

MOTOROLA FREEWARE
8-bit Cross Assemblers

User's Manual
Edited by Juan J. Rodriguez Moscoso

TABLE OF CONTENTS
CHAPTER 1: GENERAL INFORMATION

○​ INTRODUCTION
○​ ASSEMBLY LANGUAGE
○​ OPERATING ENVIRONMENT
○​ ASSEMBLER PROCESSING

CHAPTER 2: CODING ASSEMBLY LANGUAGE PROGRAMS
■​ INTRODUCTION
■​ SOURCE STATEMENT FORMAT

■​ Label Field
■​ Operation Field
■​ Operand Field

■​ M6800/6801 Operand Syntax
■​ M6800/M68HC04 Operand Syntax
■​ M6805/M68HC05 Operand Syntax
■​ M6809 Operand Syntax
■​ M68HC11 Operand Syntax
■​ Expressions
■​ Operators
■​ Symbols
■​ Constants

■​ Comment Field
■​ ASSEMBLER OUTPUT

CHAPTER 3 - RUNNING THE ASSEMBLERS
○​ ASSEMBLER INVOCATION
○​ ERROR MESSAGES

CHAPTER 4 - ASSEMBLER DIRECTIVES
○​ INTRODUCTION
○​ BSZ - BLOCK STORAGE OF ZEROS
○​ EQU - EQUATE SYMBOL TO A VALUE
○​ FCB - FORM CONSTANT BYTE
○​ FCC - FORM CONSTANT CHARACTER STRING
○​ FDB - FROM DOUBLE BYTE CONSTANT
○​ FILL - FILL MEMORY
○​ OPT - ASSEMBLER OUTPUT OPTIONS
○​ ORG - SET PROGRAM COUNTER TO ORIGIN
○​ PAGE - TOP OF PAGE
○​ RMB - RESERVE MEMORY BYTES

○​ ZMB - ZERO MEMORY BYTES
APPENDIX A - CHARACTER SET
APPENDIX B - ADDRESSING MODES

○​ M6800/M6801 ADDRESSING MODES
○​ M6804/68HC04 ADDRESSING MODES
○​ M6805/68HC05 ADDRESSING MODES
○​ M6809 ADDRESSING MODES
○​ M68HC11 ADDRESSING MODES

APPENDIX C - DIRECTIVE SUMMARY
APPENDIX D - ASSEMBLER LISTING FORMAT
APPENDIX E - S-RECORD INFORMATION

●​ INTRODUCTION
●​ S-RECORD CONTENT
●​ S-RECORD TYPES
●​ S-RECORD EXAMPLE

CHAPTER 1

GENERAL INFORMATION
INTRODUCTION
This is the user's reference manual for the IBM-PC hosted Motorola Freeware 8 bit
cross assemblers. It details the features and capabilities of the cross assemblers,
assembler syntax and directives, options, and listings. It is intended as a detailed
reference and an introduction for those unfamiliar with Motorola assembler syntax and
format. Those experienced with Motorola assembler products may wish to examine
the file ASEMBLER.DOC available with the cross assemblers, which briefly describes
the differences between these assemblers and earlier, non-pc based versions.
Assemblers are programs that process assembly language source program
statements and translate them into executable machine language object files. A
programmer writes his source program using any text editor or word processor that
can produce an ASCII text output. With some word processors this is known as "non
document" mode. Non document mode produces a file without the non-printable
embedded control characters that are used in document formatting. (Caution:
assembling a file that has been formatted with embedded control characters may
produce assembler errors. The solution is to convert the source file to ASCII text.)
Once the source code is written, the source file is assembled by processing the file via
the assembler.
Cross assemblers (such as the Motorola Freeware Assemblers) allow source
programs written and edited on one computer (the host) to generate executable code
for another computer (the target). The executable object file can then be downloaded
and run on the target system. In this case the host is an IBM-PC or compatible and the
target system is based on a Motorola 8-bit microprocessor (6800, 6801, 6803, 6805,
68HC05, 6809, or 68HC11).
The assemblers are the executable programs AS*.EXE where * is any of 0, 1, 4, 5,
9, or 11 depending on which microprocessor you are writing code for. The details of

executing the assembler programs are found in Chapter 3. The assembly language
format and syntax for the various processors is very similar with slight variations due
to varied programming resources (instructions, addressing modes, and registers).
These variations are explained in Appendix B.

