
PyTorch Lightning Collective Discussion
Status: reviewed and agreed by lightning folks (link) and FB folks

Problem
The use of collective functions are scattered everywhere in lightning, which introduced quite a
few issues:

a)​ Device specific code is mixed with core APIs (supposed to be device agnostic)
b)​ Usage is quite inconsistent
c)​ Redundancies: similar API exists in many places.

Thanks to Ananth for the great background:
https://github.com/PyTorchLightning/pytorch-lightning/issues/7534

Current Status (As of Aug 2021)
1. accelerator.py
Accelerator encapsulates a training_type_plugin which implements collective functions. The
broadcast, barrier, and all_gather functions inside this class are just pass through.

class Accelerator
-​ Init: training_type_plugin : TrainingTypePlugin
-​ Methods: wrapper function delegates to training_type_plugin

-​ broadcast --
-​ barrier
-​ all_gather

2. training_type_plugin.py
TrainingTypePlugin defines the interface of ~5 collective functions

class TrainingTypePlugin
-​ Method

-​ abstract reduce
-​ abstract barrier
-​ abstract broadcast
-​ abstract all_gather
-​ abstract reduce_boolean_decision

3. Subclass of TrainingTypePlugin
DDPPlugin ← ParallelPlugin ← TrainingTypePlugin

Leverage distributed/dist.py - LightningDistributed to support broadcast and barrier. Note that
the location of LightningDistributed should be moved from a generic to a device specific place.

-​ Init

https://github.com/PyTorchLightning/pytorch-lightning/issues/7534#issuecomment-895637117
https://github.com/PyTorchLightning/pytorch-lightning/issues/7534

-​ Instantiate LightningDistributed
-​ Method

-​ override barrier → PT specific
-​ override broadcast → use LightningDistributed.broadcast
-​ not implemented reduce, all_gather, recduce_boolean_decision

HorovodPlugin ← ParallelPlugin ← TrainingTypePlugin

class HorovodPlugin

-​ Method
-​ override barrier → horovod specific
-​ override broadcast → horovod specific
-​ override reduce → horovod specific
-​ override all_gather → horovod specific

TPUSpawnPlugin ← DDPSpawnPlugin ← … ← TrainingTypePlugin

class TPUSpawnPlugin

-​ Method
-​ override barrier → TPU specific
-​ override broadcast → TPU specific
-​ override reduce_boolean_decision → TPU specific
-​ override reduce → TPU specific

Proposal
Device specific collectives are coupled with existing TrainingTypePlugin subclasses which
seems fine. The main issues: 1) No standard API; 2) Inconsistency and Redundancy; 3)
Unorganized code, distributed codes go into many places; and 4) Lack of modularization - core
APIs, utils are mingled which makes existing code quite long and hard to understand and
maintain. Our proposal is about API standardization, modularization as follows:

1.​ Introduce distributed/collective.py
class Collective

-​ Method
-​ abstract broadcast
-​ abstract barrier
-​ abstract all_reduce
-​ abstract all_gather
-​ more from here when needed
-​
-​ setup(rank, world_size) {...}
-​ teardown() {...}

2.​ Collective subclasses maintain device specific impls
a.​ New three subclasses:

https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/distributed/dist.py
https://pytorch.org/docs/stable/distributed.html#collective-functions

i.​ class SingleDevice ← collective : needed for API unification only, impl is
pass only

ii.​ class PyTorchCollectiveImpl ← Collective
iii.​ class HorovodCollectiveImpl ← Collective
iv.​ class TpuCollectiveImpl ← Collective

b.​ impl of base Collective.{collective_function} comes from the corresponding plugin
(below)

3.​ Revise TrainingTypePlugin to use Collective interface
class TrainingTypePlugin

-​ Method
-​ Init(...,):

-​ self.collective = None
-​ @property collective { return self.collective }
-​ Deprecate abstract reduce
-​ Deprecate abstract barrier
-​ Deprecate abstract broadcast
-​ Deprecate abstract all_gather
-​ Deprecate abstract reduce_boolean_decision

4.​ class Accelerator
a.​ Keep those wrapper functions: reduce, barrier, broadcast, all_gather, and

reduce_boolean_decisions since they are just proxy.
b.​ Modify impl from training_type_plugin.{collective_func} →

training_type_plugin.collective.{collective_func} e.g.,
training_type_plugin.collective.broadcast(...)

5.​ Instantiate platform specific collectives in platform specific plugin
a.​ DDPPlugin:

i.​ Init: self.collective = PyTorchCollectiveImpl(...)
b.​ HorovodPlugin

i.​ Init: self.collective = HorovodCollectiveImpl(..)
c.​ TPUSpawnPlugin

i.​ Init: self.collective = TPUSpawnPlugin(...)
6.​ Deprecate existing collective impl for all Plugin subclasses, e.g.,

a.​ DDPPlugin
i.​ @deprecate broadcast

7.​ All distributed related utils moving to distributed/
a.​ utilities/distributed.py -- only broadcast is supported
b.​ core/lightning.py (all_gather) -- move impl to accelerator. Change references to

accelerator directly
c.​ ?

8.​ Update ChangeLog

	Problem
	Current Status (As of Aug 2021)
	Proposal

