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0:00:00 Scott Hirleman 
The following is a message from George Trujillo, a data strategist at DataStax. As a 
reminder, DataStax is the only financial sponsor of Data Mesh Radio, in the Data 
Mesh Learning Community at this time. I work with George and I would highly 
recommend speaking with him, it's always a fun conversation. 
 
0:00:19 George Trujillo:  
One of the key value propositions of a Data Mesh is empowering lines of business to 
innovate with data. So it's been really exciting for me personally, to see Data Mesh in 
practice and how it's maturing. This is a significant organizational transformation, so 
it must be well understood. Empowering developers, analysts, and data scientists 
with downstream data has been part of my personal data journey that reemphasized 
the importance of reducing complexity in real-time data ecosystems, and the 
criticality of picking the right real time data technology stack. I'm always open and 
welcome the opportunity to share experiences and ideas around executing a Data 
Mesh strategy. Feel free to email or connect with me on LinkedIn if you'd like to talk 
about real time data ecosystems, data management strategies, or Data Mesh. My 
contact information can be found in the notes below. Thank you. 
LinkedIn: https://www.linkedin.com/in/georgetrujillo/ 
Email: george.trujillo@datastax.com. 
 
0:01:11 Scott Hirleman  
A written transcript of this episode is provided by Starburst. For more information, 
you can see the show notes. 
 
0:01:18 Adrian Estala  
Welcome to Data Mesh Radio with your host, Scott Hirleman, sponsored by 
Starburst. This is Adrian Estala, VP and Field CDO at Starburst and host of Data Mesh 
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TV. Starburst is the leading contributor to Trino, the open source project and the Data 
Mesh For Dummies book that I cowrote with Colleen Tartow and Andy Mott. To claim 
your free book, head over to starburst.io.  
 
0:01:48 Scott Hirleman 
Data Mesh Radio, a part of the Data as a Product Podcast Network, is a free 
community resource provided by DataStax. Data Mesh Radio is produced and hosted 
by Scott Hirleman, a co-founder of the Data Mesh Learning Community. This podcast 
is designed to help you get up to speed on a number of Data Mesh Related topics. 
Hopefully you find it useful. 
 
Creating a balanced, sustainable approach to your Data Mesh journey. Bottom line 
up front, what are you going to hear about and learn about in this episode? I 
interviewed Kiran Prakash, who's a principal engineer at ThoughtWorks. Some key 
takeaways or thoughts from Kiran's point of view. First one, potentially controversial, 
you must have exec sponsorship to move forward with your Data Mesh 
implementation. You need the top down push for necessary reorganization when 
those times come. A Scott note, personal note here, I don't think this one's actually 
controversial controversial. I just think it's one that a lot of people don't want to hear 
and that more people need to have this put in front of them. It's often ignored. 
Number two, another potentially controversial one, Data Mesh, if done well, doesn't 
need to have a huge barrier to entry. That's a misconception. If you think about 
gradual improvement and evolution, you'll be on the right track. So this one is about 
that people think that you have to have your entire vision laid out and you have to 
have buy in from everyone and that you have to have everything kind of teed up 
before you get moving. You can have it be pretty small and you don't have to be like, 
this is our new data strategy. It's like, this is what we're using to try and accomplish 
these few goals to start.  
 
Number three, "the curse of the data lake monster." This was an article Kiran had put 
together in a concept and it was like the data field of dreams. There was this 
expectation that if you build a great data lake, value will just happen. If you ingest 
and process as much data as you can, the use cases will just happen. They'll just 
emerge. And it really wasn't the case. So we should apply that product thinking to 
focus on what matters. So he was thinking about this in 2019 and then Data Mesh 
kind of came along as well a couple of months after he put out his blog post. 
Number four, this curse was a manifestation of Conway's law. The strong separation 
between IT and the business led to mismatched goals and subpar outcomes. With 
microservices, that started to be much less of an issue on the operational plane. So 
why not try to do some of the same things with data? 
 
Number five, it's easy to lose sight of Conway's law and aim for distributed 
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architecture first, but the organizations doing Data Mesh well are changing their 
architecture and cultural approaches and patterns together. Don't try to do the 
architecture first. You really don't know what your key challenges will be just yet. You 
don't know what you're going to need to tackle via your architecture. And so a lot of 
people are making decisions that aren't really going to help tackle their specific 
challenges. Number six, it's very important to have a target operating model and get 
clear on your organizational vision and purpose around data. How will you actually 
use data? How will this be part of, you know, like I talk a lot about data practice and 
you need to create kind of that data practice concept of how does this work in day to 
day operations? Number seven, once you have an organizational vision and purpose, 
domain should start setting goals aligned to that vision and purpose. You know, 
don't have them set goals before you have that vision and purpose. So once you start 
to do that, then you can start to do that around data.  
 
Number eight, as others have noticed, don't get ahead of yourself. Work in thin slices 
for your Data Mesh implementation. Stay balanced at an overall level between the 
Data Mesh principles as you add more and more thin slices. But don't try to solve all 
problems up front. And if something doesn't require a ton of governance, that's not a 
red flag, right? If all of your first 20 use cases don't require very much governance, 
that's a big red flag. So, you want to stay that kind of balanced, but each one thin 
slice may be kind of differently balanced. Number nine, if you modernize your legacy 
software, but don't change the organization, expect to do the same modernization in 
about five years. Data how we're trying to approach data in Data Mesh is about using 
software as you know approaches and it's the same thing here. If you don't change 
the organization, expect to keep trying to do this same thing every, you know, three 
to five years. 
 
Number 10, to really get to a scalable approach to Data Mesh, you should look for 
organizational and process reuse as much as you look for tech and architectural and 
data reuse. Number 11, move from measuring outputs to measuring value outcomes. 
Sounds simple. It isn't. And it's crucial to changing your mindset around how you 
approach data. Number 12, potentially controversial, a really key way to look at your 
progress is to use the four key metrics from the DORA, right, around DevOps to 
measure how well you are doing in your software engineering practices in general. A 
key aspect of Data Mesh is about applying good software engineering practices to 
data after all. Number 13, if you want to measure the value of your data work, you 
need to break it down into tangible objectives. Ask the owners of those objectives to 
provide the value of meeting the objectives. Then look to measure how much data 
work contributed to achieving those objectives, right? You need to think about this 
and break it down when you think about the value because otherwise people say, 
what was the value of this? What is the value of what you're trying to achieve? You 
tell me, and then we'll talk about how much data work actually helped you achieve 
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those or tackle those. 
 
Number 14, think of a use case as a value hypothesis. You are making a bet that 
something will have value. It's okay to be wrong. That's the nature of betting, but 
limit the scope of your mistakes so you learn and adjust towards value instead of 
making big mistakes and then all of a sudden there's this big, you know, hullabaloo 
because this thing didn't go well, right? Make it so that these mistakes are the 
learning opportunities so you pivot towards the value. Number 15, another potentially 
controversial one, if you don't have a culture where it's okay to fail, it will be very hard 
to do Data Mesh well. Personal note on here, I think it will essentially be impossible to 
do Data Mesh well if you don't have a culture where it's okay to fail. Number 16, many 
times what people consider minimum viable product is neither minimum nor viable. 
This is often due to a culture where you can't test things with users when they're still 
very rough. If you don't have this, that will limit your success with Data Mesh. 
However, most people are reasonable. So if you read them in that this will be a rough 
sketch or first iteration, they usually are on board to help you iterate towards the 
good. 
 
