
Chapter 10: Model Context Protocol
To enable LLMs to function effectively as agents, their capabilities must extend
beyond multimodal generation. Interaction with the external environment is necessary,
including access to current data, utilization of external software, and execution of
specific operational tasks. The Model Context Protocol (MCP) addresses this need by
providing a standardized interface for LLMs to interface with external resources. This
protocol serves as a key mechanism to facilitate consistent and predictable
integration.

MCP Pattern Overview
Imagine a universal adapter that allows any LLM to plug into any external system,
database, or tool without a custom integration for each one. That's essentially what
the Model Context Protocol (MCP) is. It's an open standard designed to standardize
how LLMs like Gemini, OpenAI's GPT models, Mixtral, and Claude communicate with
external applications, data sources, and tools. Think of it as a universal connection
mechanism that simplifies how LLMs obtain context, execute actions, and interact
with various systems.

MCP operates on a client-server architecture. It defines how different elements—data
(referred to as resources), interactive templates (which are essentially prompts), and
actionable functions (known as tools)—are exposed by an MCP server. These are then
consumed by an MCP client, which could be an LLM host application or an AI agent
itself. This standardized approach dramatically reduces the complexity of integrating
LLMs into diverse operational environments.

However, MCP is a contract for an "agentic interface," and its effectiveness depends
heavily on the design of the underlying APIs it exposes. There is a risk that developers
simply wrap pre-existing, legacy APIs without modification, which can be suboptimal
for an agent. For example, if a ticketing system's API only allows retrieving full ticket
details one by one, an agent asked to summarize high-priority tickets will be slow and
inaccurate at high volumes. To be truly effective, the underlying API should be
improved with deterministic features like filtering and sorting to help the
non-deterministic agent work efficiently. This highlights that agents do not magically
replace deterministic workflows; they often require stronger deterministic support to
succeed.

1

Furthermore, MCP can wrap an API whose input or output is still not inherently
understandable by the agent. An API is only useful if its data format is agent-friendly,
a guarantee that MCP itself does not enforce. For instance, creating an MCP server
for a document store that returns files as PDFs is mostly useless if the consuming
agent cannot parse PDF content. The better approach would be to first create an API
that returns a textual version of the document, such as Markdown, which the agent
can actually read and process. This demonstrates that developers must consider not
just the connection, but the nature of the data being exchanged to ensure true
compatibility.

MCP vs. Tool Function Calling
The Model Context Protocol (MCP) and tool function calling are distinct mechanisms
that enable LLMs to interact with external capabilities (including tools) and execute
actions. While both serve to extend LLM capabilities beyond text generation, they
differ in their approach and level of abstraction.

Tool function calling can be thought of as a direct request from an LLM to a specific,
pre-defined tool or function. Note that in this context we use the words "tool" and
"function” interchangeably. This interaction is characterized by a one-to-one
communication model, where the LLM formats a request based on its understanding
of a user's intent requiring external action. The application code then executes this
request and returns the result to the LLM. This process is often proprietary and varies
across different LLM providers.

In contrast, the Model Context Protocol (MCP) operates as a standardized interface
for LLMs to discover, communicate with, and utilize external capabilities. It functions
as an open protocol that facilitates interaction with a wide range of tools and systems,
aiming to establish an ecosystem where any compliant tool can be accessed by any
compliant LLM. This fosters interoperability, composability and reusability across
different systems and implementations. By adopting a federated model, we
significantly improve interoperability and unlock the value of existing assets. This
strategy allows us to bring disparate and legacy services into a modern ecosystem
simply by wrapping them in an MCP-compliant interface. These services continue to
operate independently, but can now be composed into new applications and
workflows, with their collaboration orchestrated by LLMs. This fosters agility and
reusability without requiring costly rewrites of foundational systems.

2

Here's a breakdown of the fundamental distinctions between MCP and tool function
calling:

Feature Tool Function Calling Model Context Protocol (MCP)

Standardization Proprietary and
vendor-specific. The format
and implementation differ
across LLM providers.

An open, standardized protocol,
promoting interoperability
between different LLMs and tools.

Scope A direct mechanism for an
LLM to request the
execution of a specific,
predefined function.

A broader framework for how
LLMs and external tools discover
and communicate with each
other.

Architecture A one-to-one interaction
between the LLM and the
application's tool-handling
logic.

A client-server architecture where
LLM-powered applications
(clients) can connect to and utilize
various MCP servers (tools).