ASSEMBLY LANGUAGE

The symbolic language used to code source programs to be processed by the
Assembler is called assembly language. The language is a collection of mnemonic
symbols representing: operations (i.e., machine instruction mnemonics or directives to
the assembler), symbolic names, operators, and special symbols. The assembly
language provides mnemonic operation codes for all machine instructions in the
instruction set. The instructions are defined and explained in the Programming
Reference Manuals for the specific devices, available from Motorola. The assembly
language also contains mnemonic directives which specify auxiliary actions to be
performed by the Assembler. These directives are not always translated into machine
language.

OPERATING ENVIRONMENT

These assemblers will run on any IBM-PC, XT, AT, PS-2, or true compatible. The
assemblers may be run off of a floppy disk drive or they may be copied onto a hard
drive for execution. DOS 2.0 or later is required.

ASSEMBLER PROCESSING

The Macro Assembler is a two-pass assembler. During the first pass, the source
program is read to develop the symbol table. During the second pass, the object file is
created (assembled) with reference to the table developed in pass one. It is during the
second pass that the source program listing is also produced. Each source statement
is processed completely before the next source statement is read. As each statement
is processed, the Assembler examines the label, operation code, and operand fields.
The operation code table is scanned for a match with a known opcode. During the
processing of a standard operation code mnemonic, the standard machine code is
inserted into the object file. If an Assembler directive is being processed, the proper
action is taken. Any errors that are detected by the Assembler are displayed before
the actual line containing the error is printed. If no source listing is being produced,
error messages are still displayed to indicate that the assembly process did not
proceed normally.

CHAPTER 2

CODING ASSEMBLY LANGUAGE PROGRAMS

INTRODUCTION

Programs written in assembly language consist of a sequence of source statements.
Each source statement consists of a sequence of ASCII characters ending with a

carriage return. Appendix A contains a list of the supported character set.

SOURCE STATEMENT FORMAT

Each source statement may include up to four fields: a label (or "*" for a comment
line), an operation (instruction mnemonic or assembler directive), an operand, and a
comment.

Label Field

The label field occurs as the first field of a source statement. The label field can take
one of the following forms:

1.​ An asterisk (*) as the first character in the label field indicates that the rest of the
source statement is a comment. Comments are ignored by the Assembler, and
are printed on the source listing only for the programmer's information.

2.​ A whitespace character (blank or tab) as the first character indicates that the
label field is empty. The line has no label and is not a comment.

3.​ A symbol character as the first character indicates that the line has a label.
Symbol characters are the upper or lower case letters a-z, digits 0-9, and the
special characters, period (.), dollar sign ($), and underscore (_). Symbols
consist of one to 15 characters, the first of which must be alphabetic or the
special characters period (.) or underscore (_). All characters are significant and
upper and lower case letters are distinct.

A symbol may occur only once in the label field. If a symbol does occur more than
once in a label field, then each reference to that symbol will be flagged with an error.
With the exception of some directives, a label is assigned the value of the program
counter of the first byte of the instruction or data being assembled. The value assigned
to the label is absolute. Labels may optionally be ended with a colon (:). If the colon is
used it is not part of the label but merely acts to set the label off from the rest of the
source line. Thus the following code fragments are equivalent:
HERE: DECA
 BNE HERE

HERE DECA
 BNE HERE
A label may appear on a line by itself. The assembler interprets this as set the value of
the label equal to the current value of the program counter. The symbol table has
room for at least 2000 symbols of length 8 characters or less. Additional characters up
to 15 are permissible at the expense of decreasing the maximum number of symbols
possible in the table.

