
●​ ACISM: Aho-Corasick Interleaved State-transition Matrix
Mischa Sandberg <mischasan@gmail.com> 2010​

https://tinyurl.com/mta67h3r

For large sets of strings (patterns), Aho-Corasick multi-string search implementations typically must make a time/space trade-off.
ACISM is an Aho-Corasick implementation that proves that you can have your cake and eat it, minimizing both space and scanning
time, with an O(n) compile-time. The representation is simple to persist and share between processes. In a 32-bit implementation,
ACISM can handle about 10MB of pattern text. It averages under 4 bytes per pattern character and under 20 machine instructions
per input byte. For a comparison with other implementations of Aho-Corasick state machines, see NOR04. For the source code of
the implementation, see http://github.com/mischasan/aho-corasick

Aho-Corasick Algorithm

Aho-Corasick is a multi-string search algorithm with excellent worst-case behaviour: it performs a bounded (small) amount of work
for each input-text character. Bounded worst-case behaviour is particularly important in the hostile environment of network intrusion
detection systems, where a denial-of-service attacker can tune exploits against published data and algorithms.

Aho-Corasick amounts to a DFA state machine, implemented by adding back links to nodes of a prefix tree. Each node of a prefix
tree corresponds to a prefix of some pattern string(s). A back link connects node X to the node Y, when Y is the longest suffix of X
that is a prefix of some other string in the set. The search follows a back link when there is no forward link; when there is neither
forward nor back link, the search returns to the root.

Fig. 1 Example Tree
This is the Aho-Corasick tree for ['op', 'open', 'retorts', 'tort', 'stop']:

(The apparently arbitrary state id numbers are a result of ACISM's interleaved-array optimization) ​
State [22] corresponds to matching sto. The longest suffix of sto, that is also a prefix in this tree, is to, as in tort. ​
So a back link connects [22]→[8].

Suppose the text to scan for matches is store. The scan processes sto, moving forward via [0]→[5]→[14]→[22]. r does not
match any forward link from [22], so the scan follows the back link to [8], matches r, and moves to [17]. The next text character is
e, which does not match any forward link from [17], so the scan follows the back link to [4], matches e and moves to [12]. At this
point there is no more input and no match.

http://goo.gl/xy8R1s
http://github.com/mischasan/aho-corasick
http://en.wikipedia.org/wiki/Aho-Corasick
http://en.wikipedia.org/wiki/Prefix_tree

Algorithm
The fastest state machine possible is one that uses a state-transition matrix, indexed by [state,code], to determine the next state.
ACISM represents such a matrix as an interleaved array. The information normally associated with a state is either stored in the
transition to that state, or in a hash table that maps non-leaf matches (e.g. [6]) to pattern-vector indices (pattern numbers).

A state may match multiple strings that are suffixes of one another. For example, both stop and op match at [22]. In typical
Aho-Corasick implementations, there is an explicit record of the match-set; e.g. a link [22]→[6]. ACISM does not store such links,
because the list of multiple matches will always be a subset of the back link chain. ACISM sets a match bit in each transition to a
match state; it also sets a suffix bit, in each transition with a match higher up the back link chain. For example, the string retort,
leading to [25], is not a match; but a suffix of that string (tort) is a match. For such a node the suffix bit is set, so scan follows the
back link chain to find [15], which is a match. Since [15]'s suffix bit is not set, the backward search for matches stops there.

Interleaved Arrays
ACISM interleaves the sparse rows of the state-machine matrix in one flat vector. Each non-leaf state row is assigned a unique
base offset in the vector. The back link, if any, and child links, are stored at offsets from that base: the back link is stored at offset 0
and the transitions at offsets of the character codes (1..N). Rows may overlap, as long as they do not collide on any transition.
Elements contain their own offset from their state base, to distinguish which of the overlapping state rows they belong to. Treating
the back link like another child in the state-machine row means that no space is wasted if there is no back link. No space is wasted
in mapping states to strings: for leaf nodes, the next field contains the pattern number; for non-leaf nodes, a hash table maps the
state to the string number.