Discovery The LLM is explicitly told
which tools are available
within the context of a
specific conversation.

Enables dynamic discovery of
available tools. An MCP client can
query a server to see what
capabilities it offers.

Reusability Tool integrations are often
tightly coupled with the
specific application and
LLM being used.

Promotes the development of
reusable, standalone "MCP
servers" that can be accessed by
any compliant application.

Think of tool function calling as giving an AI a specific set of custom-built tools, like a
particular wrench and screwdriver. This is efficient for a workshop with a fixed set of
tasks. MCP (Model Context Protocol), on the other hand, is like creating a universal,
standardized power outlet system. It doesn't provide the tools itself, but it allows any
compliant tool from any manufacturer to plug in and work, enabling a dynamic and
ever-expanding workshop.

3

In short, function calling provides direct access to a few specific functions, while MCP
is the standardized communication framework that lets LLMs discover and use a vast
range of external resources. For simple applications, specific tools are enough; for
complex, interconnected AI systems that need to adapt, a universal standard like MCP
is essential.

Additional considerations for MCP
While MCP presents a powerful framework, a thorough evaluation requires
considering several crucial aspects that influence its suitability for a given use case.
Let's see some aspects in more details:

●​ Tool vs. Resource vs. Prompt: It's important to understand the specific roles
of these components. A resource is static data (e.g., a PDF file, a database
record). A tool is an executable function that performs an action (e.g., sending
an email, querying an API). A prompt is a template that guides the LLM in how
to interact with a resource or tool, ensuring the interaction is structured and
effective.

●​ Discoverability: A key advantage of MCP is that an MCP client can dynamically
query a server to learn what tools and resources it offers. This "just-in-time"
discovery mechanism is powerful for agents that need to adapt to new
capabilities without being redeployed.

●​ Security: Exposing tools and data via any protocol requires robust security
measures. An MCP implementation must include authentication and
authorization to control which clients can access which servers and what
specific actions they are permitted to perform.

●​ Implementation: While MCP is an open standard, its implementation can be
complex. However, providers are beginning to simplify this process. For
example, some model providers like Anthropic or FastMCP offer SDKs that
abstract away much of the boilerplate code, making it easier for developers to
create and connect MCP clients and servers.

●​ Error Handling: A comprehensive error-handling strategy is critical. The
protocol must define how errors (e.g., tool execution failure, unavailable server,
invalid request) are communicated back to the LLM so it can understand the
failure and potentially try an alternative approach.

●​ Local vs. Remote Server: MCP servers can be deployed locally on the same
machine as the agent or remotely on a different server. A local server might be
chosen for speed and security with sensitive data, while a remote server

4

architecture allows for shared, scalable access to common tools across an
organization.

●​ On-demand vs. Batch: MCP can support both on-demand, interactive
sessions and larger-scale batch processing. The choice depends on the
application, from a real-time conversational agent needing immediate tool
access to a data analysis pipeline that processes records in batches.

●​ Transportation Mechanism: The protocol also defines the underlying
transport layers for communication. For local interactions, it uses JSON-RPC
over STDIO (standard input/output) for efficient inter-process communication.
For remote connections, it leverages web-friendly protocols like Streamable
HTTP and Server-Sent Events (SSE) to enable persistent and efficient
client-server communication.

The Model Context Protocol uses a client-server model to standardize information
flow. Understanding component interaction is key to MCP's advanced agentic
behavior:

1.​ Large Language Model (LLM): The core intelligence. It processes user
requests, formulates plans, and decides when it needs to access external
information or perform an action.

2.​ MCP Client: This is an application or wrapper around the LLM. It acts as the
intermediary, translating the LLM's intent into a formal request that conforms to
the MCP standard. It is responsible for discovering, connecting to, and
communicating with MCP Servers.

3.​ MCP Server: This is the gateway to the external world. It exposes a set of tools,
resources, and prompts to any authorized MCP Client. Each server is typically
responsible for a specific domain, such as a connection to a company's internal
database, an email service, or a public API.

4.​ ​​Optional Third-Party (3P) Service: This represents the actual external tool,
application, or data source that the MCP Server manages and exposes. It is the
ultimate endpoint that performs the requested action, such as querying a
proprietary database, interacting with a SaaS platform, or calling a public
weather API.

The interaction flows as follows:

1.​ Discovery: The MCP Client, on behalf of the LLM, queries an MCP Server to
ask what capabilities it offers. The server responds with a manifest listing its
available tools (e.g., send_email), resources (e.g., customer_database), and
prompts.