Number 17, "architecture is about the important stuff, whatever that is." This was a 
quote by Ralph Johnson that Martin Fowler likes to say. Number 18, always think 
about necessary capabilities and build to those. The most important are those 
capabilities you need now. Don't get ahead of yourself, right? Don't lock yourself in so 
you can't meet future capability needs. But as well, people are trying to focus too 
much on getting to all of the capabilities, because this is how we've always built data 
is to have all of the features, you know, all of the data platform, all of the data 
offerings, it's about the features, it's about the cool tech, it's not about the 
capabilities, flip that, think about the capabilities. And finally, number 19, the data 
platform is really a misnomer. There will be multiple platforms, users care about their 
services, not if you have one platform or five or more, right? Don't have platforms 
brawl where you have, you know, 20 different platforms. But don't over centralize. 
That usually leads to scaling and flexibility challenges. That's part of the thing that a 
lot of Data Mesh likes to kind of approach and help us solve. With that bottom line up 
front done, let's jump into the interview. 
 
Okay, very, very excited for today's episode. I've got Kiran Prakash here, who's the 
principal engineer at Thoughtworks. Yes, another person from the Thoughtworks 
Germany team, but I really like talking with them. They've been putting out a lot of 
great content. We're going to cover a lot of different things, but kind of one of the 
things that we're going to talk about is this, where a lot of people have gotten 
burned of that kind of the curse of the data lake monster. And then when you start to 
say, we're going to do a new approach to data, then people start to go, didn't we 
already get this? Wasn't this a thing that we already tried and, you know, how that 
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difference and how we can think about that with Data Mesh. When you really are 
looking at a Data Mesh implementation, you need what Kiran was saying is a 
balanced stool, right? You can't go overly technical, you can't go overly 
organizational. You have to kind of have that people process technology and that you 
don't try to overcorrect in one way, but that it's also okay to go a little further in one at 
one point as long as you're catching up and that you're not getting super, super 
unbalanced because then the stool falls over. How do we constantly think about 
getting out of your own way and shipping value early and often? 
 
This is something where a lot of people are treating Data Mesh not as an incremental 
build. They're treating it like a data project instead of data as a product and that 
you're building and that you get a minimum viable product out and that it's not, I 
have delivered the project and it is done. And then where should we look at building 
out the necessary tech for Data Mesh? Where to start, where people should actually 
look at it, how people can actually think about a data product and how you can kind 
of measure your progress as to whether you're doing well or not. So before we get to 
that, Kiran, if you don't mind giving people a bit of a background on yourself and 
then we can get into the conversation at hand. 
 
0:13:30 Kiran Prakash 
Yeah, sure. Hi, Scott. Nice to have a chat with you. And my name is Kiran. I'm a 
principal engineer from Thoughtworks based out of Berlin. I've been with 
Thoughtworks for close to 18 years now and started out as a full stack engineer. But 
over the last three or four years, I've been exclusively focused on data. I'm one of the 
senior leaders in our data and AI service line. And over the last two and a half, three 
years, exclusively on Data Mesh, I've been helping different clients sort of implement 
their Data Mesh consulting, consulting them on how to start their journey. And yeah, 
recently I've been playing the role of technical principal on arguably one of the 
largest Data Mesh implementations we have at Roche. I can't even take the name 
because the story is out there. Probably we have written extensively about it. Yeah, so 
that's my brief background. 
 
0:14:23 Scott Hirleman 
Yeah. And we had Ammara on as well and we've had Omar at Roche on as well, so. 
 
0:14:28 Kiran Prakash 
Cool. You had our full team here. 
 
0:14:31 Scott Hirleman 
Yeah, pretty much. So why don't we start with kind of your concept of what you've 
been calling the curse of the data lake monster and what that is and kind of how 
that manifests, but also like what does that mean? Why is that important when 
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people are thinking about implementing Data Mesh? 
 
0:14:51 Kiran Prakash  
Yeah, so the curse of the data lake monster is a blog post I co-published with one of 
my colleagues in 2019, even before Data Mesh was a big thing, right? Because one of 
the things I was seeing often done in many of our large clients was building data 
platforms, right? And their idea of building data platforms is install Hadoop or 
whatever the latest big data technology out there, just connect it to all your sort of 
operational system ingest terabytes of data and then sort of hoping that somebody 
will come and make use of it, right? And the second step of somebody coming and 
using the data to do something productive almost never happened. It rarely ever 
happened, right? And this is where in that blog post, we make an argument saying 
that, hey, why can't we apply the same product thinking principle to the world of 
data? Why don't we sort of build this in thin slices instead of starting it as yet another 
platform initiative and just measuring how many terabytes of data I'm ingesting and 
how many tables I'm creating and what not. But what about the value? How much 
value are you generating? How much business value are you generating? Is there 
anybody even using it to build cool stuff within your organization? 
 
And this is what we call the curse of data lake monster because just we saw this 
pattern happening over and over and over again in many different organizations. I 
can think of a few reasons why this happened, right looking back, and one of the 
main reason is at least in large organizations, this separation between sort of 
business and IT, right? And business had their own problem and then sort of IT was a 
bunch of technically minded people and for them, everything looks like nails, right? 
So it's just one more platform away from solving all the problems within the 
organization. And for engineers, it was an easy thing to do, right? It was cool thing to 
do also like this new technology, which can process all this data and scale, 
horizontally scale and what not. And it was too much of an hassle to talk to business 
and talk about are they finding this useful? Are they using it to build anything, 
generate value, right? It was too much, right? It was basically Conway's law playing it 
out. There was this artificial separation between and business and platform, which I 
think is probably the primary reason. 
 
That sort of changed with around 2014, 2015 with coming of sort of microservices, 
right? The organizations start thinking about having smaller teams aligned with 
their business domain who is sort of quickly responsive to the needs of that 
particular domain. And somehow like the world of data kind of stayed oblivious to it 
all along until very recently 2019, until someone coined this term and started talking 
widely about it. I think that's also because maybe the area of data engineering was 
sort of too specialized and it was a bit removed from the world of general software 
engineering, which was kind of embracing this practice of domain driven design, 
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microservices, working closely with the business domain, shipping sort of things 
faster, using cloud to sort of do all of this. And I think I'm glad that this is changing. 
I'm glad that people are kind of embracing this domain driven design within the 
world of data as well and starting to think about, okay, not just like building more 
platforms, but how do I work with the business to sort of shift value, create business 
value, right? I'm really glad that this is at least happening right now. 
 
0:18:49 Scott Hirleman 
And do you think then when we're looking at something like Data Mesh and that... 
Yes, it's applying some of the microservices practices and I love when somebody just 
says, "Oh, Data Mesh is just microservices for data. And it's like, "Oh, my sweet 
summer child." No, no, there's a lot more. But yes, that is an important pattern to take 
into to account. But like we've seen decentralization not work in the past because 
people have gone to data marts and there wasn't any focus on, you know, 
decentralize all the things instead of decentralize where it makes sense and 
centralize where it makes sense and have coordination or kind of have that federated 
approach where you have a centralized governing body of certain aspects, but that 
you're giving as much of the power as you can. You put it in the people's hands who 
actually have the context to make the kind of proper day to day decisions, and so 
that you're not having to... If you have to ramp up on context for every decision, then 
that's why all the decisions take so long and why often they're bad and why they're 
often defensive because you don't actually know all of the potential issues. 
 
