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For large sets of strings (patterns), Aho-Corasick multi-string search implementations typically must make a time/space trade-off. 
ACISM is an Aho-Corasick implementation that proves that you can have your cake and eat it, minimizing both space and scanning 
time, with an O(n) compile-time. The representation is simple to persist and share between processes. In a 32-bit implementation, 
ACISM can handle about 10MB of pattern text. It averages under 4 bytes per pattern character and under 20 machine instructions 
per input byte. For a comparison with other implementations of Aho-Corasick state machines, see NOR04. For the source code of 
the implementation, see http://github.com/mischasan/aho-corasick 
 

Aho-Corasick Algorithm 

Aho-Corasick is a multi-string search algorithm with excellent worst-case behaviour: it performs a bounded (small) amount of work 
for each input-text character. Bounded worst-case behaviour is particularly important in the hostile environment of network intrusion 
detection systems, where a denial-of-service attacker can tune exploits against published data and algorithms. 
 
Aho-Corasick amounts to a DFA state machine, implemented by adding back links to nodes of a prefix tree. Each node of a prefix 
tree corresponds to a prefix of some pattern string(s). A back link connects node X to the node Y, when Y is the longest suffix of X 
that is a prefix of some other string in the set. The search follows a back link when there is no forward link; when there is neither 
forward nor back link, the search returns to the root. 

Fig. 1 Example Tree 
This is the Aho-Corasick tree for ['op', 'open', 'retorts', 'tort', 'stop']: 
 

 
(The apparently arbitrary state id numbers are a result of ACISM's interleaved-array optimization)  ​
State [22] corresponds to matching sto. The longest suffix of sto, that is also a prefix in this tree, is to, as in tort. ​
So a back link connects [22]→[8]. 
 
Suppose the text to scan for matches is store. The scan processes sto, moving forward via [0]→[5]→[14]→[22]. r does not 
match any forward link from [22], so the scan follows the back link to [8], matches r, and moves to [17]. The next text character is 
e, which does not match any forward link from [17], so the scan follows the back link to [4], matches e and moves to [12]. At this 
point there is no more input and no match.

http://goo.gl/xy8R1s
http://github.com/mischasan/aho-corasick
http://en.wikipedia.org/wiki/Aho-Corasick
http://en.wikipedia.org/wiki/Prefix_tree


Algorithm 
The fastest state machine possible is one that uses a state-transition matrix, indexed by [state,code], to determine the next state. 
ACISM represents such a matrix as an interleaved array. The information normally associated with a state is either stored in the 
transition to that state, or in a hash table that maps non-leaf matches (e.g. [6]) to pattern-vector indices (pattern numbers). 
 
A state may match multiple strings that are suffixes of one another. For example, both stop and op match at [22]. In typical 
Aho-Corasick implementations, there is an explicit record of the match-set; e.g. a link [22]→[6]. ACISM does not store such links, 
because the list of multiple matches will always be a subset of the back link chain. ACISM sets a match bit in each transition to a 
match state; it also sets a suffix bit, in each transition with a match higher up the back link chain. For example, the string retort, 
leading to [25], is not a match; but a suffix of that string (tort) is a match. For such a node the suffix bit is set, so scan follows the 
back link chain to find [15], which is a match. Since [15]'s suffix bit is not set, the backward search for matches stops there. 

Interleaved Arrays 
ACISM interleaves the sparse rows of the state-machine matrix in one flat vector. Each non-leaf state row is assigned a unique 
base offset in the vector. The back link, if any, and child links, are stored at offsets from that base: the back link is stored at offset 0 
and the transitions at offsets of the character codes (1..N). Rows may overlap, as long as they do not collide on any transition. 
Elements contain their own offset from their state base, to distinguish which of the overlapping state rows they belong to. Treating 
the back link like another child in the state-machine row means that no space is wasted if there is no back link. No space is wasted 
in mapping states to strings: for leaf nodes, the next field contains the pattern number; for non-leaf nodes, a hash table maps the 
state to the string number. 
 
