Fall 2020 Syllabus
CPS 391: Junior Seminar |

CPS 491: Software Engineering Project |

These courses meet together, by design, but have separate Canvas sites.

Mon. 4:10-5:40pm, MAC 211 (in MacDonald Hall)
(This the live version. Watch the schedule section for routine updates.)

Professor

Russ Tuck, Ph.D.

russ.tuck@gordon.edu, KOSC 243, 978-867-3754 (O), 408-335-0890 (M)

Office hours: MWF 9:15-10:15am, TR 2-3:30pm and by appointment at
https://russtuck.voucanbook.me/. Or drop in when my door is open. To visit my
regular office hours by Zoom without an appointment, use the link in the “schedule”
section of https://360.gordon.edu/profile/Russ.Tuck (click “Show the Schedule). If I'm
not there, text my mobile number above. (I might be in an appointment meeting.)

CPS 391: Junior Seminar | (2 credits)

Catalog Course Description: Explores principles and practices of computer science in various
professional contexts, including related theological and ethical issues. Students read papers
and sections of textbooks, present them in class, and lead related discussions. BS students’
readings focus on the software development process. Also follows the progress of projects in
CPS 491. Prerequisites: none (but junior-level experience in computer science is assumed).

CPS 491: Software Engineering Project | (2 credits)

Catalog Course Description: Students work in teams to develop requirements, specifications,
high-level design and prototype code for a computerized solution to an actual problem. The
project is described in oral reports and written documentation. Readings and class discussion
related to process. Prerequisites: CPS 391 (may be taken concurrently)

Course Obijectives

This pair of courses is intentionally interwoven, to better achieve their goals. Students in CPS
391 read about and lead discussions about the software development process, and observe
students in CPS 491 practicing it. Students in CPS 491 practice software development, and
reflect on the process in discussion with students in CPS 391. Both classes also prepare and
refine their resumes, in order to apply successfully for an internship or professional job.

mailto:russ.tuck@gordon.edu
https://russtuck.youcanbook.me/
https://360.gordon.edu/profile/Russ.Tuck

Primary goals of CPS 391 include:

1. Gain familiarity with the process of software development through reading, oral
presentations, and class sessions, and through observing the progress of students in
CPS 491.

2. Understand how these practices reflect a biblical understanding of human nature.

3. Gain familiarity with some professional roles of computer scientists through reading, oral
presentations, and class sessions.

4. Practice communicating technical ideas clearly and effectively, in both written and oral
forms, and practice facilitating technical discussions.

Primary goals of CPS 491 include:

1. Practice Agile software development by beginning a two-semester senior project to solve
a problem for a real customer.

2. Practice designing, documenting, and describing a software system clearly and
effectively, through both oral presentations and written documents.

3. Make the transition from small-scale class projects to the kind of thinking and
methodology needed for medium and large scale projects which are more typical in
industry. Upon completion of this course and part 2, CPS 492, you should have a
general familiarity with the best principles and practice of Software Engineering.

A shared goal of these courses is to become independent, life-long learners. In order to
practice this and develop supporting skills, these courses are structured quite differently from a
traditional lecture course. Most of the content will come from your own study and project work,
and from class sessions led by class members. The professor will often be a mentor, reviewer,
resource, and backstop.

Resources g [I[VH[] I\

s s . oy
Principles, Patterns, and. Practices

Required Texts (These will also be used for CPS 492.)

There is one copy of each in the workstation lab, KOSC 244. For your safety,
sanitize your hands BEFORE and AFTER touching these books. Do not
remove the lab copy from the lab.

Robert C. Martin
i oo Jams W Newkik 4 Roben . Kass

e Martin, Robert C. Agile Software Development: Principles, Patterns, and
Practices (Upper Saddle River, NJ: Pearson Education/Prentice Hall,
2003). ISBN-13: 978-0135974445, ISBN-10: 0135974445.

e Brooks, Frederick P. Jr. The Mythical Man-Month. Anniversary edition
(Reading, MA: Addison-Wesley, 1995). ISBN-13: 978-0201835953,
ISBN-10: 0201835959.

Recommended Texts:

There is one copy of each in the workstation lab, KOSC 244. For your safety, sanitize your
hands BEFORE and AFTER touching these books. Do not remove the lab copy from the lab.

Norman, Don. The Design of Everyday Things Steve Krug

(Revised and Expanded Edition) (Basic Books, ThaPESIGN @

2013), ISBN 978-0-465-05065-9. of EVERYDAY .
THINGS DON'T

Krug, Steve. Don't Make Me Think, Revisited (New
Riders, 2014), ISBN 978-0-321-96551-6.

Fox, Armando and David Patterson. Engineering
Software as a Service: An Agile Approach Using
Cloud Computing (Strawberry Canyon LLC, 2016).
ISBN-13: 978-0984881246, ISBN-10: 0984881247 .