So it's like if I just feel like I don't know what are my unknown unknowns or whatever, 
then I'm just gonna say no. But when you think about what we went through with 
data lake, and you're talking to companies about Data Mesh and you start to say, 
"Okay, we're gonna decentralize this stuff after data lake was promised as this new 
thing where it's distributed but not decentralized architecture. And how is this so 
different? Are you finding that people are getting it because they just didn't see the 
value from the data lake or are they just frustrated from yet another approach? And it 
feels like... And this is why people think that Data Mesh is a technology or anything 
like that. Are you finding that it was a tougher sell two years ago and now it's not as 
much and people are really starting to get it? Or like I'm just trying to figure out like if 
somebody is considering it in their own organization, where do you think there is the 
kind of the failures of Data Lake in a lot of ways? Is that going to help or hinder them 
in these conversations? 
 
0:21:17 Kiran Prakash  
Right, right. First of all, I don't think... We are still very early on in the journey, right? I 
still don't find it sort of easy to convince somebody on Data Mesh. It's still... People 
need to sort of reflect on their own experience and then sort of be willing to try it and 
then sort of learn from that, right? So it's still not a given or an easy sell. We are far 
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too early in the journey. Having said that, wow, how this thing is different is if you look 
at the first two principles of Data Mesh, right? Which is about domain driven sort of 
domain aligned teams and data as a product, it has very little to do with technology. 
It is about organizational change. It is about basically aligning your data engineering 
team closer to the business where they can take the call. 
 
And data as a product is primarily about applying product thinking to data is am I 
building the right thing which is valuable? Am I thinking about the consumer who 
will be using it? Am I thinking about the various modes of access that they'll be 
consuming this data from, right? And am I building something that makes them 
happy? All of this is sort of product thinking, and only later it is about technology 
change, right? It's about once you federate those teams, do you have the platform 
and the governance capabilities to sort of make these federated teams sort of 
successful. I think that's the biggest shift which we try to sort of communicate over 
and over again. And some organizations have started getting it, right. And this is why 
I think it could make a big difference. 
 
And this is how it is different from, let's say, previous approaches to just sort of 
distribute your architecture in terms of like data lakes, many different data lakes on 
the cloud and whatnot. So this is... Data Mesh we say it's a sociotechnical paradigm. 
It's not enough if you just sort of distribute your architecture, but you also need to 
change your organization to continue on sort of evolving your technology, right? 
Otherwise you'll succumb to the Conway's Law, right? If you don't change your 
organization and if you only change your tech, pretty soon you will see that the tech 
will start reflecting the communication patterns of your teams. And that means that 
if you have like one of teams far remote from business, you'll soon fall back onto 
something that looked like the centralized data lakes or data warehouse. 
 
And I see that people are sort of getting that message. And at least I, whenever I 
speak to new potential client, I try to sort of reinforce this aspect saying that, "Hey, 
adopting Data Mesh has implications beyond just technology and you need to be 
ready for it." Which also means that it... Like one of the implication of this is in at least 
in large organization a successful Data Mesh transformation needs some kind of a 
top down push or a top down mandate because it's not easy to affect these sort of 
reorganizations in terms of domain aligned teams and maybe changing your 
reporting structure for having your engineering teams not just be accountable for IT 
but also for business. These are all not sort of easy change. It needs some blessings 
from sort of top management to sort of make it happen. 
 
0:24:42 Scott Hirleman 
Yeah, there's not a magic wand that you just wave and this happens. But I think 
Vanya Seth was on recently a colleague of yours and she was talking about kind of 
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selecting your blast radius and being like, "Hey, we shouldn't have everything. We 
shouldn't put all of our eggs in one basket, we shouldn't try to completely rearrange 
the entire organization in just a very, very short period of time or anything like that." 
So how do you think about that and how do you think about like what a lot of people 
have talked about is thin slices. And maybe if you could define that 'cause it comes 
up a lot but I don't think it gets defined very often. But then talk about that kind of 
balanced stool approach as to you're adding your thin slices on, and if you keep 
having like tilted slice and they're tilted in the same way, you're not gonna build that 
balanced stool as you're going, but that you're also not trying to say, "Okay, we are 
going to need to reorg when we think about the way that we're doing this." But I'm 
not going to reorg the entire company to do Data Mesh, and I'm not gonna say, 
domains you now own all of your data versus enabling domains to own their data. 
 
So if you could talk about that kind of early days and how this approach and thin 
slicing really works and how people can actually think about, "If I'm early in my 
journey, how should I think about it?" And maybe even as they progress in their 
journey, how do you keep adding that it's only thin slicing that you're not all of a 
sudden trying to go into big scale project mode instead of kind of that incremental 
product mode. 
 
0:26:25 Kiran Prakash  
Yeah. Yeah, I think that's a really good question and I'll take my time to sort of 
probably answer this because one of the things I'm seeing there is people sort of 
perceive Data Mesh as a huge barrier for entry, right? You need to do all of these 
organizational change, change your reporting structure for it to be successful, right? 
While we keep saying the opposite, right? So you need to be clear about your target 
operating model. You need to be clear about where you are going, right? So we tend 
to use an operating model, which is based on a model called Edge, which basically 
the main concept there is that you need to have your organizational sort of vision 
and purpose clarified. Like how do you want to use your data to do what and what is 
your strategy to sort of get there, right? How do you want to leverage data in your 
organization? Sort of have that purpose vision sort of clarified.  
 
And then sort of tell your domains to come up with sort of goals, which is aligned 
with your broader organizational vision. And also come up not just goals, but also 
value hypothesis in terms of how do they want to achieve these goals and how do 
you measure when you sort of you're moving in the right direction. So how does it 
look if this hypothesis sort of comes true, right? It could be things like, "I reduced my 
lead time from X days to Y days, or it could be that I reduce my inventory sort of 
holding cost by X dollars." So it could be like, "This is sort of the hypothesis you're 
making and the measure is this thing like lead time or holding cost or customer 
satisfaction, anything that you can actually measure, right? 
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Once you do that, you can give the domain sort of autonomy to shape their 
approach. Like what platforms do they wanna build on? How does it align with the 
broader sort of data strategy of the organization and what is the first thing they're 
going to build? What is the first use case they're going to address? And then set up 
teams who will go about sort of realizing it, right? And this is the target, this is the 
target operating model. This is how you want your organization to function in a, let's 
say mid to longer term. And you're not gonna get there on day one. And we say the 
way to get there is via thin slices. And this thin slices is not just the thin slice of 
software you're gonna build, but it's the thin slice of what is the first governance 
practices you're you're gonna put in place? What is the first thin slice of platform 
you're going to build so that these data product team can function?  
 