Interleaved arrays amount to S.F. Ziegler's "row-displacement" method; see TAR78. For building such an array, Ziegler figured that 
the rows should be inserted in descending order of size, analagous to filling a bucket with sand, gravel and rocks (rocks first...). That 
produces near-ideal packing, but O(n2) compilation time. Insertion that ignores node width, plus the B2,N hint array described below, 
produces packing with less than 1% waste, with O(n) compilation time. It adds nodes to the vector top-down, breadth-first; so the 
top nodes of the tree are packed into the beginning of the vector --- best cache performance.  

http://goo.gl/rz0VWb


The interleaved array for the example (Fig.1) is shown in Fig.2. For clarity, the State column shows which state "owns" a cell; for 
example, X7 contains the transition from [3] for p to [6], which is also a match (op). The code values are also shown as their original 
characters. [t, o, r, p, s, e, n] In this case, the children of [0] are in X1, X2, X3 and X5. The back link and the one child node for [8] are 
in X8 and X11, respectively. The largest field is a back link when code=0, a (patt) index for a leaf node, or a next link. In this 
example, X19 is unused; the interleaving algorithm could not fit anything else in it, so it is left empty/invalid (0). X0 is always unused. 
Leaf nodes for  P1, P2, P3, P4  encode the pattern ids (0..3) in the next field by adding size(X) -- i.e. 31 -- to them. The hash table H 
contains the single pair (state=7, pattno=0) for the non-leaf node which identifies ([3],p) as matching P0 i.e. op. 

Fig.2: Interleaved state transition array (X) 

Index State Code Match Suffix Next/Back/(Patt) 

1 0 t   2 
2 0 o   3 
3 0 r   4 
4 2 o   8 
5 0 s   5 
6 5 t   14 
7 3 p Y  6 
8 8    3 
9      

10 4 e   12 
11 8 r   17 
12 6 e   13 
13 12 t   19 
14 14    2 
15      
16 14 o   22 
17 17    4 
18 17 t Y  (3)+size(X)=34 
19 19    2 
20 13 n Y  (1)+size(X)= 32 
21 19 o   24 
22 22    8 
23      
24 24    8 
25      
26 22 p Y  (4)+size(X)=35 
27 24 r   28 
28 28    17 
29 28 t  Y 25 
30 25 s Y  (2)+size(X)=33 

 



Representation 
Let P be the input set of pattern strings.The state machine comprises: 
 

●​ C: a vector that maps input byte values (0..255) to a smaller range of code values. C maps the byte values found in P to the 
code values (1..N). C maps all other input bytes to 0. Using codes instead of bytes saves bits in a transition, and makes a 
common case fast (input byte occurs nowhere in P). 

 
●​ X: a vector of interleaved sparse arrays of transitions with the following bit-packed fields: 

○​ code: the code (1..N) to which the transition corresponds; or 0 for a back link.​
t = X[state + code] is a valid transition iff code = t.code. 

○​ match: a bit flag indicating the end of a matched string. 
○​ suffix: a bit flag indicating some suffixes of the current string are matches. 
○​ next: a back link, if t.code is 0; the next state (number), if t.next < size(X);​

otherwise the matching pattern number for a leaf node, encoded as pattern_number + size(X)​
 

●​ H: a hash table that maps (state+code) to a pattern number for non-leaf matches in X. 
●​ Z: a byte-vector of tails, each identified by offset: { match id, nbytes, tail bytes} 

 
For P of about 10MB or less, a transition fits in 32 bits.  
 
H maps the location of a transition to the value (P index) of a non-leaf match in X. That location uniquely identifies the pattern; and 
interleaved-array construction ensures that locations are essentially random (no further “hashing” required). Hash table probes are 
guaranteed to find a value; so open addressing is reasonable with a table 1.2 x size(P). If the code value is stored in the lowest K 
bits of a transition value, then the low K bits of (transition XOR code) will be 0 for a valid transition or back link.



Execution 
Let T be a text string to be scanned for matches. The scan algorithm starts at the first byte of T, and traverses the prefix tree from 
the root, following forward links corresponding to successive characters in T. When it reaches a node marked as match or suffix, it 
reports the match(es). When it reaches a node with no branch corresponding to the next character in T, it uses the back link to jump 
to a prior node at a shallower depth, in effect advancing the start-of-string index. When there is no back link, scan restarts from the 
tree root, at the next byte in T. Fig.3 is the pseudo-code for this scan. 
 

