PyTorch Lightning Collective Discussion
Status: reviewed and agreed by lightning folks (link) and FB folks

Problem

The use of collective functions are scattered everywhere in lightning, which introduced quite a
few issues:

a) Device specific code is mixed with core APIs (supposed to be device agnostic)

b) Usage is quite inconsistent

¢) Redundancies: similar API exists in many places.

Thanks to Ananth for the great background:
https://github.com/PyTorchLightning/pytorch-lightning/issues/7534

Current Status (As of Aug 2021)

1. accelerator.py
Accelerator encapsulates a training_type plugin which implements collective functions. The
broadcast, barrier, and all_gather functions inside this class are just pass through.

class Accelerator
- Init: training_type_plugin : TrainingTypePlugin
- Methods: wrapper function delegates to training_type plugin
- broadcast --
- barrier
- all_gather

2. training_type_plugin.py
TrainingTypePlugin defines the interface of ~5 collective functions

class TrainingTypePlugin
- Method
- abstract reduce
- abstract barrier
- abstract broadcast
- abstract all_gather
- abstract reduce_boolean_decision

3. Subclass of TrainingTypePlugin
DDPPIlugin « ParallelPlugin < TrainingTypePlugin

Leverage distributed/dist.py - LightningDistributed to support broadcast and barrier. Note that
the location of LightningDistributed should be moved from a generic to a device specific place.

- Init

https://github.com/PyTorchLightning/pytorch-lightning/issues/7534#issuecomment-895637117
https://github.com/PyTorchLightning/pytorch-lightning/issues/7534

- Instantiate LightningDistributed
- Method
- override barrier — PT specific
- override broadcast — use LightningDistributed.broadcast
- not implemented reduce, all_gather, recduce_boolean_decision

HorovodPlugin < ParallelPlugin < TrainingTypePlugin

class HorovodPlugin
- Method
- override barrier — horovod specific
- override broadcast — horovod specific
- override reduce — horovod specific
- override all_gather — horovod specific

TPUSpawnPlugin < DDPSpawnPlugin « ... < TrainingTypePlugin

class TPUSpawnPlugin
- Method
- override barrier — TPU specific
- override broadcast — TPU specific
- override reduce_boolean_decision — TPU specific
- override reduce — TPU specific

Proposal

Device specific collectives are coupled with existing TrainingTypePlugin subclasses which
seems fine. The main issues: 1) No standard API; 2) Inconsistency and Redundancy; 3)
Unorganized code, distributed codes go into many places; and 4) Lack of modularization - core
APIls, utils are mingled which makes existing code quite long and hard to understand and
maintain. Our proposal is about API standardization, modularization as follows:

1. Introduce distributed/collective.py
class Collective
- Method

- abstract broadcast

- abstract barrier

- abstract all_reduce

- abstract all_gather

- more from here when needed

- setup(rank, world_size) {...}
- teardown(){...}
2. Collective subclasses maintain device specific impls
a. New three subclasses:

https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/distributed/dist.py
https://pytorch.org/docs/stable/distributed.html#collective-functions

i. class SingleDevice « collective : needed for API unification only, impl is
pass only
ii. class PyTorchCollectivelmpl < Collective
iii. class HorovodCollectivelmpl < Collective
iv. class TpuCollectivelmpl < Collective
b. impl of base Collective.{collective_function} comes from the corresponding plugin
(below)
3. Revise TrainingTypePlugin to use Collective interface
class TrainingTypePlugin
- Method
- nit(...,):
- self.collective = None
- @property collective { return self.collective }
- Deprecate abstract reduce
- Deprecate abstract barrier
- Deprecate abstract broadcast
- Deprecate abstract all_gather
- Deprecate abstract reduce_boolean_decision
4. class Accelerator

a. Keep those wrapper functions: reduce, barrier, broadcast, all_gather, and
reduce_boolean_decisions since they are just proxy.

b. Modify impl from training_type plugin.{collective_func} —
training_type_plugin.collective.{collective_func} e.g.,
training_type_plugin.collective.broadcast(...)

5. Instantiate platform specific collectives in platform specific plugin

a. DDPPlugin:

i. Init: self.collective = PyTorchCollectivelmpl(...)
b. HorovodPlugin
i. Init: self.collective = HorovodCollectivelmpl(..)
c. TPUSpawnPlugin
i. Init: self.collective = TPUSpawnPlugin(...)
6. Deprecate existing collective impl for all Plugin subclasses, e.g.,
a. DDPPlugin
i. (@deprecate broadcast
7. All distributed related utils moving to distributed/

a. utilities/distributed.py -- only broadcast is supported

b. core/lightning.py (all_gather) -- move impl to accelerator. Change references to
accelerator directly

c. ?

8. Update Changelog

	Problem
	Current Status (As of Aug 2021)
	Proposal