MAKE
THINK

@vmhf«i

DON
NORMAN

nd Mobile:
A Common Sens¢ Approach to We hALLab ility

STEDITION

Strunk, William Jr and E.B. White, The Elements of STﬁﬁ"NKJR_

Style, Fourth Edition (Pearson Education, 2000, o]

1979), ISBN-13: 978-0205309023, ISBN-10: ﬂ.ﬂﬁllg

9780205309023. e

Feathers, Michael C. Working Effectively With ELEMENTS
Armando

Legacy Code (Prentice Hall, 2004), ISBN-13: Fox s O LE

978-0131177055, ISBN-10: 0131177052. David e
patterson FOURTH EDITION

_
Beyer, Betsy and Chris Jones, Jennifer Petoff, and e a——

Niall Richard Murphy, Site Reliability Engineering:
How Google Runs Production Systems (O’Reilly,
2016), ISBN-13: 978-1491929124, ISBN-10:
149192912X.

Hicks, Marie and William Aspray, Programmed
Inequality, how Britain discarded women
technologists and lost its edge in computing (MIT
Press, 2017), ISBN-13: 978-0262535182, ISBN-10:
0262535181.

DeMarco, Tom and Timothy Lister, Waltzing with
Bears (Dorset House Publishing, 2003), ISBN-13:
978-0932633606, ISBN-10: 0-923633-60-9.

Rehablhty
Engineering

WORKING

EFFECTIVELY
WITH

LEGACY CODE

Michael C. Feathers

Edited by Betsy Beyer, Chris Jones,
Jennifer Petoff & Niall Richard Murphy

Waltzing
with Bears

15K ON SOFTWARE PROJECTS

PROGRAMMED
INEGUALITY

Tom DEMARCe. & TIMOTHY LISTER

Online:

e Cockburn, Alistair, People and Methodologies in Software Development, Ph.D.
dissertation, University of Oslo, Feb. 25, 2003. Downloaded from
https://www.researchgate.net/publication/253582591 People and_Methodologies in_S
oftware_Development on 8/25/18.

Course Requirements and Evaluation

For each semester hour of credit, students should expect to spend a minimum of 2-3 hours per
week outside of class in engaged academic time. This time includes reading, writing, studying,
completing assignments and group projects, among other activities.

If you are taking both CPS 391 and CPS 491 now, plan to spend AT LEAST 8-12 HOURS PER
WEEK, PLUS CLASS TIME, on this course. Plan your other commitments accordingly, and limit
them if necessary.

Read the rest of this section carefully. It is the instructions and the assignment for most
of the course. Note that homework is due BEFORE the first class meeting.

Reading and Discussion

Each class will have required readings. For classes marked with RR, for Reading Response,
CPS 391 students will write a summary and analysis of the required reading. The purpose is to
convince the professors that you read, understood, and deeply thought about the readings.
Since this is the biggest piece of work for the course, it should take 3-5 hours to do it well.

The RR should have a section for each reading, and one set of questions you would like to see
discussed in class. Use the reading names as section headings, and “Questions” as the final
section heading. Each section should give a brief summary of the big ideas of the reading and,
if possible, describe how and why the reading applies (or doesn’t apply) to projects the CPS 491
students are working on. If you can’t answer that, at least summarize the most important points.

The RR should be 1-2 pages overall, single spaced, including the questions. Practice insightful,
clear, correct, and concise writing. Impress me with your deep understanding and your
interesting questions. Communicating clearly, often in writing, is important in practicing
computer science. Please add a note at the end, required but ungraded, saying how long it took
you to do the reading and writing. (You can use this to see if the writing gets easier with
practice, and | can use it to measure and potentially adjust the reading workload.)

The RR must be submitted in Canvas before midnight on Thursday before the Monday class.
Students leading the discussion the subsequent Monday will use your questions in preparing
the discussion, and attempt to find answers to them in the readings.

https://www.researchgate.net/publication/253582591_People_and_Methodologies_in_Software_Development
https://www.researchgate.net/publication/253582591_People_and_Methodologies_in_Software_Development

Grading: the professor will sometimes give detailed feedback, and sometimes very brief or even
just pass/fail. The goal is to use finite grading time for maximum benefit, knowing that it's not
possible to give detailed feedback on all this writing. The following rubric will be used when
possible. The rows will be summed, and the score is out of 10 (so exceptional work in one row
can balance less good work in another for full credit, and better than 100% is possible). If there
is no reading response for one or more readings, the score will be pro-rated based on the
number of readings covered. (That is, someone gets 4s in all rows based on what they wrote,
but they skipped one of four readings, they will get a 3 overall -- because they did 3/4 readings
but got full points for what they did.)

Content Missing or Reasonably complete Thorough and
seriously incomplete and somewhat insightful, with good
insightful application to project
0 4 6
Writing Several spelling and Mostly clear and Consistently concise,
grammar errors, or correct writing. clear, and correct.
very wordy or terse Reasonably concise.
or unclear.
0 2 3
Questions Missing or seriously 3 pertinent and 3+ questions showing
incomplete somewhat insightful excellent
questions understanding and
insight.
0 2 3

Students who are only in CPS 491: you are responsible for reviewing the readings and your
RR from the previous year, in order to participate actively in the discussion. But you are not
required to submit a RR. Instead, review the submitted questions and think about your project,
and try to come prepared to be an “expert participant” in the discussion.