Fig 3. Scan routine 
Comments 

state ← ROOT 
for i ← 0 to size(T)-1 

code ← C[T[i]] 
if code = BACK 

"0" is the root-node state. 

state ← ROOT 
continue 

T[i] is a character not found in any pattern string. 

while  code ≠ (t ← X[state+code]).code 
   and  state ≠ ROOT 

back ← X[state+BACK] 

On average, this loop executes once. 
BACK is offset 0 

state ← back.code = BACK then back.next else ROOT 
if code ≠ t.code 

 

continue No more backlinks, try transition from root. 
if not (t.match or t.suffix) 

state ← t.next 
Successful forward transition, but no complete match yet. 

else        s ← state 
state ← IsLeaf(t) then ROOT else t.next 
repeat 

Found a match and/or suffix-match. 

if t.code = code 
if t.match 

(t) is always valid on the first iteration. 

p ← IsLeaf(t) then PattNo(t)  
                                                                     else SEARCH(H, state+code)  

For a leaf node, t.next encodes a P index. 

PROCESS(p, i) Perform action for each match. 
if state = ROOT and not IsLeaf(t) 

state ← t.next 
if state ≠ ROOT and not t.suffix 

break 
if s = ROOT 

break 
back ← X[s+BACK] 
s ← (back.code = BACK) then back.next else ROOT 
t ← X[s + code] 

Find a relevant back link, in the course of following the 
chain of possible suffix matches. 

 
 
IsLeaf(t):   t.next ≥ size(X) 
PattNo(t):  t.next - size(X) 

 



Compilation 
 
Construct (C, X, H, Z) in these steps: 
 

1.​ Compute C. There is a small compilation performance advantage to assigning codes in descending order of frequency of 
occurrence in P: nodes with more than one child are more likely to use and advance the same entry in B; see "Allocate X 
offsets" below.​
 

2.​ Build T: a prefix tree of P. T will have no more nodes than there are characters in P, and usually many less. Each node will 
eventually contain: 

○​ first_child, sibling: tree structure implemented in linked lists. 
○​ code: the code leading to this state node. 
○​ pattern_id: the P index of the matching string, or a null value for non-match nodes. 
○​ backlink: Aho-Corasick back link. 
○​ suffix: true if the back link chain from this node contains a match. 
○​ refcount: count of back links pointing at this node. 
○​ state: offset in X. 

 
3.​ Add Aho-Corasick DFA information to T (backlink, suffix, refcount) for each node. This uses a breadth-first (level-by-level) 

tree traversal. Any one level of the tree can have no more than count(P) elements. backlink is a pointer from a branch node 
to some other (shallower) node. Most backlinks point to root(T).  suffix is true if a match can be found by following the chain 
of back link pointers. It is used in the scan to identify multiple matches by different strings at the same endpoint.​
 

4.​ Prune backlinks in T. If a node D is not the target of any back links, and its backlink points at a target node E whose children 
are a subset of D's children, and E isn't the parent of a match or suffix node, then D’s backlink can be changed to E's 
backlink, and the process repeated. When changing a backlink, E's refcount value is decremented and the new target's 
refcount value is incremented. If E's refcount value is decremented to 0, then it is an immediate candidate for pruning, itself.​
 

5.​ Extract tails. TBD. Byte block Z contains sequences: { match ID, nbytes, tail-bytes }. ​
The transition contains the byte-block offset, including sizes . (nbytes) may be a variadic int. Final stage catenates (X,H,Z) 

 
6.​ Allocate X offsets (states), setting the state field of T nodes. See Fig.3. The root node is always allocated at offset 0. This 

step uses matrix Bc,b to track the first position where a search could find an available place for a non-leaf node whose first 
child code is c; earlier positions having been proven invalid by previous searches. b is 1 for a node with a back link, and 0 for 
a node without. T is traversed breadth-first, as in (3), to improve memory cache behaviour, by allocating nodes near the root 
of the tree densely together.​
 

7.​ Populate X by traversing T, using the state offsets.​
 

8.​ Populate H by traversing T, adding (match id, pattern id) to H for non-leaf matches. In this implementation, the hash table is 
filled in two passes, the first pass only inserting non-colliding entries.  