Operation Field

The operation field occurs after the label field, and must be preceded by at least one
whitespace character. The operation field must contain a legal opcode mneumonic or
an assembler directive. Upper case characters in this field are converted to lower case
before being checked as a legal mnemonic. Thus 'nop', 'NOP', and 'NoP' are
recognized as the same mnemonic. Entries in the operation field may be one of two

types:
Opcode. These correspond directly to the machine instructions. The operation code
includes any register name associated with the instruction. These register names must
not be separated from the opcode with any whitespace characters. Thus 'CLRA'
means clear accumulator A, but 'CLR A' means clear memory location identified by
the label 'A'.
Directive. These are special operation codes known to the Assembler which control
the assembly process rather than being translated into machine instructions.

2.2.3 Operand Field

The operand field's interpretation is dependent on the contents of the operation field.
The operand field, if required, must follow the operation field, and must be preceded
by at least one white space character. The operand field may contain a symbol, an
expression, or a combination of symbols and expressions separated by commas. The
operand field of machine instructions is used to specify the addressing mode of the
instruction, as well as the operand of the instruction. The following tables summarize
the operand field formats for the various processor families. (NOTE: in these tables
parenthesis "()" signify optional elements and angle brackets "<>" denote an
expression is inserted. These syntax elements are present only for clarification of the
format and are not inserted as part of the actual source program. All other characters
are significant and must be used when required.)

M6800/6801 Operand Syntax

The format of the operand field for M6800/6801 instructions is:
Operand Format M6800/M6801 Addressing Mode
no operand accumulator and inherent
<expression> direct, extended, or relative
#<expression> immediate
<expression>,X indexed
Details of the M6800/6801 addressing modes may be found in Appendix B.

M6804/68HC Operand Syntax

For the M6804/68HC04, the following operand formats exist:
Operand Format M6804/68HC04 Addressing Mode
no operand accumulator and inherent
<expression> direct, extended, or relative
#<expression> immediate
<expression> bit set or clear
<expression>,<expression> bit test and branch
[<x> or <y>] register indirect
<expression>,#<expression> move indirect
Details of the M6804/68HC04 addressing modes may be found in Appendix B.

2.2.3.3 M6805/M68HC05 Operand Syntax

For the M6805/68HC05, the operand formats are:
Operand Format M6805/68HC05 Addressing Mode
no operand accumulator and inherent
<expression> direct, extended, or relative
#<expression> immediate
<expression>,X indexed
<expression>,<expression> bit set or clear
<expression>,<expression>,<expressi
on>

bit test and branch

Details of the M6805/68HC05 addressing modes may be found in Appendix B.

M6809 Operand Syntax

For the M6809, the following operand formats are used:
Operand Format M6809 Addressing Mode
no operand accumulator and inherent
<expression> direct, extended, or relative
#<expression> immediate
<expression>,X indexed
<<expression> forced direct
><expression> forced extended
<expression>] extended indirect
<expression>,R indexed
<<expression>,R forced 8-bit offset indexed
><expression>,R forced 16-bit offset indexed
[<expression>,R] indexed indirect
<[<expression>,R] forced 8-bit offset indexed indirect
>[<expression>,R] forced 16-bit offset indexed indirect
Q+ auto increment by 1
Q++ auto increment by 2
[Q++] auto increment indirect
-Q auto decrement by
--Q auto decrement by 2
[--Q] auto decrement indirect
W1,[W2,...,Wn] immediate
where R is one of the registers PCR, S, U, X, or Y, and Q is one of the registers S, U, X,
or Y. Wi (i=1 to n) is one of the symbols A, B, CC, D, DP, PC, S, U, X, or Y.
Details of the M6809 addressing modes may be found in Appendix B.