So it's a thin slice of all of these aspects, like thin slice of what is the software and 
data product you're going to build? What is a thin slice of platform you're going to 
put in place? And what is the thin slice of maybe the governance and organizational 
change you are going to affect in the direction of your target operating model? How 
you eventually see your organizations sort of work. The way to arrive at this thin slice, 
at least in the what we say is like, "Work backwards from your use cases." You made 
those value hypothesis, right? Which is like, if I build this data product, it'll help me 
achieve this goal, right? And you can sort of elaborate that into use case which is, I 
would want to build this data product which helps my back office team to make this 
whatever decision. Take this action based on data, and then from there, work 
backwards to identify what data products you need to build to satisfy this use case. 
What source data products do you need? And then identify like the thinnest possible 
slice you can build. Which you can put in front of that back office person or whoever 
your target user is to sort of play around. It could be the beta users, it could not be 
the final thing you'll end up building, but it could be something that the customer 
can have a look and give an early feedback on, right?  
 
And then think about sort of what platform capabilities I need to put in place. It 
could be simple things like storage, compute and maybe some access control sort of 
mechanism, right? Those are maybe the only three things you need as part of your 
platform to begin with. And as part of governance or and operating model, you start 
kind of defining what a data product owner role looks like, and you start identifying 
people and giving them that responsibility, right? So that could be the first thin slice. 
It's that you can start your journey on and you almost want to sort of evolve your 
Mesh one thin slice one domain at a time. You don't want to sort of build it all at 
once, but you want to evolve with one thin slice at a time as I defined just now. 
 
0:31:00 Scott Hirleman 
So two different things that I'd like to go down, but first let's start with I wanna get to 
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the thing where you talked about kind of measuring that value and kind of thinking 
about it ahead of time and then measuring, did we meet that and was that the 
data's fault? Was that our hypothesis fault or what, you know? But let's talk about 
how you are when you are adding these thin slices, you can get unbalanced between 
people, process and technology. And even when you're doing thin slicing you can. So 
can you give some examples of what goes wrong when you're too focused on 
organizational versus technology or technology versus organizational? Like what 
does that start to look like? And then we can talk about like how do you measure if 
you are staying balanced and how do you correct yourself if you find that you're not 
balanced? 
 
0:31:53 Kiran Prakash  
Sure. So maybe let's look at the most common pattern we see, which is framing this 
Data Mesh as like a purely technology initiative, right? So if you do that, what you 
might find is... I have this like famous quote which I like, right? Not famous, but 
something I read which is, if you... This was in regards to sort of legacy migration, and 
it applies to maybe the Data Mesh context also which is, "If you change your legacy 
software and do nothing to change your organization to sort of operate in the new 
mode, expect to do this legacy modern organization again in sort of five years", right? 
Because those sort of old habits is hard to let go. If you only sort of introduce this 
new architecture and do not sort of introduce this domain oriented data teams and 
product thinking, you can surely expect like in few months or few years down the 
line the same old habits of sharing data over a network drive and doing shadow ITs 
and building more platforms instead of building useful products, you'll start seeing 
this pattern recurring, right? 
 
So you need to pay attention to this also. Like yeah. You are building... This is a 
technology shift, right? You are kind of moving from centralized architecture to kind 
of a more of a decentralized architecture. But once you do that, you need to change 
your organization to make sure that these changes kind of stick and your 
organization sort of doesn't fall back to the old habits. So that's the one thing. 
Focusing too much on technology and framing this as a technology shift. But if you 
only sort of frame this as a organizational or a governance change, then your 
federated data product teams, they may not have the necessary tools to operate in 
this new federated environment, right? So that means that you may find different 
data product teams solving the same problem over and over again, right? Or each of 
them sort of independently figure out what is the best way to compute, do 
computation over the data, right? Like to use X tool or Y tool and how to do access 
control. How do I monitor my data products and pipeline, right? So they'll start sort of 
refiguring this... Solving these problems all over again and that's a waste, right? You 
want to provide them with a platform which makes it just easy to build and operate 
this data product and the product teams can only focus on creating value and not 
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just solving hard engineering problems over and over again, right? This is what you 
want to achieve.  
 
So basically if you kind of federate your teams and don't give them the ecosystem 
and tools to operate in this new environment, you'll see a lot of waste. You will see 
basically, yeah, people solving the same problem over and over again, or they build 
data products and each, but each one of them kind of mean... When they say data 
product, they mean a different thing. And you'll find that these data products are not 
interoperable, which kind of defeats one of the main purpose of Data Mesh which is 
that you're building this reusable data product which you can interconnect with one 
another and to create this network effect of sorts, right? So those are the risks. So you 
need to pull on both these levers at once to see that the Data Mesh is kind of a 
successful transformation sort of effort within your organization. You can't just sort of 
focus on one or the other. 
 
0:35:40 Scott Hirleman 
Yeah, it sounds like a lot of what you're talking about is almost capability silos of, if 
everybody is doing the same things over and over, they're gonna do them in different 
ways because they're trying to get to their end outcome and… 
 
0:35:51 Kiran Prakash  
Correct. 
 
0:35:52 Scott Hirleman  
And it's not even... It's waste. Think of reuse from capabilities and ways of working 
and things like that. It's not just the... This is the thing that's come up more and more 
is that people think of reuse just being about the data itself and just creating data 
products that are usable for multiple different use cases. And it's like, no, it's 
everything. When you think about product ways, you think about scaling, you think 
about you don't have everybody doing the same thing over and over. You think 
about specialization, you think about that as to within that domain, but you have 
those centers of excellence to kind of think about how do we enable people, how do 
we train people? How do we give them the capabilities to do this? How do we give 
them the capabilities to do this from a technical like technology standpoint that we 
hand them to do this easily and so that they are inherently interoperable or that it's 
somewhat difficult to make something that is not interoperable and that you provide 
them the ways of thinking and the capabilities and put that in front of them. I did 
wanna then say like how do you measure, how do you think about if you are 
unbalanced? How do you think about like seeing, "Hey, we've gone too far one way, 
or we've gone too far the other, and how do you course correct, right?” Like how do 
you measure that and how do you actually get yourself out of a bad situation? 
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0:37:20 Kiran Prakash  
Yeah. And so how do I know what do I measure? This is a tough one because I'll tell 
you what not to do. And then I'll probably sort of think of what my area of what to do. 
What not to do is sort of move away from measuring outputs to value outcomes, 
which is, it doesn't matter how many terabytes of data you're ingesting, it doesn't 
matter how many data products you built, it doesn't matter how many lines of code 
you wrote, or it doesn't matter how fast your data ingestion pipeline is. What matters 
is, is it having the desired business outcome? I remember like one of the, basically, I 
don't know who it was on LinkedIn, one of the data leaders, he was saying his theme 
for 2023 is that, where's my money? That's the ultimate measure. All the engineering 
effort that your data engineering teams are putting, is it having the desired effect on 
business? If not, maybe then you need to do something better. That means that 
maybe it could be that the teams are not clear about what is a valuable thing to 
build, which is that communication between what is clearly important for the 
domain and the business, is not sort of distilling down to your engineering teams, 
you gotta fix that. You need to make that very clear and put in place to sort of 
incentivize them to sort build what is actually valuable. 
 
