can just cast the dict (or the keyset) to a list.
●​ dictionaries are unsorted

○​ to get a sorted list of keys, use the sorted function.
●​ to get a random key, you need to cast the dictionary keyset to a list

○​ (need to import random)

getting keys list
a_dict = { 'a':'apple', 'c':'cherry',
'b':'banana' }
print(a_dict)
print(list(a_dict))
print(sorted(a_dict))
now you can iterate over sorted keys

random key / value from dict
a_dict = { 'a':'apple', 'b':'banana',
'c':'cherry' }
keys = list(a_dict)
key = random.choice(keys)
val = a_dict[key]
print(val)

{'a': 'apple', 'c': 'cherry', 'b':
'banana'}
['a', 'c', 'b']
['a', 'b', 'c']
apple

sorting by value (e.g. descending order frequency)
for w in sorted(d, key=d.get, reverse=True):
 print(w, d[w])

	Dictionaries
	References
	Dictionaries
	Safe access
	Iterating
	Updating
	Key sorting / random access