5

2.​ Request Formulation: The LLM determines that it needs to use one of the
discovered tools. For instance, it decides to send an email. It formulates a
request, specifying the tool to use (send_email) and the necessary parameters
(recipient, subject, body).

3.​ Client Communication: The MCP Client takes the LLM's formulated request
and sends it as a standardized call to the appropriate MCP Server.

4.​ Server Execution: The MCP Server receives the request. It authenticates the
client, validates the request, and then executes the specified action by
interfacing with the underlying software (e.g., calling the send() function of an
email API).

5.​ Response and Context Update: After execution, the MCP Server sends a
standardized response back to the MCP Client. This response indicates
whether the action was successful and includes any relevant output (e.g., a
confirmation ID for the sent email). The client then passes this result back to
the LLM, updating its context and enabling it to proceed with the next step of
its task.

Practical Applications & Use Cases
MCP significantly broadens AI/LLM capabilities, making them more versatile and
powerful. Here are nine key use cases:

●​ Database Integration: MCP allows LLMs and agents to seamlessly access and
interact with structured data in databases. For instance, using the MCP Toolbox
for Databases, an agent can query Google BigQuery datasets to retrieve real-time
information, generate reports, or update records, all driven by natural language
commands.

●​ Generative Media Orchestration: MCP enables agents to integrate with
advanced generative media services. Through MCP Tools for Genmedia Services,
an agent can orchestrate workflows involving Google's Imagen for image
generation, Google's Veo for video creation, Google's Chirp 3 HD for realistic
voices, or Google's Lyria for music composition, allowing for dynamic content
creation within AI applications.

●​ External API Interaction: MCP provides a standardized way for LLMs to call and
receive responses from any external API. This means an agent can fetch live
weather data, pull stock prices, send emails, or interact with CRM systems,
extending its capabilities far beyond its core language model.

●​ Reasoning-Based Information Extraction: Leveraging an LLM's strong
reasoning skills, MCP facilitates effective, query-dependent information
extraction that surpasses conventional search and retrieval systems. Instead of a

6

traditional search tool returning an entire document, an agent can analyze the
text and extract the precise clause, figure, or statement that directly answers a
user's complex question.

●​ Custom Tool Development: Developers can build custom tools and expose them
via an MCP server (e.g., using FastMCP). This allows specialized internal functions
or proprietary systems to be made available to LLMs and other agents in a
standardized, easily consumable format, without needing to modify the LLM
directly.

●​ Standardized LLM-to-Application Communication: MCP ensures a consistent
communication layer between LLMs and the applications they interact with. This
reduces integration overhead, promotes interoperability between different LLM
providers and host applications, and simplifies the development of complex
agentic systems.

●​ Complex Workflow Orchestration: By combining various MCP-exposed tools
and data sources, agents can orchestrate highly complex, multi-step workflows.
An agent could, for example, retrieve customer data from a database, generate a
personalized marketing image, draft a tailored email, and then send it, all by
interacting with different MCP services.

●​ IoT Device Control: MCP can facilitate LLM interaction with Internet of Things
(IoT) devices. An agent could use MCP to send commands to smart home
appliances, industrial sensors, or robotics, enabling natural language control and
automation of physical systems.

●​ Financial Services Automation: In financial services, MCP could enable LLMs to
interact with various financial data sources, trading platforms, or compliance
systems. An agent might analyze market data, execute trades, generate
personalized financial advice, or automate regulatory reporting, all while
maintaining secure and standardized communication.

In short, the Model Context Protocol (MCP) enables agents to access real-time
information from databases, APIs, and web resources. It also allows agents to perform
actions like sending emails, updating records, controlling devices, and executing
complex tasks by integrating and processing data from various sources. Additionally,
MCP supports media generation tools for AI applications.

Hands-On Code Example with ADK

This section outlines how to connect to a local MCP server that provides file system
operations, enabling an ADK agent to interact with the local file system.