 



Fig.4 Interleaved Allocation 
Comments 

USED = 1, BASE = 2 
root.state ← 0 

Bit constants. USED: holds a transition; ​
BASE means allocated as a state base-offset. 

for i ← 1 to N 
B[i,0] ← B[i,1] ← 0 

Initialize starting points for base searches to 1. 

for n in nodes 
first ← n.child[0].code 
found ← false 

Traverse all non-leaf nodes, breadth-first. 

if n.back = root 
need ← BASE 
base ← B[first,0] 

 Need to search for an unused base. 

else       need ← BASE + USED 
base ← max( B[first,0], B[first,1] ) 

Need to search for an unused base that is 
also free to hold a back link. 

repeat 
while U[base] & need 

base ← base + 1 
fits ← 1 
for c in n.child 

fits ← U[base + c.code] & USED 
if fits = 0 

break 
if not (found or c = n.child[0]) 

found ← true 
B[first, need & USED] ← base + fits 

until fits 

Advance to an unallocated base position, that 
is also an unoccupied element if n has a back 
link. 

n.state ← base Record state base for next step. 
U[base] += need Mark base allocated and possibly used. 
for c in n.child 

U[base + c.code] += USED 
Mark child positions as used. 

 
 



 

Performance  
 
The basic per-byte search loop, compiled with gcc 4.2.1 -O3 for ia86-32 , averages 20 machine instructions, with 2 look-ups in X and 3 
jumps. The worst-case for the loop through back links is a pattern set such as [b, ab, aab, aaab, ...] being matched against aaaa...aaac. 
The effort is bounded by the length of the longest pattern string; in practice, the longest back link chain is far shorter. On the test 
machine, running fgrep -xf /usr/share/dict/words takes 1.8 secs, versus 1.2 secs for ACISM to compile and execute, most of the time 
being in compilation. 

Fig 5. Compilation performance 
Sample is  /usr/share/dict/words 

 
Statistic Count 
Size(P) 479,829 

Total chars in P 4,473,870 

Unique chars in P 70 

Non-leaf nodes in T 1,060,025 

Size(X) 2,519,340 

Unused elements in X 24,451 

Size(H) 131,057 

Pruned back links 79,125 

Innermost loop iterations in interleave 88,602,305 

 



Enhancements 

Tail strings 
A common case is long pattern strings that are distinguished uniquely in their leading bytes --- e.g. GUID’s. The tail of such strings 
take a whole transition (4 bytes) per char. If the tail nodes are not the source or target of any backlink, the tail chars can be stored 
as a byte block outside the state machine array, rather than as a chain of state transitions. This makes ACISM take less space, run 
faster and compile faster. In Fig.1 , [6] “en” is an example of a tail. 
 
From such a state, the search uses a simpler loop, scanning for the first input byte that does not match the tail (byte block). The 
no-backlinks requirement means that, at that point, or after a match, state can/must be reset to 0 (root) and the input pointer skips 
the matched bytes. This works for block-streamed search -- qv acism_more(). If input matches bytes of the tail up to the current 
block’s end, state carries the (offset,end) of remaining bytes to the next acism_more call; scan resumes by comparing the start of 
the next input block, to the remainder of the tail. 
 
The performance gain mostly from match successes: a tail loop iteration being faster than a state transition iteration.​
However, this in turn only counts if there are many matches --- and a match executes the callback! 
 
This enhancement applies where none of the string prefixes occur at the end of long strings. The no-backlinks-to-root optimization 
means that at least two chars of pattern prefix must occur in the tail, to make it ineligible.​  

Pruning backlinks 

ACISM originally pruned “useless” back links. For example, in the above diagram, [24]→[8]→[3] is a standard back link chain. 
However, if a match fails at [24], then it will necessarily fail at [8], since the only branch(es) from [8] is rt, which is a subset of the 
branch(es) from [24]. ACISM originally changed this to a link [24]→[3], since [3] has a transition other than rt. ACISM does not 
prune a link such as [25]→[17] because it needs it to find a suffix match. It also doesn’t prune [14]→[2], because the or branch 
from [2] is not covered by the branches under [14]. In practice, about 5% of backlinks are prunable.. 

The original pruning implementation only checked target children as a subset of source children, not target branches as a subset of 
source branches (including MATCH bits). This is broken, and was removed. Removing backlinks increases the number and length 
of tail strings, making it worth implementing correctly 
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