And this is a problem which doesn't happen in startups, it mostly happens in 
organization because of this separation I was talking about. And you don't ever hear 
startups talking about how much data, how efficient is the data pipeline or how big 
is that big data. You'll only hear, are they profitable, are they... How fast are they 
growing, how well are they doing sort of targeted marketing and how well are they 
using data to drive new use cases. That needs to get into the front and centre, and 
then basically you need to question, that's the ultimate measure, but the problem is 
in large organization, the engineering teams may not see the direct connection. They 
see this, if you put the business metric in front of them and say that you need to do 
whatever it takes to achieve this, a lot of the time they don't see how their actions 
directly contributes towards it, because there is usually a lot more things needs to 
happen before you achieve that business outcome. Maybe there you can provide 
certain metrics which tells them are they doing job as efficiently as they can. I'm a 
big fan of these four key metrics from that DORA research, which talks about how 
fast is your pipeline and how often when you deploy do you introduce bugs. When 
something fails, how long do you take to recover from it. 
 
And what is the... On an average, of how many bugs do you introduce for X number 
of commits. Those are the things which will tell them, are they doing their software 
engineering as well as they can. And we now have well defined research which says 
that if the teams are doing this well, they'll also be in a high kind of these 
contributions of high performing businesses and engineering teams. Maybe you can 
use that, like the engineering teams, they can use these metrics to make sure that 
they are functioning as well as they can, they have all the necessary tools. For 
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example, if their lead time is too slow, it could be because maybe they don't have the 
necessary capability on the platform to deliver the data product as fast as they could. 
Or if it takes far too long to get in to production, it could be because they don't have a 
good monitoring or test automation, you need to do that and you need to put your 
focus on fixing that, and also make sure that every other data product team has that 
same capability to adapt. That's sort of my long winded answer, it's like try to see if 
the ultimate measure is the business outcome you're expecting, but if you think, or 
you should also think about your engineering teams, are they being as efficient as 
they can. And you could use something like Four Key Metrics to measure that and fix 
things where if something is missing. 
 
0:42:18 Scott Hirleman 
Yeah, the only issue with that is that nobody has any benchmark right now. It's like, 
I'm benchmarking against, huh? But I did wanna go into that, I had a really good 
episode with Pink Xu at Vista on measuring value of data work. And her perspective 
on it, and this is the right perspective, is you can't, the data team or the platform 
team can do work, but they can't actually measure the value of the work, they can 
measure the impact and somebody else... Or that you create a framework for even 
measuring that impact and then somebody else places value on that. And then you 
ask them to place value on that ahead of time, and then you can measure whether 
that value of the impact actually made sense. What you would say is, okay, we're 
going to do this work and we expect it to reduce cycle times for a new data product 
from four weeks to two weeks. What is the value of that? They're not the ones that 
can say, and that creates X amount of value, they'd go to their partners and the 
business aspects, the people that are deploying data products and saying, How 
much value does this provide? Should we prioritize it? What is that? 
 
And then you look at that and you say, one, did the data work do what we thought it 
would do, and if not, why? Oh, we reduced the cycle times from four weeks to three 
weeks, but it's still three weeks, and the reason is that the people just aren't data 
literate enough, and so we have to go and actually do one on one with them to 
onboard them every time, and even though the platform is ready to onboard them, it 
doesn't work. Is it the data works fault or is there an externality there? And then, but 
you would go to the partners and say, we're gonna provide you a way to measure 
what this impact is, but you're the one that has to provide value. How much value 
does it create to increase revenue 5%? Well, what are the other aspects of that 5% 
increase? If it's at negative operating margin, if I'm selling at a loss, maybe that's 
okay, 'cause I'm trying to take market share and that's what we're actually aiming for, 
so that 5% increase, yes, it was worth it. And so, yes, we wanna pursue that or no, our 
gross margin from a company standpoint, because this thing shot our margin up, 
our revenue up 20%, but it's at 50% margin. And the rest of our business is at 80% 
margin. All of a sudden our gross margin goes from 80% to 65% or 70%, or whatever 
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the math says. And that's a really, really bad thing.  
 
How are you actually having those conversations? And historically, when people have 
tried to say, justify your data work, it hasn't really been... It's just kind of been 
handwavy because they haven't been able to say, "I can't measure the value of the 
impact, but we can help you measure the impact." How are you finding those 
conversations actually going because the finance person wants, what was the return 
on investment on this? And you're like, Well, I've got stories for you and you can go 
talk to people and say, this is what the value of that was, but I don't inherently have a 
dollar figure for you, and that, as a former finance person that can frustrate people, 
but you have to have some sense about that. Long long question, but how do you 
think about those different things? 
 
0:46:13 Kiran Prakash  
Yeah, this is a serious problem. As I said, having this lofty goals, the engineers on the 
ground may not sort of connect to it, they don't see how every commit they're doing 
contributes towards it. That's a serious problem. And I don't have a silver bullet 
answer for it, but what do we do? We try a few things. One is that, Okay, your 
business, your organization may have that longer large goal, but can you break it 
down into tangible goals for these domains. For example, let's say, let's take retail for 
example, of course, the ultimate goal is to sort of increase your customer base, sell 
more goods, increased revenue, profitability, what not, that's the goal of the business. 
But every domain within say retail, like the customer growth, they have a specific 
goal saying that, hey, this year we are going to concentrate on this demographic, 
growing our customer base within this demographic by X percent, which is a very 
specific goal, contributing towards an organization goal. And maybe your fulfillment 
department is just focusing on maybe decreasing the returns and the mistakes 
made in delivery and fulfilment because that is gonna contribute towards 
profitability again. And your let's say supply chain domain is focused on just making 
data-driven decisions on which suppliers to prioritize, let's say. 
 
Here, each of your domains have a specific goal which is playing towards your 
organizational goal, and hopefully your domain is small enough that the data team 
can directly connect to it, and they don't have 100 things to worry about, they have 
one thing. Okay, I'm building data product which allows my marketing team to do 
targeted campaigns, and the measure is that, are we sort of increasing my customer 
base in that demographic? That's sort of easy to measure. Of course, even there, it is 
not a single straight line because you might be building the brilliant data product 
and generating insights, but what if your marketing campaign is not working? What 
if the content is kind of missing? Those things are there and there is no perfect 
answer to it, but hopefully breaking it down to sort of smaller domains and modules 
and having your smaller teams, the problem becomes easier to spot and unfix. And 
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even if something fails it only fails in something, a local domain and it doesn't 
spectacularly blow up, this goes back to that blast radius, you're kind of limiting the 
blast radius within a particular sort of domain.  
 
That's how we think about it, which is, yeah. You still need to think about business, 
but maybe create smaller goals which are tangible enough that the data 
engineering teams can also sort of connect with and, yeah. And see... Do these 
experiments. Also make sure that it doesn't sort of, the feedback loop of once you do 
something and to know whether it has worked or not, it shouldn't take an year or two 
years, you should know in let's say a matter days or weeks. Try and shorten that 
feedback loop. Those are the things we can do, I think. 
 
0:49:52 Scott Hirleman 
And I'm trying to pin you down and I don't think, you said you don't have the silver 
bullet, you don't have the magic wand, but like, okay, the marketing team wants to 
increase conversion rate, they're gonna run an A/B test, and they're gonna try these 
different things, and you've got, you gotta measure your baseline, Sadi Martin was 
the one that was like, all these people are doing A/B tests and they're never 
measuring their baseline, what are you doing? But you do an A/B test and your 
conversion rate starts at 7%, and A is 6.85% and B is 6.7%. What was the value of not 
changing without running that experiment? The value of keeping it as it was and 
understanding that that data work had value, even though the answer was stay the 
course, don't change. This is where people get into, not experiments, they get into 
low hanging fruit, and you're only looking for low hanging fruit so that the only wins 
you're getting our sure wins and you're only going for very sure things, and usually 
those aren't the big, big wins, maybe you go in and you find a few big wins initially, 
but then after that, you're just playing small ball, you're playing uninteresting data 
work. 
 