7

Agent Setup with MCPToolset
To configure an agent for file system interaction, an `agent.py` file must be created
(e.g., at `./adk_agent_samples/mcp_agent/agent.py`). The `MCPToolset` is
instantiated within the `tools` list of the `LlmAgent` object. It is crucial to replace
`"/path/to/your/folder"` in the `args` list with the absolute path to a directory on the
local system that the MCP server can access. This directory will be the root for the file
system operations performed by the agent.

import os
from google.adk.agents import LlmAgent
from google.adk.tools.mcp_tool.mcp_toolset import MCPToolset,
StdioServerParameters

Create a reliable absolute path to a folder named
'mcp_managed_files'
within the same directory as this agent script.
This ensures the agent works out-of-the-box for demonstration.
For production, you would point this to a more persistent and
secure location.
TARGET_FOLDER_PATH =
os.path.join(os.path.dirname(os.path.abspath(__file__)),
"mcp_managed_files")

Ensure the target directory exists before the agent needs it.
os.makedirs(TARGET_FOLDER_PATH, exist_ok=True)

root_agent = LlmAgent(
 model='gemini-2.0-flash',
 name='filesystem_assistant_agent',
 instruction=(
 'Help the user manage their files. You can list files, read
files, and write files. '
 f'You are operating in the following directory:
{TARGET_FOLDER_PATH}'
),
 tools=[
 MCPToolset(
 connection_params=StdioServerParameters(
 command='npx',
 args=[
 "-y", # Argument for npx to auto-confirm install
 "@modelcontextprotocol/server-filesystem",
 # This MUST be an absolute path to a folder.

8

 TARGET_FOLDER_PATH,
],
),
 # Optional: You can filter which tools from the MCP server
are exposed.
 # For example, to only allow reading:
 # tool_filter=['list_directory', 'read_file']
)
],
)

`npx` (Node Package Execute), bundled with npm (Node Package Manager) versions
5.2.0 and later, is a utility that enables direct execution of Node.js packages from the
npm registry. This eliminates the need for global installation. In essence, `npx` serves
as an npm package runner, and it is commonly used to run many community MCP
servers, which are distributed as Node.js packages.

Creating an __init__.py file is necessary to ensure the agent.py file is recognized as
part of a discoverable Python package for the Agent Development Kit (ADK). This file
should reside in the same directory as agent.py.

./adk_agent_samples/mcp_agent/__init__.py
from . import agent

Certainly, other supported commands are available for use. For example, connecting
to python3 can be achieved as follows:

connection_params = StdioConnectionParams(
 server_params={
 "command": "python3",
 "args": ["./agent/mcp_server.py"],
 "env": {
 "SERVICE_ACCOUNT_PATH":SERVICE_ACCOUNT_PATH,
 "DRIVE_FOLDER_ID": DRIVE_FOLDER_ID
 }
 }
)

9

http://agent.py

UVX, in the context of Python, refers to a command-line tool that utilizes uv to execute
commands in a temporary, isolated Python environment. Essentially, it allows you to
run Python tools and packages without needing to install them globally or within your
project's environment. You can run it via the MCP server.

connection_params = StdioConnectionParams(
 server_params={
 "command": "uvx",
 "args": ["mcp-google-sheets@latest"],
 "env": {
 "SERVICE_ACCOUNT_PATH":SERVICE_ACCOUNT_PATH,
 "DRIVE_FOLDER_ID": DRIVE_FOLDER_ID
 }
 }
)

Once the MCP Server is created, the next step is to connect to it.

Connecting the MCP Server with ADK Web
To begin, execute 'adk web'. Navigate to the parent directory of mcp_agent (e.g.,
adk_agent_samples) in your terminal and run:

cd ./adk_agent_samples # Or your equivalent parent directory
adk web

Once the ADK Web UI has loaded in your browser, select the
`filesystem_assistant_agent` from the agent menu. Next, experiment with prompts
such as:

●​ "Show me the contents of this folder."
●​ "Read the `sample.txt` file." (This assumes `sample.txt` is located at

`TARGET_FOLDER_PATH`.)
●​ "What's in `another_file.md`?"

10

Creating an MCP Server with FastMCP
FastMCP is a high-level Python framework designed to streamline the development of
MCP servers. It provides an abstraction layer that simplifies protocol complexities,
allowing developers to focus on core logic.

The library enables rapid definition of tools, resources, and prompts using simple
Python decorators. A significant advantage is its automatic schema generation, which
intelligently interprets Python function signatures, type hints, and documentation
strings to construct necessary AI model interface specifications. This automation
minimizes manual configuration and reduces human error.

Beyond basic tool creation, FastMCP facilitates advanced architectural patterns like
server composition and proxying. This enables modular development of complex,
multi-component systems and seamless integration of existing services into an
AI-accessible framework. Additionally, FastMCP includes optimizations for efficient,
distributed, and scalable AI-driven applications.