Leading Class Session(s)

Several times during the semester, each CPS 391 student will be responsible for leading part of
a class session on one of the topics. There will be an opportunity to sign up for specific topics
at the first regular class meeting. You will be designing a learning experience for your peers, so
give serious thought to how to help them learn. They will have read the material carefully, so
don’t just repeat it. Focus on helping them apply the material. It's fine to emphasize some of
the most important points, and it's good to explain major implications that you see beyond the
reading itself. But your primary goal is to lead a productive discussion. Use the submitted
questions well, because they are clear indications of interest and imperfect understanding. See
if you can find good answers in the readings, and consider how these questions can help you
lead a great discussion. Basic Tips for Leading a Discussion by Dr. Kent Seibert is a helpful
guide.

https://docs.google.com/document/d/1oh4hE-2aBja3GfJB-GGh9VubBWfkbUi3A3A8bdpbxHs/edit?usp=sharing

You may want to meet with the professor during his office hours the week before to describe
your plan and get advice.

Students and the professor will evaluate each student-led session, and the professor’s score will
carry extra weight in the grade.

Software Project (CPS 491 only)

Choosing a Senior Project, and Potential Senior Project Ideas give instructions for forming
teams and choosing a customer and a project.

Status Reports

Status reports (and individual reports, before teams are approved) are due in a shared Google
Doc (linked from Canvas) before classes marked with SR (for Status Report) on the schedule.
Status reports should follow the instructions at the bottom of that document. Be sure to include:
Accomplishments

Issues or Problems

Result compared to goal

Goal for next week

Presentations

Each member of a team must participate in each presentation in a roughly equal fashion.
Students and the professor will evaluate each presentations, and the professor’s score will carry
extra weight in the grade.

Documents Requiring Customer and Department Signatures

Each of the following documents must by approved by your customer before it is submitted.
Therefore, you'll need to give a draft to your customer several days before the due date, so
they can review it, and so you can resolve any issues and concerns they raise before it's due.

e |nitial problem statement (class 3)

e User stories in Github (class 4)

e MVP Description (class 10)
The customer should indicate their approval by email, cc’d to the professor. This email should
be copied and pasted into the approved document.

Each of these documents must also be approved by your assigned department representative.
If they are not satisfied, you will need to revise it until they approve.

Code

All code will be managed, reviewed, and submitted with Git and GitHub, in the Gordon CS
organization (https://github.com/gordon-cs/). Each CPS 491 student is expected to do their fair
share of design, documentation, and coding. This must be reflected in commits which are
merged into the develop and main (aka master) branches.

https://docs.google.com/document/d/1Dmw4w8vHB1aKiMcO1P_JGDhhqALvZuitfLTVWgxalhg/edit?usp=sharing
https://docs.google.com/document/d/1iOOjB8sjR03m9OW5CTpHr_-lEKLeb_OiItkOWVa1NYs/edit?usp=sharing
https://github.com/gordon-cs/

All code must be reviewed by another team member via a pull request before being integrated
into the team’s develop branch. After further testing, the develop branch should be merged into
the main (aka master) branch.

If two students pair-program, they may use a shared branch, but they must alternate who types,
and whose computer and account they use, so that experience and commits are done roughly
equally. Commit messages for pair-programmed code should always name the other student in
the pair. Pair-programmed code is considered reviewed by the process of pair programming, so
the pull request should note this and may be integrated into develop right away.

Documentation (section added 9/21/2020)

All documentation for the project must satisfy these logistical requirements:
e Clearly linked from github repo’s Readme.md
e Written with a system which shows revision history and authorship -- so reviewers can
see changes and make comments, and | can see who did what. (Github markdown files
and Google Docs are examples of systems meeting these requirements.)
In some cases, links to the documentation should be submitted in Canvas before it is due.

Grading
CPS 391 Weight
Reading Responses 60%
Leading Class 15%
Resume and Cover Letter 15%
Feedback on CPS 491 MVP Presentations 10%
CPS 491 Weight
Resume and Cover Letter 10%
Status Reports (both the report, and the progress reported) 15%
Proposal and documentation: (30% total)
Initial Problem Statement (class 3) 2%
User stories in Github (class 4) 6%
End to End Hello World and Tool proposal (class 6) 2%
Mid-term Presentation with end-to-end “Hello World” demo (class 7) 10%
MVP Description approved by customer (class 10) 5%
GitHub use: clear commit and pull request descriptions, good code reviews 5%
Lo-fi Ul Usability Tests with Customer (at least 2) 10%

7

MVP: Demo, Usability Test Report, Functionality, and Quality 35%

While most of the work in CPS 491 is team work, and grades will commonly be given to the
team as a whole, each team member must contribute substantially, and differences in
contribution will be reflected in the grades as appropriate. See the section on Honesty, below,
for important requirements.