M68HC11 Operand Syntax

For the M68HC11, the following operand formats exist:
Operand Format M68HC11 Addressing Mode
no operand accumulator and inherent
<expression> direct, extended, or relative
#<expression> immediate

<expression>,X indexed with X register
<expression>,Y indexed with Y register
<expression> <expression> bit set or clear
<expression> <expression> <expression> bit test and branch
The bit manipulation instruction operands are separated by spaces in this case since
the HC11 allows bit manipulation instructions on indexed addresses. Thus a ',X' or ',Y'
may be added to the final two formats above to form the indexed effective address
calculation.
Details of the M68HC11 addressing modes may be found in Appendix B. The
operand fields of assembler directives are described in Chapter 4.

Expressions

An expression is a combination of symbols, constants, algebraic operators, and
parentheses. The expression is used to specify a value which is to be used as an
operand. Expressions may consist of symbols, constants, or the character '*'
(denoting the current value of the program counter) joined together by one of the
operators: + - * / % & | ^ .

Operators

The operators are the same as in c:

+ add
- subtract
* multiply
/ divide
% remainder after division
& bitwise and
| bitwise or
^ bitwise exclusive or

Expressions are evaluated left to right and there is no provision for parenthesized
expressions. Arithmetic is carried out in signed two-complement integer precision
(that's 16 bits on the IBM PC).

Symbols

Each symbol is associated with a 16-bit integer value which is used in place of the
symbol during the expression evaluation. The asterisk (*) used in an expression as a
symbol represents the current value of the location counter (the first byte of a
multi-byte instruction).

Constants

Constants represent quantities of data that do not vary in value during the execution of
a program. Constants may be presented to the assembler in one of five formats:
decimal, hexadecimal, binary, or octal, or ASCII. The programmer indicates the
number format to the assembler with the following prefixes:

$ HEX
% BINARY
@ OCTAL
' ASCII

Unprefixed constants are interpreted as decimal. The assembler converts all
constants to binary machine code and are displayed in the assembly listing as hex.
A decimal constant consists of a string of numeric digits. The value of a decimal
constant must fall in the range 0-65535, inclusive. The following example shows both
valid and invalid decimal constants:

VALID INVALID REASON INVALID
12 123456 more than 5 digits

12345 12.3 invalid character
A hexadecimal constant consists of a maximum of four characters from the set of
digits (0-9) and the upper case alphabetic letters (A-F), and is preceded by a dollar
sign ($). Hexadecimal constants must be in the range $0000 to $FFFF. The following
example shows both valid and invalid hexadecimal constants:

VALID INVALID REASON INVALID
$12 ABCD no preceding "$"

$ABCD $G2A invalid character
$001F $2F018 too many digits

A binary constant consists of a maximum of 16 ones or zeros preceded by a percent
sign (%). The following example shows both valid and invalid binary constants:

VALID INVALID REASON INVALID
%00101 1010101 missing percent

%1 %100110001010101
11

too many digits

%10100 %210101 invalid digit
An octal constant consists of a maximum of six numeric digits, excluding the digits 8
and 9, preceded by a commercial at-sign (@). Octal constants must be in the ranges
@0 to @177777. The following example shows both valid and invalid octal constants:

VALID INVALID REASON INVALID
@17634 @2317234 too many digits
@377 @277272 out of range

@177600 @23914 invalid character
A single ASCII character can be used as a constant in expressions. ASCII constants
are preceded by a single quote ('). Any character, including the single quote, can be

used as a character constant. The following example shows both valid and invalid
character constants:

VALID INVALID REASON INVALID
'* 'VALID too long

For the invalid case above the assembler will not indicate an error. Rather it will
assemble the first character and ignore the remainder.

Comment Field

The last field of an Assembler source statement is the comment field. This field is
optional and is only printed on the source listing for documentation purposes. The
comment field is separated from the operand field (or from the operation field if no
operand is required) by at least one whitespace character. The comment field can
contain any printable ASCII characters.