Server setup with FastMCP
To illustrate, consider a basic "greet" tool provided by the server. ADK agents and
other MCP clients can interact with this tool using HTTP once it is active.

fastmcp_server.py
This script demonstrates how to create a simple MCP server using FastMCP.
It exposes a single tool that generates a greeting.

1. Make sure you have FastMCP installed:
pip install fastmcp
from fastmcp import FastMCP, Client

Initialize the FastMCP server.
mcp_server = FastMCP()

Define a simple tool function.
The `@mcp_server.tool` decorator registers this Python function as an MCP
tool.
The docstring becomes the tool's description for the LLM.
@mcp_server.tool
def greet(name: str) -> str:
 """
 Generates a personalized greeting.

 Args:

11

 name: The name of the person to greet.

 Returns:
 A greeting string.
 """
 return f"Hello, {name}! Nice to meet you."

Or if you want to run it from the script:
if __name__ == "__main__":
 mcp_server.run(
 transport="http",
 host="127.0.0.1",
 port=8000
)

This Python script defines a single function called greet, which takes a person's name
and returns a personalized greeting. The @tool() decorator above this function
automatically registers it as a tool that an AI or another program can use. The
function's documentation string and type hints are used by FastMCP to tell the Agent
how the tool works, what inputs it needs, and what it will return.

When the script is executed, it starts the FastMCP server, which listens for requests
on localhost:8000. This makes the greet function available as a network service. An
agent could then be configured to connect to this server and use the greet tool to
generate greetings as part of a larger task. The server runs continuously until it is
manually stopped.

Consuming the FastMCP Server with an ADK Agent
An ADK agent can be set up as an MCP client to use a running FastMCP server. This
requires configuring HttpServerParameters with the FastMCP server's network
address, which is usually http://localhost:8000.

A tool_filter parameter can be included to restrict the agent's tool usage to specific
tools offered by the server, such as 'greet'. When prompted with a request like "Greet
John Doe," the agent's embedded LLM identifies the 'greet' tool available via MCP,
invokes it with the argument "John Doe," and returns the server's response. This
process demonstrates the integration of user-defined tools exposed through MCP
with an ADK agent.

To establish this configuration, an agent file (e.g., agent.py located in
./adk_agent_samples/fastmcp_client_agent/) is required. This file will instantiate an

12

ADK agent and use HttpServerParameters to establish a connection with the
operational FastMCP server.

./adk_agent_samples/fastmcp_client_agent/agent.py
import os
from google.adk.agents import LlmAgent
from google.adk.tools.mcp_tool.mcp_toolset import MCPToolset,
HttpServerParameters

Define the FastMCP server's address.
Make sure your fastmcp_server.py (defined previously) is running on
this port.
FASTMCP_SERVER_URL = "http://localhost:8000"

root_agent = LlmAgent(
 model='gemini-2.0-flash', # Or your preferred model
 name='fastmcp_greeter_agent',
 instruction='You are a friendly assistant that can greet people by
their name. Use the "greet" tool.',
 tools=[
 MCPToolset(
 connection_params=HttpServerParameters(
 url=FASTMCP_SERVER_URL,
),
 # Optional: Filter which tools from the MCP server are
exposed
 # For this example, we're expecting only 'greet'
 tool_filter=['greet']
)
],
)

The script defines an Agent named fastmcp_greeter_agent that uses a Gemini
language model. It's given a specific instruction to act as a friendly assistant whose
purpose is to greet people. Crucially, the code equips this agent with a tool to perform
its task. It configures an MCPToolset to connect to a separate server running on
localhost:8000, which is expected to be the FastMCP server from the previous
example. The agent is specifically granted access to the greet tool hosted on that
server. In essence, this code sets up the client side of the system, creating an
intelligent agent that understands its goal is to greet people and knows exactly which
external tool to use to accomplish it.

13

Creating an __init__.py file within the fastmcp_client_agent directory is necessary. This
ensures the agent is recognized as a discoverable Python package for the ADK.

To begin, open a new terminal and run `python fastmcp_server.py` to start the
FastMCP server. Next, go to the parent directory of `fastmcp_client_agent` (for
example, `adk_agent_samples`) in your terminal and execute `adk web`. Once the
ADK Web UI loads in your browser, select the `fastmcp_greeter_agent` from the agent
menu. You can then test it by entering a prompt like "Greet John Doe." The agent will
use the `greet` tool on your FastMCP server to create a response.