The following are minimum guaranteed grades for the scores indicated:
98% - 100%: A+ 93%-97.9%:A 90% - 92.9%: A-
87% -89.9%: B+ 83%-86.9%:B 80% - 82.9%: B-
77% -79.9%: C+ 73%-76.9%:C 70% -72.9%: C-
67% - 69.9%: D+ 63% -66.9%: D

Honesty

Never lie by presenting another’s work as your own - whether by copying code, ideas, test
answers, homework, or otherwise. It is always better to give credit where it's due, and to
confess confusion, ignorance, or difficulty and get help. The Computer Science Project
Guidelines elaborate on how to give proper credit. They also make it clear that substantial
differences in contribution should be clearly indicated in the project documentation. (ltis
common for students to contribute somewhat differently to different aspects of the project,
reflecting their skills and interests as well as the needs of the team. Documenting the notable
efforts of each team member is good, and helps meet the Project Guidelines requirements.)

Some practical advice for this course, since we will be using Git and GitHub heauvily.

e When you pair-program, note that in the commit message. Include “(with Name)” on the
first line. Never rob your partner of credit. And take turns “driving”, so some of the
commits come from each of your accounts.

e \When someone contributes suggestions, ideas, debugging help, etc, give them credit in
a comment or in the commit message.

Note that Gordon College’s Academic Dishonesty policy (in the Student Handbook) requires that
plagiarism result in an F for at least the assignment, and in some cases the entire course.
Further consequences can include suspension from the College.

For completeness, the standard statement also applies: Academic dishonesty is regarded as a
major violation of both the academic and spiritual principles of this community and may result in
a failing grade or suspension. Academic dishonesty includes plagiarism, (see Plagiarism in
Student Handbook), cheating (whether in or out of the classroom), and abuse or misuse of
library materials when such abuse or misuse can be related to course requirements

https://docs.google.com/document/d/1GCrtzflpkhZh5Ewlnfkv1MSMM1fCb3Rd1rThxywjnAg/edit?usp=sharing
https://docs.google.com/document/d/1GCrtzflpkhZh5Ewlnfkv1MSMM1fCb3Rd1rThxywjnAg/edit?usp=sharing
http://www.gordon.edu/studenthandbook

Extensions and Incompletes

Due to the nature of the course, extensions and incompletes will be considered only in the most
dire of circumstances.

If you are in CPS 491 and in the General Concentration and an incomplete becomes necessary,
it must be made up by the start of classes for spring semester in order to continue in CPS492.
If you get behind early in the year, it will be very difficult for you to finish your project on time.
You MUST keep up!

Attendance Policy

Attendance at all sessions is mandatory. Each unexcused absence will result in a reduction of
1/3 of a letter grade in the term grade.

Accommodations for Students with Disabilities

Our academic community is committed to providing access to a Gordon education for students
with disabilities. A student with a disability who intends to request academic accommodations
should follow this procedure:
1. Meet with a staff person from the Academic Success Center (ASC) and provide them
with current documentation of the disability.
2. Obtain a Faculty Notification Form from the Academic Success Center, listing
appropriate accommodations.
3. Submit this form to professors and discuss those accommodations with them, ideally
within the first two weeks of classes.

Some accommodations need more time to arrange so communicating early in the semester is
important. For more information consult the Academic Success Center’s web page
(https://www.gordon.edu/asc) or email asc@gordon.edu.

Course Schedule (subject to change)

Abbreviations: F/P = Fox & Patterson; p. = page(s); ch. = chapter(s)
RR = 391 only: Reading Response (due Thurs midnight before class);
SR =491 only: Status Report (due: individual Sat midnight, team Mon 9am)
SL = Student-led session;
MVP = Minimum Viable Product;
Team meetings = each team meets privately with prof;

Date Topic Reading Due Work Due

M 8/24 | Course intro;
Discuss teams, customers, and projects.

https://www.gordon.edu/asc
mailto:asc@gordon.edu

(slides)

M 8/31 | Intro to Software Engineering and Agile | Syllabus; RR;
Development Choosing a Senior | All: GitHub ID and
Project, and Google account name
Discuss proposed teams, plus Potential Senior 391: SL topic
customers and projects. Project Ideas preferences (but tell me
immediately if you'd like
(slides) Brooks ch.1 (p.3-9); [tolead class 3)
Fox ch.1-1.5 (p. 491: Proposed Team;
1-21); If possible, do Project
Martin ch.1-2 (p. Problem Statement
1-17); now, even though it's
not due until next week.
Optional, ungraded
(not in RR):
Martin appendix C
(p. 507-516),
Cockburn “Abstract’
(pdf p. 4) and section
3.4 (p. 49-53 of its
numbers, pdf
p.52-56)
M 9/7 Present project proposal to class and Fox ch. 7-7.4 (p. RR; SR;
give each other feedback 218-229); 491: Customer Contact
and GitHub Info;
(SL) Requirements and Norman ch.6 through | Project Problem
Human-Centered Design: Figuring out p.247 (p. 217-247 Statement and
what to build and 2 lines of 248); Slides to present
problem statement,
Writing well Strunk & White, part | linked from repo’s
Il (p. 15-33) README.md;
(slides)
M 9/14 | (SL:) Process: Usability Testing Krug ch. 9 (p. RR; SR;
110-141); 491: User stories in

Writing Well

(slides)

Strunk & White, p.
70-74

github project in your
repo (or in Pivotal
Tracker, with a link from
your repo’s
Readme.md), arranged
in a logical order, and
other requirements in a
doc.

