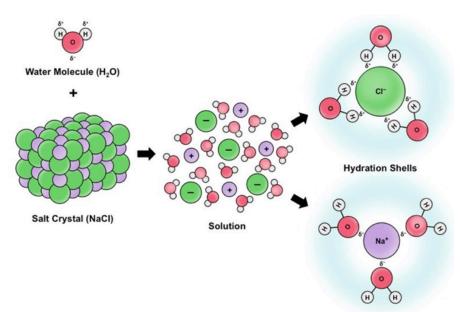
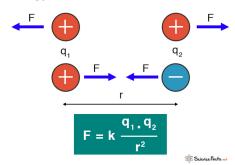

1. Unique properties of water

- Polarity The water molecule is very polar. Very strong IMAs between molecules, leading to the other properties below.
- Cohesion/Adhesion Attractive forces between water molecules (cohesion) and between water and other substances (adhesion)
- Capillary action Water climbs thin tubes called capillaries
- Surface tension A "skin" over the surface of water.
- Heat capacity Specific heat of water is 4.18 J/g°C, unusually high
- Density Water becomes less dense as it freezes
- Universal solvent Strong polar bonds means water is a very good solvent

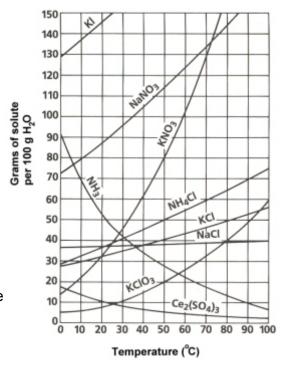
2. Solutions


- A. Composition of a solution
 - a. Solvent "dissolver." Can be polar/nonpolar, solid/liquid or gas.
 - b. Solute "dissolvee." Can be polar/nonpolar/ionic. Can be solid/liquid or gas.
 - Solutions vs suspensions vs colloids Differ in terms of particle size. Suspensions large particle size, settle over time. Solution small particle size, does not settle.
 - Tyndall effect Beam of light or laser reflects off of colloid particles.

B. Solvation (dissolution) process


- Dissociation Particles are pulled apart from one another due to their attractions to water molecules
 - i. IMA's & sphere of hydration positive and negative ends of water molecules (solvent) attract to the opposite charges on the solute, surrounding and dividing them.
 - ii. "Like dissolves like" Solutes with charges (ionic/polar) dissolve in polar solvents.

 Nonpolar solutes dissolve in nonpolar solvents

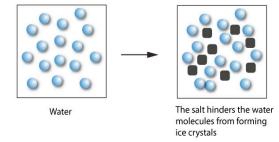


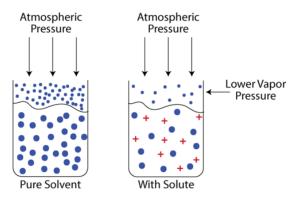
C. Solubility

a. Lattice energy & Coulomb's law

- Saturation point Max amount of solute is dissolved.
 Less than this is "unsaturated."
- c. Supersaturation Can manipulate temperature to get above saturation point
- d. Effects on solubility
 - i. Temperature Higher temps allow more solute to dissolve (reverse for gasses)
 - ii. Pressure Higher pressure causes more solubility of gas solutes

D. Concentration


- a. % by mass/volume mass solute/mass solution * 100 (or volume)
- b. PPT/PPM/PPB Parts per thousand, per million, per billion
- c. Molarity (M) Moles solute / Liter solution
- d. Molality (m) Moles solute / kg solvent


E. Dilutions

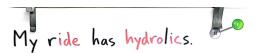
- a. Stock solution Highly concentration solutions meant for storage. Diluted to the desired concentration
- b. Dilution equation (Rodrigo's Law): M₁V₁=M₂V₂

F. Colligative properties

- a. Freezing point depression Adding solute to a solution lowers the freezing point temperature by disrupting crystal formation
 - i. $\Delta T = iK_f m$
 - 1. K_f for water = 1.86 °C kg/mol
 - 2. m = molality
 - 3. i = van't hoff factor. # of dissolved particles in solution
- Boiling point elevation Adding solute to a solution raises the boiling point temperature by making it more difficult for particles to vaporize
 - i. $\Delta T = iK_h m$
 - 1. K_b for water = 0.512 °C kg/mol,
 - 2. m = molality
 - 3. i = van't hoff

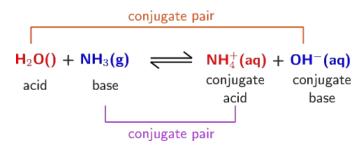
3. Acids/Bases

A. Properties/Uses

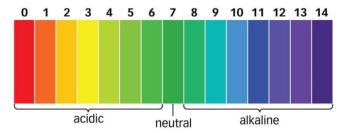

Acids	Base	
Taste sour	Taste bitter	
Feels like a burn	Feels slippery	
Turns litmus red	Turns litmus blue	
Corrosive to metals/stone	Corrosive to organic tissues	
Electrolyte	Electrolyte	
Neutralize bases	Neutralize acids	
pH < 7	pH > 7	
Increase H ₃ O⁺ in aqueous solution	Increase OH- in aqueous solution	
Uses: Stomach acid, citrus, carbonic acid, acid rain	Uses: Cleaners, soaps, drain opener, antacids	

B. Naming Acids

- a. Binary: Hydro (root) -ic acid
 - i. Ex: HF_(aq) Hydrofluoric acid
- b. Ternary:
 - i. -ite: (root) -ous acid
 - 1. Ex: H₂SO_{3(aq)} Sulfurous acid
 - ii. -ate: (root) -ic acid
 - 1. Ex: H₂SO_{4(aq)} Sulfuric acid