Interleaved arrays amount to S.F. Ziegler's "row-displacement" method; see TAR78. For building such an array, Ziegler figured that
the rows should be inserted in descending order of size, analagous to filling a bucket with sand, gravel and rocks (rocks first...). That
produces near-ideal packing, but O(n2) compilation time. Insertion that ignores node width, plus the B2,N hint array described below,
produces packing with less than 1% waste, with O(n) compilation time. It adds nodes to the vector top-down, breadth-first; so the
top nodes of the tree are packed into the beginning of the vector --- best cache performance.

http://goo.gl/rz0VWb

The interleaved array for the example (Fig.1) is shown in Fig.2. For clarity, the State column shows which state "owns" a cell; for
example, X7 contains the transition from [3] for p to [6], which is also a match (op). The code values are also shown as their original
characters. [t, o, r, p, s, e, n] In this case, the children of [0] are in X1, X2, X3 and X5. The back link and the one child node for [8] are
in X8 and X11, respectively. The largest field is a back link when code=0, a (patt) index for a leaf node, or a next link. In this
example, X19 is unused; the interleaving algorithm could not fit anything else in it, so it is left empty/invalid (0). X0 is always unused.
Leaf nodes for P1, P2, P3, P4 encode the pattern ids (0..3) in the next field by adding size(X) -- i.e. 31 -- to them. The hash table H
contains the single pair (state=7, pattno=0) for the non-leaf node which identifies ([3],p) as matching P0 i.e. op.

Fig.2: Interleaved state transition array (X)

Index State Code Match Suffix Next/Back/(Patt)

1 0 t 2
2 0 o 3
3 0 r 4
4 2 o 8
5 0 s 5
6 5 t 14
7 3 p Y 6
8 8 3
9

10 4 e 12
11 8 r 17
12 6 e 13
13 12 t 19
14 14 2
15
16 14 o 22
17 17 4
18 17 t Y (3)+size(X)=34
19 19 2
20 13 n Y (1)+size(X)= 32
21 19 o 24
22 22 8
23
24 24 8
25
26 22 p Y (4)+size(X)=35
27 24 r 28
28 28 17
29 28 t Y 25
30 25 s Y (2)+size(X)=33

Representation
Let P be the input set of pattern strings.The state machine comprises:

●​ C: a vector that maps input byte values (0..255) to a smaller range of code values. C maps the byte values found in P to the
code values (1..N). C maps all other input bytes to 0. Using codes instead of bytes saves bits in a transition, and makes a
common case fast (input byte occurs nowhere in P).

●​ X: a vector of interleaved sparse arrays of transitions with the following bit-packed fields:

○​ code: the code (1..N) to which the transition corresponds; or 0 for a back link.​
t = X[state + code] is a valid transition iff code = t.code.

○​ match: a bit flag indicating the end of a matched string.
○​ suffix: a bit flag indicating some suffixes of the current string are matches.
○​ next: a back link, if t.code is 0; the next state (number), if t.next < size(X);​

otherwise the matching pattern number for a leaf node, encoded as pattern_number + size(X)​

●​ H: a hash table that maps (state+code) to a pattern number for non-leaf matches in X.
●​ Z: a byte-vector of tails, each identified by offset: { match id, nbytes, tail bytes}

For P of about 10MB or less, a transition fits in 32 bits.

H maps the location of a transition to the value (P index) of a non-leaf match in X. That location uniquely identifies the pattern; and
interleaved-array construction ensures that locations are essentially random (no further “hashing” required). Hash table probes are
guaranteed to find a value; so open addressing is reasonable with a table 1.2 x size(P). If the code value is stored in the lowest K
bits of a transition value, then the low K bits of (transition XOR code) will be 0 for a valid transition or back link.

Execution
Let T be a text string to be scanned for matches. The scan algorithm starts at the first byte of T, and traverses the prefix tree from
the root, following forward links corresponding to successive characters in T. When it reaches a node marked as match or suffix, it
reports the match(es). When it reaches a node with no branch corresponding to the next character in T, it uses the back link to jump
to a prior node at a shallower depth, in effect advancing the start-of-string index. When there is no back link, scan restarts from the
tree root, at the next byte in T. Fig.3 is the pseudo-code for this scan.