10

https://docs.google.com/presentation/d/1t1LAwX_ohy_v0ctLYMvMmKTzquNvXNKk9xLOIUfE9Ss/edit?usp=sharing
https://docs.google.com/presentation/d/1XNgMfhqZICJchqRoxoylhUqnwuKxeMCIKLn_hzIubWQ/edit?usp=sharing
https://docs.google.com/document/d/1Dmw4w8vHB1aKiMcO1P_JGDhhqALvZuitfLTVWgxalhg/edit?usp=sharing
https://docs.google.com/document/d/1Dmw4w8vHB1aKiMcO1P_JGDhhqALvZuitfLTVWgxalhg/edit?usp=sharing
https://docs.google.com/document/d/1iOOjB8sjR03m9OW5CTpHr_-lEKLeb_OiItkOWVa1NYs/edit?usp=sharing
https://docs.google.com/document/d/1iOOjB8sjR03m9OW5CTpHr_-lEKLeb_OiItkOWVa1NYs/edit?usp=sharing
https://forms.gle/gYM9X4kDhbePUwWc7
https://forms.gle/gYM9X4kDhbePUwWc7
https://forms.gle/CotrL3VVjDFRcvBd7
https://forms.gle/CotrL3VVjDFRcvBd7
https://forms.gle/ckjRafcihtkeskHWA
https://docs.google.com/presentation/d/1acxIheJ5P0imto7eUbhobXhgp8Ahp7wo77kvdF8IzYE/edit?usp=sharing
https://forms.gle/TbvJqHBhPdDgrQEE8
https://forms.gle/TbvJqHBhPdDgrQEE8
https://docs.google.com/document/d/1Y90fYNgHDH7TsA2re9vzaNvkuZvdPQaCJy-pQlAgErg/edit?usp=sharing
https://docs.google.com/document/d/1Y90fYNgHDH7TsA2re9vzaNvkuZvdPQaCJy-pQlAgErg/edit?usp=sharing

491: Schedule meeting
this week with me and
customer to discuss
user stories.

M 9/21

(SL: unit, sys/int, load/perf) Process:
Testing (unit testing, system/integration
testing, load/performance testing) --
each presenter should demonstrate an
example, using 360.gordon.edu (and its
tests, where it has good examples), and
help classmates work together in class
to write another one of each

(SL:) Process: Basics of Source
Configuration Management
What did you learn from 1st usability

test?

(slides)

Feathers,
“Test-Driven
Development”, p.
88-94;

Beyer, p. 185-191;

Git - Book chapters
1-3 (sections 1.1-3.7)

(extra credit:
https://martinfowler.c
om/articles/testing-cu
lture.html - also
applies to security)

Optional resources:
Architecture (major

concepts):
https://aosabook.org/
How it works,
bottom-up: Becoming

a Git pro. Part 1:
internal Git

architecture,
Overview: The
Architecture and

History of Git: A
Distributed Version

Control System

RR (note things you
don’t understand or
disagree with);

SR;

491: Report of 1st Lo-fi
Ul usability test with
customer. Submit in
Canvas, where there
are detailed
instructions.

11

https://docs.google.com/presentation/d/1lT6RDG0KcOErjm43-rGzTKW0NBnYeACetjwEbsJcjGU/edit?usp=sharing
https://git-scm.com/book/en/v2
https://martinfowler.com/articles/testing-culture.html
https://martinfowler.com/articles/testing-culture.html
https://martinfowler.com/articles/testing-culture.html
https://aosabook.org/en/git.html
https://aosabook.org/en/git.html
https://indepth.dev/becoming-a-git-pro-part-1-internal-git-architecture/
https://indepth.dev/becoming-a-git-pro-part-1-internal-git-architecture/
https://indepth.dev/becoming-a-git-pro-part-1-internal-git-architecture/
https://indepth.dev/becoming-a-git-pro-part-1-internal-git-architecture/
https://medium.com/@willhayjr/the-architecture-and-history-of-git-a-distributed-version-control-system-62b17dd37742
https://medium.com/@willhayjr/the-architecture-and-history-of-git-a-distributed-version-control-system-62b17dd37742
https://medium.com/@willhayjr/the-architecture-and-history-of-git-a-distributed-version-control-system-62b17dd37742
https://medium.com/@willhayjr/the-architecture-and-history-of-git-a-distributed-version-control-system-62b17dd37742
https://medium.com/@willhayjr/the-architecture-and-history-of-git-a-distributed-version-control-system-62b17dd37742

M 9/28

Job search and grad school application
strategies, resume writing, and
preparing for a technical interview.
Guest presenters: (not this year)

Discuss tool proposals and hello-world
definitions.