Again, I'm trying to figure out, have you run across something where the data work 
was of significant value, even though the end outcome wasn't of significant value? 
Where you go, our hypothesis about the end outcome was wrong, but that doesn't 
mean the. Itself was invaluable, or was not valuable. That's a frustrating English word 
that invaluable also means extremely valuable, but that it was not valuable, and so 
how do you communicate that because you're getting into this, the value of the work 
is in making good decisions, and so then how do you add value to or how do you 
attribute value to making the right decision, because when you have finance people, 
again, they wanna talk numbers, and you go, well, the value of not going into this 
market was that we didn't spend a bunch of time and money and effort because it 
would have been a bad market for us or to go after this segment, it would have been 
a very low margin segment or a very high churn segment or whatever. How do you 
get people on board with that? Have you seen that people are on board with that, or 
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that we're still too early in how we communicate that, that people really aren't 
communicating that fact that well? 
 
0:52:54 Kiran Prakash  
Yeah, of course we see that the time. Earlier, if you remember, while I was talking 
about Lean Value Tree and the Target Operating Model, I used a term value 
hypothesis, and we often use that interchangeably with use case. And the reason 
why we say it's value hypothesis is, of course, you're making a bet, you're making an 
assumption that if I do this, something good will happen. And when you're making a 
hypothesis, there is a good chance that you're wrong, but the trick is to make small 
mistakes, not to make one big mistake, but if you can make many smaller mistake 
and learn from it, you're in the right direction. Your process of making decisions is 
right. Your outcome, it's not in your control, it could always go wrong, your hypothesis 
could be wrong, or there are other externalities that is affecting the outcome, but 
you should do what is in your control, which is about making good decisions, and 
you also hinted at that. And last part of it is also, again, culture, it should be okay to 
sort of fail, and as long as your failure is limited and it's a small experiment you're 
doing, that should be fine, and you're learning from it. 
 
That is also another culture shift of doing these smaller experiments within a stable 
product team. You're not just doing one big bang project, and then in the end you 
get something. It's like you're setting up product teams which are working on this 
hypothesis and doing experimentation and adjusting based on what they learn, or 
based on the feedback loop. And that's the best we can do, because you will be 
wrong a lot of the times, it's just that you should sort of... When you're wrong, you 
should make sure that your downside is limited and you're not spectacularly blowing 
up. That's the best we could do and that's also, for me, the core of what product 
thinking is, which is you're making these smaller bets, iterating faster, learning, 
putting software in front of your user, learning from it, and adapting. 
 
0:55:14 Scott Hirleman 
Sports betting and stuff, there's, you say, Okay, do I think this team's gonna win or 
lose, or here's the spread between these teams or whatever, but you think about a 
big, big underdog and you bet on them to win instead of win against the spread and 
you go, okay, they're gonna win, it has a big payout. And it's okay to make those bets 
if you understand, hey, I'm not gonna bankrupt myself by going for this crazy payout, 
there was one that I saw that was just kind of a meme thing of somebody had made 
this huge, huge bet, like a million plus dollar bet to win $12,000 because this team 
was so favored and it didn't go their way. And it's like, why are you making that big of 
a bet for something that's just not gonna pay you off that much, and has a huge 
downside.  
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If I can sum up a lot of what you're saying it's, so much of this is just communication, 
it's not that you say, here is the framework, I can just go into a company, that 
company, the people that are understanding the... That are asking for the ROI and 
things like that, of like, why are we making these bets? They have to understand 
here's the value of what we're doing and why these bets that didn't pay off are still of 
value. It's because we didn't make a big decision that then cost us. So you had two 
other things that I wanted to make sure we did cover as well. One was getting out of 
your way and shipping value early and often. I think a lot of what you've been saying 
kind of circles around this of just make small bets, get to things like you don't have 
to... I think of project versus product. The project, you're trying to deliver all the value 
at once. Instead of product, you're trying to build into incremental value. So how have 
you found that conversation around getting people out of their own way to ship 
value and ship early and often and to get to that incremental value and build? 
 
0:57:30 Kiran Prakash  
Yeah, I mean, this is the only way I know how to build software. I have always done 
this. And it still surprises me how uncommon it is when we talk to huge or big 
organization. And I think the last part is also this concept of, what's that, minimum 
viable product. I feel that's one of the most misinterpreted terms out there, which is 
it's not, especially we see that in a few of these big companies, especially if this 
project is IT driven, they don't want to put something in front of the business where 
they lose face. We keep hearing that so often. And the minimum viable product is 
neither minimum or a lot of the time not viable just because they made the wrong 
assumptions. And they didn't manage to test it in front of the user before it was too 
late. And yeah, and that's why we keep, at least, I started using this first thin slice 
because this conveys the term better. Especially in the context of Data Mesh, it's not 
just the first thin slice of the product you're building, but of the platform and also the 
governance changes you want to affect. 
 
And we keep reiterating that, yeah, you want to evolve your Mesh one thin slice at a 
time. Yeah, it is a difficult message. But I feel like people do get it now, right? It's not a 
revolutionary thing anymore, especially when the product ownership and those 
things becoming more popular. It's about how do we apply the same principle to the 
world of data? How do you imagine the first thin slice, which is valuable? It's primarily 
a design thing, right? It's very easy to imagine this finally big thing, which is perfect 
and polished. But it takes some practice to start imagining what is the first iteration 
which goes end to end, which derisks a lot of the assumptions that we might be 
making. And how does it look? What does that first thin slice look? And who are 
going to be my users for it? And what is the first thin slice of the supporting platform 
and the governance I need to put in place? It takes some imagination. That's what 
we do. At least that's what I like doing, help our clients come up with that approach 
and consult them on what is a viable thing that we can build, which is still useful. But 
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derisk a lot of assumptions we might be making and put you in a path where you're 
able to ship those incremental value frequently and iteratively. 
 
1:00:30 Scott Hirleman 
So Andrew Pease had talked about, to get to actual data quality, you have to put 
something in front of your consumers, your customers, or whatever of the data. But it 
has to be of good enough quality where they're not going to go, well, I can't ever 
trust this. So are you finding that some of this is also upping the data fluency, the 
data literacy of the consumers so that you can say, this is not fully baked. We need to 
collaborate. If you are not ready to collaborate, we will not work with you. Is that the 
line that you have to draw in the sand where you go, look, this is how data works. It 
isn't a 1 or a 0. We have to be collaborative on this, or it won't work. And if you're not 
going to agree to that, that's okay, but we're not going to work with you. Is that as 
drastic of a line in the sand as you have to draw? Because otherwise, again, people 
go, well, this one thing's wrong, and so I can never trust this again, right? 
 