Fig 3. Scan routine
Comments

state ← ROOT
for i ← 0 to size(T)-1

code ← C[T[i]]
if code = BACK

"0" is the root-node state.

state ← ROOT
continue

T[i] is a character not found in any pattern string.

while code ≠ (t ← X[state+code]).code
 and state ≠ ROOT

back ← X[state+BACK]

On average, this loop executes once.
BACK is offset 0

state ← back.code = BACK then back.next else ROOT
if code ≠ t.code

continue No more backlinks, try transition from root.
if not (t.match or t.suffix)

state ← t.next
Successful forward transition, but no complete match yet.

else s ← state
state ← IsLeaf(t) then ROOT else t.next
repeat

Found a match and/or suffix-match.

if t.code = code
if t.match

(t) is always valid on the first iteration.

p ← IsLeaf(t) then PattNo(t)
 else SEARCH(H, state+code)

For a leaf node, t.next encodes a P index.

PROCESS(p, i) Perform action for each match.
if state = ROOT and not IsLeaf(t)

state ← t.next
if state ≠ ROOT and not t.suffix

break
if s = ROOT

break
back ← X[s+BACK]
s ← (back.code = BACK) then back.next else ROOT
t ← X[s + code]

Find a relevant back link, in the course of following the
chain of possible suffix matches.

IsLeaf(t): t.next ≥ size(X)
PattNo(t): t.next - size(X)

Compilation

Construct (C, X, H, Z) in these steps:

1.​ Compute C. There is a small compilation performance advantage to assigning codes in descending order of frequency of
occurrence in P: nodes with more than one child are more likely to use and advance the same entry in B; see "Allocate X
offsets" below.​

2.​ Build T: a prefix tree of P. T will have no more nodes than there are characters in P, and usually many less. Each node will
eventually contain:

○​ first_child, sibling: tree structure implemented in linked lists.
○​ code: the code leading to this state node.
○​ pattern_id: the P index of the matching string, or a null value for non-match nodes.
○​ backlink: Aho-Corasick back link.
○​ suffix: true if the back link chain from this node contains a match.
○​ refcount: count of back links pointing at this node.
○​ state: offset in X.

3.​ Add Aho-Corasick DFA information to T (backlink, suffix, refcount) for each node. This uses a breadth-first (level-by-level)

tree traversal. Any one level of the tree can have no more than count(P) elements. backlink is a pointer from a branch node
to some other (shallower) node. Most backlinks point to root(T). suffix is true if a match can be found by following the chain
of back link pointers. It is used in the scan to identify multiple matches by different strings at the same endpoint.​

4.​ Prune backlinks in T. If a node D is not the target of any back links, and its backlink points at a target node E whose children
are a subset of D's children, and E isn't the parent of a match or suffix node, then D’s backlink can be changed to E's
backlink, and the process repeated. When changing a backlink, E's refcount value is decremented and the new target's
refcount value is incremented. If E's refcount value is decremented to 0, then it is an immediate candidate for pruning, itself.​

5.​ Extract tails. TBD. Byte block Z contains sequences: { match ID, nbytes, tail-bytes }. ​
The transition contains the byte-block offset, including sizes . (nbytes) may be a variadic int. Final stage catenates (X,H,Z)

6.​ Allocate X offsets (states), setting the state field of T nodes. See Fig.3. The root node is always allocated at offset 0. This

step uses matrix Bc,b to track the first position where a search could find an available place for a non-leaf node whose first
child code is c; earlier positions having been proven invalid by previous searches. b is 1 for a node with a back link, and 0 for
a node without. T is traversed breadth-first, as in (3), to improve memory cache behaviour, by allocating nodes near the root
of the tree densely together.​

7.​ Populate X by traversing T, using the state offsets.​

8.​ Populate H by traversing T, adding (match id, pattern id) to H for non-leaf matches. In this implementation, the hash table is
filled in two passes, the first pass only inserting non-colliding entries.

Fig.4 Interleaved Allocation
Comments

USED = 1, BASE = 2
root.state ← 0

Bit constants. USED: holds a transition; ​
BASE means allocated as a state base-offset.

for i ← 1 to N
B[i,0] ← B[i,1] ← 0

Initialize starting points for base searches to 1.

for n in nodes
first ← n.child[0].code
found ← false

Traverse all non-leaf nodes, breadth-first.

if n.back = root
need ← BASE
base ← B[first,0]

 Need to search for an unused base.

else need ← BASE + USED
base ← max(B[first,0], B[first,1])

Need to search for an unused base that is
also free to hold a back link.

repeat
while U[base] & need

base ← base + 1
fits ← 1
for c in n.child

fits ← U[base + c.code] & USED
if fits = 0

break
if not (found or c = n.child[0])

found ← true
B[first, need & USED] ← base + fits

until fits

Advance to an unallocated base position, that
is also an unoccupied element if n has a back
link.

n.state ← base Record state base for next step.
U[base] += need Mark base allocated and possibly used.
for c in n.child

U[base + c.code] += USED
Mark child positions as used.