(slides)

Draft resume (submit in
Canvas and be
prepared to share with
speaker)

SR;

491: End to End Hello
World and Tool
Proposal (part. 1) -
meeting with me while
preparing this is a good
idea

M 10/5 | (SL:) Process: Security Best Practices CMU SEI Top 10 = -
Secure Coding ceverletter{no
Present recent work: Practices; mistakesfrom-thistist:
e give Lo-fi demo of core Ul (delayed by my slow
e report on usability tests OWASP Secure feedback)
Coding Practices SR;
Team meetings as needed Quick Reference
Guide; 491: Report of 2nd Lo-fi
(slides) Correction: Ul usability test with
https://owasp.org/ww | customer and other
w-pdf-archive/OWAS | potential users.
P_SCP_Quick_Refer
ence Guide v2.pdf
And
https://owasp.org/ww
w-project-top-ten/
M 10/12 | Present recent work: Feathers, p. 18-28 RR;
e show end-to-end hello world (“The Legacy Code SR;

demo and system diagram, with
clear evidence it’s all working
e describe 1st story to implement

(SL:) Process: Changing Legacy Code
with Refactoring

(slides)

Change Algorithm”
and “Ch. 3 Sensing
and Separation”);

“Perfect” resume and
cover letter (no
mistakes from this list);

491: Demo of
end-to-end Hello World,
with how-to
documentation (keep
updating it so it
becomes
documentation for your
project).

Identify 1st story to
implement.

12

https://docs.google.com/presentation/d/1aBy7Rux1cKTwAw7baVAQT-cnnrKllckI7snF-En4rWI/edit?usp=sharing
https://docs.google.com/document/d/1Eq1yfp5WyS51dIjeL-i2484MjuI1CQME2J5_IL8Xou8/edit?usp=sharing
https://docs.google.com/document/d/1Eq1yfp5WyS51dIjeL-i2484MjuI1CQME2J5_IL8Xou8/edit?usp=sharing
https://docs.google.com/document/d/1Eq1yfp5WyS51dIjeL-i2484MjuI1CQME2J5_IL8Xou8/edit?usp=sharing
https://docs.google.com/presentation/d/1-AIEyVbX5P1cbWYxU0SMWNxI70OkeuXGMErE1VpJsxs/edit?usp=sharing
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://photos.app.goo.gl/XfvdxAcsUf3jNakJ7
https://docs.google.com/presentation/d/1QvFF2d3U0CbuJMq_pKry0supU3_A3WDpN5bbTOUtdJE/edit?usp=sharing
https://photos.app.goo.gl/XfvdxAcsUf3jNakJ7
https://docs.google.com/document/d/13Nicqj23yNNHZfpK26DkYmCWb-IKs3S0Ulttgkl52T8/edit?usp=sharing

9 M 10/19 | Standup report on first story sprint; 1. A: Replacing RR;
(slides) Legacy Systems SR:
(part 1); Z: Delivering | 491: 1st story working
Reading details: Success when (include convincing
e Some readings are assigned by | Replacing a Software | screen shots in your
last name: System; A&Z: status report) and all
o A-Lread “A” Google Dumps related code
o M-Zread“Z". MapReduce; committed, reviewed,
e Presenters read both for their 2.Brooks ch. 8 and merged.
topic. (Calling the Shot);
3. Software 491: Stories for next
1. (SL:) Process: Finishing -- Replacing | Engineering at sprint identified in
and retiring the old system Google just sections | project (in “in progress”
2. (SL:) Process: Large Projects 2.2-2.4; A: Lessons or “do next” column)
3. (SL:) Process: Code Reviews From Google: How
Code Reviews Help
Build a Better
Team meetings as needed Company Culture, Z:
Code Health: Too
Many Comments on
Your Code Reviews?
10 | M 10/26 | Demo of 2nd sprint SRE: RR;
Discuss upcoming milestones Beyer: Preface (p. SR;
xv-xviii), Part | and
(SL:) Process: Site Reliability intro to Part Il (p. 491: Demo of 2nd sprint
Engineering (SRE) -- release, reliability, | 1-24)
monitoring
Facebook motto
(SL:) Process: Internationalization
(118n) & Localization (L10n) i18n/110n:
Comparative
(slides) definition;
Kwintessential blog;
Background, just
skim, don’t include in
RR:
Wiki overview;
Chrome.i18n
example
11 | M11/2 | (SL:) Role: UX - User Experience UX Designer: RR;
Designer Norman ch2 p.37-73 | SR;
(SL:) Role: Product Manager Psychology of