At a Glance
What: To function as effective agents, LLMs must move beyond simple text
generation. They require the ability to interact with the external environment to access
current data and utilize external software. Without a standardized communication
method, each integration between an LLM and an external tool or data source
becomes a custom, complex, and non-reusable effort. This ad-hoc approach hinders
scalability and makes building complex, interconnected AI systems difficult and
inefficient.

Why: The Model Context Protocol (MCP) offers a standardized solution by acting as a
universal interface between LLMs and external systems. It establishes an open,
standardized protocol that defines how external capabilities are discovered and used.
Operating on a client-server model, MCP allows servers to expose tools, data
resources, and interactive prompts to any compliant client. LLM-powered applications
act as these clients, dynamically discovering and interacting with available resources
in a predictable manner. This standardized approach fosters an ecosystem of
interoperable and reusable components, dramatically simplifying the development of
complex agentic workflows.

Rule of thumb: Use the Model Context Protocol (MCP) when building complex,
scalable, or enterprise-grade agentic systems that need to interact with a diverse and
evolving set of external tools, data sources, and APIs. It is ideal when interoperability
between different LLMs and tools is a priority, and when agents require the ability to
dynamically discover new capabilities without being redeployed. For simpler
applications with a fixed and limited number of predefined functions, direct tool
function calling may be sufficient.

14

Visual summary

Fig.1: Model Context protocol

Key Takeaways
These are the key takeaways:

●​ The Model Context Protocol (MCP) is an open standard facilitating standardized
communication between LLMs and external applications, data sources, and tools.

●​ It employs a client-server architecture, defining the methods for exposing and
consuming resources, prompts, and tools.

●​ The Agent Development Kit (ADK) supports both utilizing existing MCP servers
and exposing ADK tools via an MCP server.

●​ FastMCP simplifies the development and management of MCP servers,
particularly for exposing tools implemented in Python.

●​ MCP Tools for Genmedia Services allows agents to integrate with Google Cloud's

15

generative media capabilities (Imagen, Veo, Chirp 3 HD, Lyria).
●​ MCP enables LLMs and agents to interact with real-world systems, access

dynamic information, and perform actions beyond text generation.

Conclusion
The Model Context Protocol (MCP) is an open standard that facilitates communication
between Large Language Models (LLMs) and external systems. It employs a
client-server architecture, enabling LLMs to access resources, utilize prompts, and
execute actions through standardized tools. MCP allows LLMs to interact with
databases, manage generative media workflows, control IoT devices, and automate
financial services. Practical examples demonstrate setting up agents to communicate
with MCP servers, including filesystem servers and servers built with FastMCP,
illustrating its integration with the Agent Development Kit (ADK). MCP is a key
component for developing interactive AI agents that extend beyond basic language
capabilities.

References
1.​ Model Context Protocol (MCP) Documentation. (Latest). Model Context Protocol

(MCP). https://google.github.io/adk-docs/mcp/
2.​ FastMCP Documentation. FastMCP. https://github.com/jlowin/fastmcp
3.​ MCP Tools for Genmedia Services. MCP Tools for Genmedia Services.

https://google.github.io/adk-docs/mcp/#mcp-servers-for-google-cloud-genmedi
a

4.​ MCP Toolbox for Databases Documentation. (Latest). MCP Toolbox for
Databases. https://google.github.io/adk-docs/mcp/databases/

16

https://google.github.io/adk-docs/mcp/
https://fastmcp.readthedocs.io/en/latest/
https://github.com/jlowin/fastmcp
https://google.github.io/adk-docs/mcp/#mcp-servers-for-google-cloud-genmedia
https://google.github.io/adk-docs/mcp/#mcp-servers-for-google-cloud-genmedia
https://google.github.io/adk-docs/mcp/databases/

	Chapter 10: Model Context Protocol
	MCP Pattern Overview
	MCP vs. Tool Function Calling
	Additional considerations for MCP
	Practical Applications & Use Cases
	Hands-On Code Example with ADK
	Agent Setup with MCPToolset
	Connecting the MCP Server with ADK Web
	Creating an MCP Server with FastMCP
	Server setup with FastMCP
	To illustrate, consider a basic "greet" tool provided by the server. ADK agents and other MCP clients can interact with this tool using HTTP once it is active.
	Consuming the FastMCP Server with an ADK Agent

	At a Glance
	Key Takeaways
	Conclusion
	References