Performance

The basic per-byte search loop, compiled with gcc 4.2.1 -O3 for ia86-32 , averages 20 machine instructions, with 2 look-ups in X and 3
jumps. The worst-case for the loop through back links is a pattern set such as [b, ab, aab, aaab, ...] being matched against aaaa...aaac.
The effort is bounded by the length of the longest pattern string; in practice, the longest back link chain is far shorter. On the test
machine, running fgrep -xf /usr/share/dict/words takes 1.8 secs, versus 1.2 secs for ACISM to compile and execute, most of the time
being in compilation.

Fig 5. Compilation performance
Sample is /usr/share/dict/words

Statistic Count
Size(P) 479,829

Total chars in P 4,473,870

Unique chars in P 70

Non-leaf nodes in T 1,060,025

Size(X) 2,519,340

Unused elements in X 24,451

Size(H) 131,057

Pruned back links 79,125

Innermost loop iterations in interleave 88,602,305

Enhancements

Tail strings
A common case is long pattern strings that are distinguished uniquely in their leading bytes --- e.g. GUID’s. The tail of such strings
take a whole transition (4 bytes) per char. If the tail nodes are not the source or target of any backlink, the tail chars can be stored
as a byte block outside the state machine array, rather than as a chain of state transitions. This makes ACISM take less space, run
faster and compile faster. In Fig.1 , [6] “en” is an example of a tail.

From such a state, the search uses a simpler loop, scanning for the first input byte that does not match the tail (byte block). The
no-backlinks requirement means that, at that point, or after a match, state can/must be reset to 0 (root) and the input pointer skips
the matched bytes. This works for block-streamed search -- qv acism_more(). If input matches bytes of the tail up to the current
block’s end, state carries the (offset,end) of remaining bytes to the next acism_more call; scan resumes by comparing the start of
the next input block, to the remainder of the tail.

The performance gain mostly from match successes: a tail loop iteration being faster than a state transition iteration.​
However, this in turn only counts if there are many matches --- and a match executes the callback!

This enhancement applies where none of the string prefixes occur at the end of long strings. The no-backlinks-to-root optimization
means that at least two chars of pattern prefix must occur in the tail, to make it ineligible.​

Pruning backlinks

ACISM originally pruned “useless” back links. For example, in the above diagram, [24]→[8]→[3] is a standard back link chain.
However, if a match fails at [24], then it will necessarily fail at [8], since the only branch(es) from [8] is rt, which is a subset of the
branch(es) from [24]. ACISM originally changed this to a link [24]→[3], since [3] has a transition other than rt. ACISM does not
prune a link such as [25]→[17] because it needs it to find a suffix match. It also doesn’t prune [14]→[2], because the or branch
from [2] is not covered by the branches under [14]. In practice, about 5% of backlinks are prunable..

The original pruning implementation only checked target children as a subset of source children, not target branches as a subset of
source branches (including MATCH bits). This is broken, and was removed. Removing backlinks increases the number and length
of tail strings, making it worth implementing correctly

References

[NOR04] Optimized Pattern Matching for IDS; Marc Norton, 2004
http://goo.gl/xy8R1s

[TAR78] Storing a Sparse Table; Robert Tarjan, 1978
http://goo.gl/rz0VWb

http://goo.gl/xy8R1s
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
http://goo.gl/rz0VWb
http://historical.ncstrl.org/litesite-data/stan/CS-TR-78-683.pdf

	●​ACISM: Aho-Corasick Interleaved State-transition Matrix
	Aho-Corasick Algorithm
	Fig. 1 Example Tree
	Interleaved Arrays
	Fig.2: Interleaved state transition array (X)

	Representation
	Execution
	Fig 3. Scan routine

	Compilation
	Fig.4 Interleaved Allocation

	Performance
	Fig 5. Compilation performance

	
	Enhancements
	Tail strings
	Pruning backlinks

	References