13

https://docs.google.com/presentation/d/1FYlYvPbII7EuzDHZAyiWwB6f3cx0YpvlkdwH6hsmOjY/edit?usp=sharing
https://medium.com/@paul.klingelhuber/replacing-legacy-systems-part-i-8535188dbc6d
https://medium.com/@paul.klingelhuber/replacing-legacy-systems-part-i-8535188dbc6d
https://medium.com/@paul.klingelhuber/replacing-legacy-systems-part-i-8535188dbc6d
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3547/Delivering-Success-When-Replacing-a-Software-System.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3547/Delivering-Success-When-Replacing-a-Software-System.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3547/Delivering-Success-When-Replacing-a-Software-System.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3547/Delivering-Success-When-Replacing-a-Software-System.aspx
https://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system
https://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system
https://arxiv.org/pdf/1702.01715.pdf
https://arxiv.org/pdf/1702.01715.pdf
https://arxiv.org/pdf/1702.01715.pdf
https://blog.fullstory.com/what-we-learned-from-google-code-reviews-arent-just-for-catching-bugs/
https://blog.fullstory.com/what-we-learned-from-google-code-reviews-arent-just-for-catching-bugs/
https://blog.fullstory.com/what-we-learned-from-google-code-reviews-arent-just-for-catching-bugs/
https://blog.fullstory.com/what-we-learned-from-google-code-reviews-arent-just-for-catching-bugs/
https://blog.fullstory.com/what-we-learned-from-google-code-reviews-arent-just-for-catching-bugs/
https://testing.googleblog.com/2017/06/code-health-too-many-comments-on-your.html
https://testing.googleblog.com/2017/06/code-health-too-many-comments-on-your.html
https://testing.googleblog.com/2017/06/code-health-too-many-comments-on-your.html
https://docs.google.com/presentation/d/1MEP5c6UtoernXhMcW6dMZTYKF1H5D25_WdvZT6YZgw4/edit?usp=sharing
https://medium.com/halting-problem/facebooks-new-motto-move-fast-and-please-please-please-don-t-break-anything-8aefdd405d15
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.kwintessential.co.uk/blog/localisation/translation-internationalization-and-localization-google-tips/
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://developer.chrome.com/apps/i18n
https://developer.chrome.com/apps/i18n

Prof—ed Everyday Actions 491: Document
+—GMaiHaunchprocess& describing MVP
schedtle Product Manager: approved by customer
HBR: SW Redefines | (see syllabus for
(slides) PM, and Forbes: process), with total
Great PM story points and
5:30pm-—Retle—Data-Seientist—Speciat estimated velocity
Guest—BB showing it will be
working this semester;
all stories required by
MVP show story points
and have “mvp” label in
github project board. (If
achieving MVP is too
much work, explain
why, give a reasonable
date for the MVP, and
also document an
intermediate milestone
to demo this semester.)
491: Schedule meeting
this week with me and
customer to discuss
your plan.
12 [M 11/9 How hard was it to get to a feasible MVP | Maker: RR;
definition? What made it hard? Maker’s Schedule, SR
Manager’s Schedule
(slides)
People Manager:
Other roles - panel of CTS Peter Kelly,
professionals: Juan Rivera,
e Database Administrator Kate Matsudaira’s
e Systems Adminstrator Nine Things and
e Systems Integration Views from the Top
e Network Administrator
e Technical Support Letter to a Young IT
+—TFechnical-Writer Worker
+—fechnical-Sales
Role: Data Scientist -- Special Guest:
Joy Kimmel ‘15
(SL: SM) Role: People Manager
13 | M 11/16 | Demo of progress toward MVP DeMarco Waltzing RR (due Wed 11/27);

with Bears, prolog &

SR;

14

https://docs.google.com/presentation/d/1woOzFeZqhdDNg55U6Vtd6MHOA7oWgbyOs__GT983Q_U/edit?usp=sharing
https://hbr.org/2014/06/how-the-software-industry-redefines-product-management
https://hbr.org/2014/06/how-the-software-industry-redefines-product-management
https://www.forbes.com/sites/quora/2015/10/09/what-makes-someone-a-great-product-manager-at-google-2/#60e8a5ea65f7
https://www.forbes.com/sites/quora/2015/10/09/what-makes-someone-a-great-product-manager-at-google-2/#60e8a5ea65f7
https://docs.google.com/presentation/d/1xNEbaDeI5n6w0tT3KyM5zkicrcMHD8FeTOhYMFveaL8/edit?usp=sharing
http://www.paulgraham.com/makersschedule.html
http://www.paulgraham.com/makersschedule.html
https://medium.com/@peterkellyonline/what-makes-a-great-software-manager-33077e0167eb
https://www.linkedin.com/pulse/7-qualities-look-software-juan-rivera/
https://queue.acm.org/detail.cfm?id=2935693
http://katemats.com/views-from-the-top/
http://www.christiancourier.ca/columns-op-ed/entry/letter-to-a-young-it-worker
http://www.christiancourier.ca/columns-op-ed/entry/letter-to-a-young-it-worker

(SL:) Role: Maker

chapters 1-7 (p.