C. Definitions

- a. Svante Arrhenius
 - i. Acids: Donate H⁺ (proton)
 - 1. Ex: HCl, H₂SO₄, H₂CO₃
 - ii. Bases: Donate OH-
 - 1. Ex: NaOH, KOH, Ca(OH)₂
- b. Bronsted-Lowry
 - i. Acids: Donate H⁺
 - 1. Same examples
 - ii. Bases: Take H⁺
 - 1. Ex: NH₃
 - iii. Conjugate acid/base pairs
 - 1. Ex: Pictured at right
- c. Lewis
 - i. Acids: Take electron pairs. Electrophile
 - ii. Bases: Donate electron pairs. Nucleophile
- D. Self ionization of water Acid/base interactions happen naturally in water
 - a. $H_2O + H_2O \longleftrightarrow H_3O^+ + OH^-$
 - b. $K_w = [H_3O^+] \times [OH^-] = [10^{-7}] \times [10^{-7}] = 10^{-14}$


I ate something icky

E. pH scale

a. Logarithmic scales - pH is base 10, meaning each step on the scale is 10x more acidic/basic than the previous. Ex: pH 5 is 10x more acidic than pH 6.

- b. $pH = -log[H_3O^+]$
- c. $pOH = -log[OH^{-}]$
- d. pH + pOH = 14

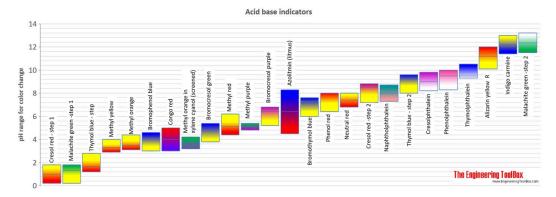
F. Strong vs weak acids/bases

- a. Strong acids Assume the following reaction: $HA + H_2O \rightarrow H_3O^+ + A^$
 - i. Dissociation constant $K_a = [products]/[reactants] = [H_3O^+][A^-] / [HA][H_2O]$
 - ii. For strong acids, $K_a >> 1$. Assume that all HA becomes H_3O^+ , so [HA] = [H_3O^+]. May use [HA] in calculating pH values.
 - iii. 7 common strong acids: HCl, HBr, Hl, HNO₃, HClO₃, HClO₄ and H₂SO₄

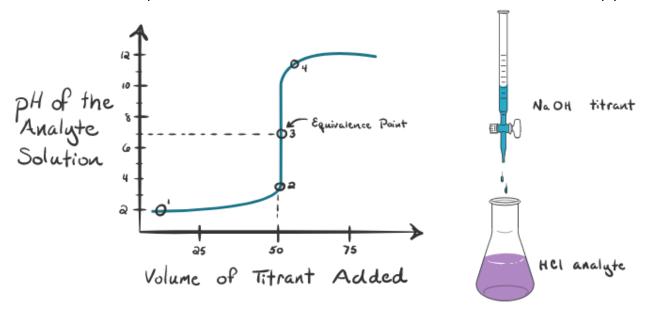
b. Strong bases

- i. Exact same assumption as for strong acids. Kb >> 1
- ii. Assume that all base dissociates into OH-. [Base] = [OH-]. Use [base] to calculate pOH.

c. Weak acids/bases


- i. Dissociation constants Ka & Kb > 1 (quite small).
- ii. Cannot assume that all acid/base dissociates, therefore cannot directly calculate pH or pOH. (i.e. [HA] does not equal [H₃O⁺])
- iii. ICE tables & 5% rule: Stands for Initial concentration, change, equilibrium concentration

	HCN(aq) — H ⁺ (aq) + CN ⁻ (aq)		
Initial concentration (M)	0.15	0	0
Change (M)	-x	+ <i>x</i>	+x
Equilibrium concentration (M)	0.15 – <i>x</i>	X	Х


 K_a for HCN = 3.5x10⁻⁴ Solve for [H+] (x in table above)

- d. Relationship between K_a & K_b for an acid and its conjugate base pair
 - i. $K_a \times K_b = K_w$
 - ii. $pK_a + pK_b = 14$
- e. Buffers Once again assume the following reaction: $HA + H_2O \rightarrow H_3O^+ + A^$
 - i. Solutions of weak acids / weak bases with one of their salts contain species of both reactants and products. Some acid does not ionize and remains in solution.
 - 1. Example: A solution of acetic acid $(HC_2H_3O_2)$ contains mostly the acid, very little of the conjugate base (acetate ion $C_2H_3O_2^{-1}$). The solution can be "buffered" by adding another source of acetate, like sodium acetate $NaC_2H_3O_2$
 - ii. Buffered solutions resist changes to changes in pH.
 - 1. Addition of an acid reacts with A-, pushes equilibrium left.
 - 2. Addition of a base reacts with HA
 - iii. Henderson Hasselbach Equation

f. <u>pH indicators</u> - Usually weak acids/bases. The acid is one color, the conjugate base another. When added to solution, turns color at a specific pH as other acids or bases are added, shifting the equilibrium.

4. Titrations - Technique used to determine the concentration of an unknown solution. Setup pictured below.

- A. At the equivalence point, moles of base titrant added = moles of acid analyte below. The equation below applies
 - a. MaVa = MbVb
- B. Equation above only works when acid and base combine in 1/1 ratio. If not, treat as any other volume solution stoichiometry problem.