HC Verma Solutions Fluid Mechanics

https://goo.gl/2op7Bo

http://www.learncbse.in/fluid-mechanics-hc-verma-concepts-physics-solutions/

https://goo.gl/59ipSA

https://sites.google.com/site/aplustoppernotes/hc-verma-solutions-fluid-mechanics

https://goo.al/LQhXYV

http://cbsetuts.blogspot.in/2018/01/hc-verma-solutions-fluid-mechanics.html

https://goo.gl/YWNFBP

https://goo.gl/d4pSP6

Fluid Mechanics HC Verma Concepts of Physics Solutions

Fluid Mechanics HC Verma Concepts of Physics Solutions Chapter 13

1. $p = h \rho g$

It is necessary to specify that the tap is closed. Otherwise pressure will gradually decrease, as h decrease, because, of the tap is open, the pressure at the tap is atmospheric.

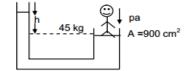
Gas

a) Pressure at the bottom of the tube should be same when considered for both limbs. From the figure are shown,

$$p_g + \rho_{Hg} \times h_2 \times g = p_a + \rho_{Hg} \times h_1 \times g$$

 $p_g = p_a + \rho_{Hg} \times g(h_1 - h_2)$

b) Pressure of mercury at the bottom of u tube


$$p = p_a + \rho_{Hg} h_1 \times g$$

From the figure shown

$$p_a + h\rho g = p_a + mg/A$$

$$\Rightarrow$$
 hpg = mg/A

$$\Rightarrow$$
 h = $\frac{m}{Ap}$

- 4. a) Force exerted at the bottom.
 - = Force due to cylindrical water colum + atm. Force

$$= A \times h \times \rho_w \times g + p_a \times A$$

=
$$A(h \rho_w g + p_a)$$

b) To find out the resultant force exerted by the sides of the glass, from the freebody, diagram of water inside the glass

$$p_a \times A + mg = A \times h \times \rho_w \times g + F_s + p_a \times A$$

 $\Rightarrow mg = A \times h \times \rho_w \times g + F_s$

This force is provided by the sides of the glass.

- 5. If the glass will be covered by a jar and the air is pumped out, the atmospheric pressure has no effect.
 - a) Force exerted on the bottom.

=
$$(h \rho_w g) \times A$$

b)
$$mg = h \times \rho_w \times g \times A \times F_s$$
.

- c) It glass of different shape is used provided the volume, height and area remain same, no change in answer will occur.
- 6. Standard atmospheric pressure is always pressure exerted by 76 cm Hg column

$$= (76 \times 13.6 \times g) \text{ Dyne/cm}^2.$$

If water is used in the barometer.

Let $h \rightarrow height$ of water column.

$$\therefore h \times \rho_w \times g$$

- 7. a) $F = P \times A = (h \rho_w \times g) A$
 - b) The force does not depend on the orientation of the rock as long as the surface area remains same.
- 8. a) $F = A h \rho g$.
 - b) The force exerted by water on the strip of width δx as shown,

$$dF = p \times A$$

$$= (x \rho g) \times A$$

c) Inside the liquid force act in every direction due to adhesion.

$$di = F \times r$$

d) The total force by the water on that side is given by

$$F = \int_{0}^{1} 20000 \text{ x} \delta x \Rightarrow F = 20,000 [x^{2}/2]_{0}^{1}$$

- e) The torque by the water on that side will be,
- HC Verma Solutions,
- HC Verma.
- Solution of HC Verma Concept of Physics,
- Concepts of Physics Part 1 HC Verma Solutions,
- HC Verma Concepts of Physics Solutions part 1 and part 2,
- HC Verma Solutions For Physics,
- hc verma part 1 pdf,
- h.c verma solutions free download full book,
- hc verma part 2 pdf,
- hc verma objective solutions,
- hc verma short answer solutions pdf,
- Physics HC Verma 1 Solutions,
- Chapter wise solutions to HC Verma's Concepts of Physics,
- HC Verma Solutions Both Parts,
- HC VERMA SOLUTIONS (CHAPTERWISE)

Read more about HC Verma Solutions Fluid Mechanics