Demo of progress

(SL:) Role: Project and Risk Manager 3-50) & 16-17 toward MVP
(just the DeMarco reading) (p.128-142)
Prof. led: Computer Science:
e GMail launch process & Creating in a Fallen
schedule (earlier) World
e Human nature and agile
development Optional (no RR
required):
(slides) Hope is a Strategy
(Well, Sort Of),
Waltzing with Bears
ch. 8-9 (p.53-72)
14 | M 11/23 | Brief Status Report show & tell. Copyright vs. RR (special
Trademark vs. Patent | instructions in
Finish discussion of human nature and | ys |icense: Canvas);
agile development Everything to Know, f; _
. . major progress
Intellectual Property Pat_entprgthnfor toward MVP
(SL: EM) Roles: Inventor, Patent Agent, w
Attorney, & Examiner (but the readings | d10ventions,
address these indirectly, so talk with Which License
the professor about what to do) Should | Use? MIT
vs. Apache vs. GPL,
Equity MIT License,
(SL:) Programmed inequality : how Britain US Patent 8.533.274
dlscarded women technologists and lost its (left column down
edge in computing
through “Summary”,
(slides) and right column
down through claim
Please read the special instructions in | 52).
Canvas about how to write your RR.
Hicks
Programmed
Inequality,
Introduction (p. 1-18)
11/30- Final Demo 491: MVP demo
12/4 491: 12/1-12/3 Schedule 30 minutes 391: feedback on

with professor over Zoom: 15 min.
Demo (recorded) + 15 min private
feedback

391: by 12/4 watch and give feedback
on all 491 presentations (no late penalty
if done by 12/8)

demos

15

https://docs.google.com/presentation/d/1B8bW5CMViFZ6s9DjP864gMVl3XmRB_DU-TI7j-3G8no/edit?usp=sharing
https://drive.google.com/file/d/1YzWT7qGPynyWjcBhPt-M4JMyECYe-Koh/view?usp=sharing
https://drive.google.com/file/d/1YzWT7qGPynyWjcBhPt-M4JMyECYe-Koh/view?usp=sharing
https://drive.google.com/file/d/1YzWT7qGPynyWjcBhPt-M4JMyECYe-Koh/view?usp=sharing
https://hbr.org/2012/10/hope-is-a-strategy-well-sort-o
https://hbr.org/2012/10/hope-is-a-strategy-well-sort-o
https://docs.google.com/presentation/d/1UMgKsP3mom6b7HD_5NcLcWxuZFltPSGFFHMqlLo4ICc/edit?usp=sharing
https://www.upcounsel.com/copyright-trademark-patent-license
https://www.upcounsel.com/copyright-trademark-patent-license
https://www.upcounsel.com/copyright-trademark-patent-license
https://www.upcounsel.com/copyright-trademark-patent-license
https://www.wipo.int/wipo_magazine/en/2017/01/article_0002.html
https://www.wipo.int/wipo_magazine/en/2017/01/article_0002.html
https://www.wipo.int/wipo_magazine/en/2017/01/article_0002.html
https://exygy.com/blog/which-license-should-i-use-mit-vs-apache-vs-gpl
https://exygy.com/blog/which-license-should-i-use-mit-vs-apache-vs-gpl
https://exygy.com/blog/which-license-should-i-use-mit-vs-apache-vs-gpl
https://opensource.org/licenses/MIT
https://patents.google.com/patent/US8533274B2/en

* For each chapter in Brooks, read the corresponding section in ch. 19, where he reflects on his
original writing 20 years later.

Preview of CPS 392

While CPS 391 (2 credits) includes a lot of reading, writing, and discussion, CPS 392 is simply
observing the second half of all the projects continuing in CPS 492. CPS 391 students will
observe major presentations and give some feedback. Observing how projects progress is
important for everyone, and doubly so for students who will be in CPS 491-492 next year.

Preview of CPS 492

Since CPS 491 (2 credits) and 492 (4 credits) are focused on a single year-long project, it's
helpful to understand the whole project schedule. So here’s an outline of next semester.

Week # Major Milestone

1 Project Demo: MVP plus

2 User Study report; Project backlog defines complete product

3

4 Design Document

5

6 Handoff Document, part 1; revised Design Document

7 Project Demo: Complete Product

8 User Study report; Project backlog defines final product

9 Handoff Document, part 2; revised Design Document

10

11 Documentation complete

12 Documentation accepted by customer and professor;
Updated User Study report (test that improvements worked)

13 Project Demo: Final Product

14 Reflection and Celebration

16

	CPS 391: Junior Seminar I
	CPS 491: Software Engineering Project I
	Professor
	CPS 391: Junior Seminar I (2 credits)
	CPS 491: Software Engineering Project I (2 credits)
	Course Objectives
	Resources
	Required Texts (These will also be used for CPS 492.)
	Recommended Texts:
	Online:

	Course Requirements and Evaluation
	Reading and Discussion
	Leading Class Session(s)
	Software Project (CPS 491 only)
	Status Reports
	Presentations
	Documents Requiring Customer and Department Signatures
	Code
	Documentation (section added 9/21/2020)

	Grading

	Honesty
	Extensions and Incompletes
	Attendance Policy
	Accommodations for Students with Disabilities
	Course Schedule (subject to change)
	Preview of CPS 392
	Preview of CPS 492