1:01:40 Kiran Prakash 
Yeah, I don't think it's that hard a line. I think most people are reasonable when we 
talk to them and start how this is done. As I said, people have difficulty imagining 
what it might look like. What is the first iteration of it look like? And it's about 
expelling that distrust or fear that, okay, this will be set in stone. No, this is not set in 
stone. It's probably set in water. Software is malleable. We can respond to your asks 
faster. And it's about giving that confidence. And once they start seeing it, once they 
start, the team is able to iterate, incorporate feedbacks, and change stuff fast. Most 
people do come around. It's about doing it the first time, which takes a lot of effort 
and convincing. But yeah, I think it is possible. That's what we try, at least, to do. Even 
if there are distractors, once you start shipping the first iterations, most people do 
come around when they see that this is a reality. 
 
1:02:57 Scott Hirleman 
Yeah, I think it's explicit implicit, right? If you get explicit with someone and say, you 
must understand that this is not set in stone, and we're putting it in front of you so 
that we can get it to a better place, like this is... Again, I'm not delivering a project to 
you. It's not, this is your meal. I have delivered it to you, and I'm going to go away. It's 
like, hey, we're working to make this something that's where we're cooking together, 
so. I did want to hit on the last point that you wanted to talk about, which is early in 
your Data Mesh journey, how do you start to pick out your tech? What's necessary? 
What are the capabilities that you see as necessary so that people can actually think 
about what is actually a data product? How can you make this so that it is easy to 
create and maintain the data products, that you're focused on that actual product 
lifecycle and things like that?  
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So you've seen a lot of these early journeys. I would love to just turn it over to you, and 
you can just kind of wax poetic about what are some good things for people to 
actually think about, and what maybe what are the things where you go, you know 
what leave this for later, or leave this on manual mode. Don't try automated access 
control via APIs and things like that. I think people try and do that way too early, 
because it's one of the things that Zhamak is coming from the operating side of. We 
got to a place where these APIs do have automated access control, and there's 
privacy by design in them, and we need to get their data. But we're nowhere near, 
we don't even know how to really do analytical APIs very well. Do you want to 
paginate through, hey, I'm going to pull 100,000 records, I'm going to paginate 
through and grab each record individually, or can I run the filter and grab that as 
one? We don't really have a great way often of writing that in API form, so. But what 
are the things that you recommend people focus on, and maybe what are some 
antipatterns? And just kind of turn the floor over to you of when people are really 
thinking about early in their journey, what's your recommendation? What's your kind 
of advice? And where have you, what antipatterns can you help people avoid? 
 
1:05:17 Kiran Prakash 
Yeah, I think that's an interesting question, which goes in the direction of basically 
what is architecture and what kind of architecture decisions you need to make early 
on, right? I like this loose definition, or definition that by Martin Fowler, where he says 
architecture is about the important stuff, whatever that is, right? So you want to 
make these architectural decisions, and the good decisions are those which are 
basically, which are... So good architectural decisions are those which are kind of 
harder to sort of reverse. Like if you take, if you decide on something and it's sort of 
harder to decide later on, so you want to make those decisions now. Some decisions 
are easy to reverse. You don't have to worry too much about them, right? So I'll give 
you an example. So for most large organizations who want to sort of going down the 
lane they sort of, going on the Data Mesh journey, you need to be on one of the 
public clouds. I think it's very difficult to build something like this if you're in a 
completely sort of data center that you're managing on your own. You need a lot of, I 
think it's, I would say like close to impossible, right? You need to be on some sort of a 
public cloud, which gives you this horizontal scaling capabilities, infrastructure as 
code, and security by design. So that's the first thing, right?  
 
So you probably, it's a good idea to be on some public cloud if you're a large 
organization, because this decision is going to be sort of harder to reverse later on. 
You may have to sort of rebuild a lot of things. Once you're there, don't sort of go too 
big about, okay, putting the perfect platform with all of the capabilities all at once, 
which you're hinting at, right? So let's say if you have one data product team, like 
your first data product team in your domain. So what do they need to ship value? 
They probably need some storage on your public cloud. They need some way of 
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computing things. And then they probably need a way of exposing the data to its 
end users. And the end users could be other engineers who are building sort of APIs, 
or it could be your data analyst who would want to do some ad hoc analysis on the 
data, like data scientists, or data scientists who would want to sort of build some ML 
models on it, right?  
 
So what kind of capabilities you need? You need storage, compute, some way to sort 
of publish it and control sort of access on it. And if you're doing ML, you need some 
way of basically building those models and publishing them and putting them to 
sort of use, right? So build that capability so that you kind of build that end to end 
use case. Or you need probably some capabilities to ingest your data, especially if it's 
coming from, let's say, your legacy on premise systems. You need a way of securely 
sort of transferring the data from your operational systems into the cloud. So those 
will be the basic capabilities you need in the first place to ship maybe the first use 
case. But once you start to scale, once you start having more domains on board, you 
then run into a problem where the teams need to discover what other data products 
are there so that they can build on it. And you also need a way of establishing sort of 
consensus such that the teams, when they say something is a data product, they 
mean the same thing, which means that you need some maybe a centralized 
catalog where you can represent what this data product is, where you can publish 
what this is about, and people can sort of read up on it and consume it on their own 
sort of basis, right? 
 
You also probably, once the people start using this data product and it goes into 
production, you also need capabilities where the teams can monitor what is 
happening and react on failures. So you add that, right? You see where I'm going. In 
the beginning, you don't need all of it. You start with basic compute storage, some 
ingestion mechanism, and maybe a workbench for your data scientist and your data 
analyst. And then you sort of gradually build. You introduce a catalog once you have 
more domains team. They need to discover. And then you kind of harden the 
definition of what a data product is. So you need some kind of a metadata 
management tool. And then once your consumers sort of grow and they start using 
your data products in sort of mission critical sort of use cases, then you need good 
monitoring and alerting system so that you can react faster to the failures and fix 
them, right? And then as you grow, you need to sort of put together all of these 
things about fine grained access control and the way to automate it, right? And I'll be 
also honest and say that not all the technologies you need to have this federated 
team work seamlessly, it doesn't exist. We are kind of building it as we go along. 
 
One of the main areas is how do these teams sort of share data, especially if they're 
on some sort of a polyglot storage? Like let's say one team is on Redshift, another 
team is on Snowflake. How do they sort of seamlessly share this data product 
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without having to physically copy data from one cluster to another? That's a gap that 
currently exists, right? And there are no easy answer for it. There are workarounds, 
but there is no sort of very good answer for it. And also things like how do you do sort 
of very fine grained policy as code, like access control and defining policies as code? 
There are a few tools out there, but sort of nothing is perfect. All of this is evolving. I'm 
pretty sure as this technique becomes popular, these tools will start to emerge. That's 
what we saw happen with microservices, right? Like in the beginning, there was 
nothing. We were just deploying these microservices on whatever the web server we 
had. And then the Kubernetes came along, which made it easier to sort of manage 
this cluster and deploy microservices as a spec. 
 
And then we saw that the service mesh came along to kind of handle a lot of the 
common concerns, like crosscutting concerns with these microservice team, things 
like monitoring, logging, and access control. So you saw that once the technique 
became popular, that the tools evolved to fill that gap. And we are yet to see that 
with Data Mesh. It's still very early on. We are kind of fashioning the Data Mesh on the 
tools that we had for traditional data engineering and data warehouses. But things 
are changing. As these kind of techniques become popular, you will see we have 
already started seeing the tools that are specifically designed to cater for these sort 
of autonomous data products, which we say is kind of the fundamental building 
block or an architectural quantum of the Mesh. How does it actually live and transfer 
data between different data products? We are seeing different kind of solutions and 
technologies emerge for it. But it's still sort of early days, which also means that you 
don't want to over engineer your platform. You want to stay flexible. You want to do 
the bare minimum you need to solve the problem at hand and keep your options 
open for these new technologies that are emerging, which makes this much easier 
to build and operate data products. 
 
So yeah, that's my kind of approach. So don't imagine one big platform which is 
going to solve all your problems. Stay nimble. Just build enough capabilities to cater 
to your existing data product teams, and then keep your options open because this 
technique is only now becoming more popular, and we are seeing tools emerge to 
cater to that need. 
 
1:13:43 Scott Hirleman 
Yeah, and one thing that I would extract out of there, and I want to make sure that 
I'm not putting words in your mouth, but that you talked about not one big platform. 
And so you think about we're providing services, right? The users do not care if it is 
one unified platform or if it is 15 smaller platforms that work together to offer them 
services. They care about their user experience, and can they achieve what they're 
trying to do? So trying to overengineer things and create the one platform to rule 
them all is so counterproductive and such a bad antipattern, but it is the way we've 
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thought about things because we've had the one data lake to rule them all. But 
when you're thinking about decentralized data, you think about not just distributed 
systems architecture, but you think about decentralized architecture as well, and 
that you go, okay, if I am providing the self service platform to a data scientist, that's 
going to look different than if I'm providing it to a business analyst. And it's going to 
look way different than if I'm providing it to an exec, right? They want to go in and 
say, okay, I've got these questions. Okay, I've got pre canned answers that are already 
here in my dashboard. That's what they're self serving from. 
 
And if they've got other questions, and you give them the capabilities to potentially 
answer those, probably pairing with somebody rather than being like, I want all of my 
execs to be able to write complex, multithreaded SQL queries or something like that, 
where it's, "Oh okay, I need to be able to join from 15 different sources and 
understand the difference between left join, inner join, right join", all that fun stuff. 
But that it's so much about don't solve for all of your problems until you come across 
those problems. And even then, don't necessarily try to solve for them. Try to have a 
workaround until you're going to be able to easily fix later and replace with 
something when you find something that works for you, but that it's not you overly 
tie yourself to point solutions instead of as a product that's supposed to serve the 
broader set of use cases. Is that kind of, if I were to sum up a lot of what you were 
saying, is that a lot of what was kind of coming through there? 
 
1:16:19 Kiran Prakash 
Yeah, absolutely. Absolutely, yeah. And I especially like the point you made, which I 
didn't say, but I like that I want to reinforce it, which is about basically, is this just one 
platform to rule them all, right? It is not. Especially when you're a large organization, 
you are going to probably have a few platforms which cater to different needs. And 
the user definitely is not going to care. At the same time, you don't want every 
product team to build their own platform. And that's also a wrong approach, because 
platform don't ship value. The product ships value, right? So it's in a spectrum. It is 
kind of, it's not one, and it's not like one per team, but it's somewhere you need a 
handful, which kind of covers all the different engineering needs of your data 
product teams, right? Some domains are sophisticated. They have the capability to 
kind of deal with infrastructure as code. Maybe some other domains are smaller. 
They want some canned solutions or a low code platform to run with, right? So you 
need to take all of that into account. And you need the minimum number of 
platform which caters to the different ways your data product team wants to use and 
build and ship data product. 
 
1:17:43 Scott Hirleman 
Yeah, well, and it was something that you mentioned earlier about reuse, right? Like 
that reuse on the architecture side is crucial, because if you don't have that reuse, 
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then what are you doing, right? So, well, we've covered a whole heck of a lot of 
things. Is there anything that we didn't cover that you wanted to or any way that 
you'd want to kind of wrap up the episode? 
 
1:18:02 Kiran Prakash  
No, I think we spoke about a lot of things, right? Maybe just sort of reinforce. I tell this 
to all my clients is that, yeah, Data Mesh has these four principles. And you need to 
sort of make progress on each one of them, because these principles are 
interconnected and kind of they reinforce each other, right? And if you just drop one 
of those principles, let's say you drop the domain orientation or you drop, like say, 
federated governance, the others are not going to work so well, right? You need to 
make progress on each of those. But at the same time, you need to sort of lead with 
one or few of them, right? You need to sort of get that right. And I often tell that if 
you had to sort of get one of those principle right, sort of aspire to get data as 
product, right? And I think the rest of the principle kind of tend to fall into place if 
you kind of aspire at excelling at data as a product, because there's no way to do that 
right without proper domain orientation or without sort of creating a self service 
platform that enables you to scale these data product teams, have many of those 
within your organization. So maybe that's one thing to sort of wrap up and reinforce, 
which is that, yeah, if you want to sort of pick one, like pick data as a product and aim 
to get that right, and the rest will follow. 
 
1:19:28 Scott Hirleman  
There's a reason that this is Data Mesh Radio is on the Data as a Product Podcast 
Network. I think Data Mesh is a very, very big concept, but data as a product is also a 
large concept that isn't just inside Data Mesh. And I think just shipping data 
products is not data as a product, so. Well, I'm sure there's going to be a lot of people 
that would love to follow up with you. Is there any particular place you'd like them to 
or anything specific you'd like them following up about? 
 
1:19:56 Kiran Prakash  
I'm active on LinkedIn and Twitter. I'm not on any other sort of social network, so you 
can reach me on both. I'll provide the link later. You can probably look it up in the 
transcript. Yeah, I love talking about this. Data Mesh is what is occupying my mind of 
late. I'm a big sort of fan of bringing all of these good software engineering practices 
we've been following in the rest of the software engineering world to the world of 
data. This is what I'm interested in and passionate about and spend a lot of my 
waking time thinking about these days. And yeah, if you like what I said and want to 
chat more, please do reach out to me on either of these channels, and I'll be happy to 
chat. 
 
1:20:44 Scott Hirleman 
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Yeah, and we'll drop links to those in the show notes as per usual. Well, Kiran, thank 
you so much for spending the time with us here today and kind of sharing your 
expertise. And as well, thank you everyone out there for listening. 
 
1:20:56 Kiran Prakash  
Thanks a lot, Scott. 
 
1:21:00.1 SH:  
I'd again like to thank my guest today, Kiran Prakash, who's the Principal Engineer at 
Thoughtworks. You can find a link to his LinkedIn and the blog post we mentioned 
about the curse of the data lake monster in the show notes as per usual. Thank you. 
 
Thanks everyone for listening to another great guest on the Data Mesh Learning 
Podcast. Thanks again to our sponsors, especially DataStax, who actually pays for me 
fulltime to help out the Data Mesh Community. If you're looking for a scalable, 
extremely cost efficient, multi data center, multi cloud database offering and/or an 
easy to scale data streaming offering, check DataStax out. There's a link in the show 
notes. If you wanna get in touch with me, there's links in the show notes to go ahead 
and reach out. I would love to hear more about what you're doing with Data Mesh 
and how I can be helpful. So please do reach out and let me know, as well as if you'd 
like to be a guest. Check out the show notes for more information. Thanks so much. 
 
 
 