ASSEMBLER OUTPUT

The Assembler output includes an optional listing of the source program and an object
file which is in the Motorola S Record format. Details of the S Record format may be
found in Appendix E. The Assembler will normally suppress the printing of the source
listing. This condition, as well as others, can be overridden via options supplied on the
command line that invoked the Assembler.
Each line of the listing contains a reference line number, the address and bytes
assembled, and the original source input line. If an input line causes more than 6
bytes to be output (e.g. a long FCC directive), additional bytes (up to 64) are listed on
succeeding lines with no address preceding them.
The assembly listing may optionally contain a symbol table or a cross reference table
of all symbols appearing in the program. These are always printed at the end of the
assembly listing if either the symbol table or cross reference table options (OPT) are in
effect. The symbol table contains the name of each symbol, along with its defined
value. The cross reference table additionally contains the assembler-maintained
source line number of every reference to every symbol. The format of the cross
reference table is shown in Appendix D.

CHAPTER 3

RUNNING THE ASSEMBLERS

ASSEMBLER INVOCATION

The Motorola Freeware Assembly programs are named as*.exe where '*' is any of 0,
1, 4, 5, 9, or 11 depending on which processor family you wish to assemble code for.
For example, to generate M6800 code run the as0.exe program. To generate
M68HC05 code run the as5.exe program, and so forth. To run the assembler enter
the following command line:
as* file1 (file2 . . .) (- option1 option2 . . .)

where file1, file2, etc are the names of the source files you wish to assemble.
The source filenames may have extensions but the assembler does not check for any
particular extension (however, do not use the .S19 extension since that is the
extension of the object file created by the assembler. Its creation would overwrite the
source file when it is written to the disk).
The options are one or more of the following:
l enables output listing
no disables output listing (default).
cre enables the cross reference table generation
s enables the symbol table generation
c enables cycle counting
noc disables cycle counting
The minus sign preceding the option should be separated from the last file name by a
space. These options may also be indicated to the assembler by the use of the OPT
directive in the source file.
The object file created is written to disk and given the name 'FILENAME.S19' where
'FILENAME' is the name of the first source file specified on the command line. Any
errors and the optional listing (if specified) are displayed on the screen. The listing
and/or error messages may be saved to a file for later examination or printing by
append an i/o redirection command to the command line. On the PC i/o redirection is
indicated with the greater-than ('>') symbol followed by any new or existing file name.
Command line examples:
The command line
as5 myfile
would run the M6805/68HC05 assembler on the source file 'myfile'. The object file
would be written to 'myfile.s19' and any errors would appear on the screen.
The command line
as9 test.asm nexttest.s -l
would run the M6809 assembler on the source files 'test.asm' and 'nexttest.s'.
The object file would be written to 'test.s19' and any errors and the assembly listing
would appear on the screen.
The command line
as9 test.asm nexttest.s -l cre s >test.lst
would run the M6809 assembler on the source files 'test.asm' and 'nexttest.s'.
The object file would be written to 'test.s19'. A listing would be created followed by
a symbol table and cross reference which would all be written to the file test.lst.
.

ERROR MESSAGES

Error diagnostic messages are placed in the listing file just before the line containing
the error. The format of the error line is:
Line_number: Description of error
or
Line_number: Warning ---- Description of error
Errors in pass one cause cancellation of pass two. Warning do not cause cancellation
of pass two but are indications of a possible problem. Error messages are meant to be

self-explanatory.
If more than one file is being assembled, the file name precedes the error:
File_name,Line_number: Description of error
Some errors are classed as fatal and cause an immediate termination of the
assembly. Generally this happens when a temporary file cannot be created or is lost
during assembly.

CHAPTER 4

ASSEMBLER DIRECTIVES
INTRODUCTION

The Assembler directives are instructions to the Assembler, rather than instructions to
be directly translated into object code. This chapter describes the directives that are
recognized by the Freeware Assemblers. Detailed descriptions of each directive are
arranged alphabetically. The notations used in this chapter are:
(
)

Parentheses denote an optional element.

XYZ The names of the directives are printed in capital letters
< > The element names are printed in lower case and contained in angle brackets. All

elements outside of the angle brackets '<>' must be specified as-is. For example,
the syntactical element (<number>,) requires the comma to be specified if the
optional element <number> is selected. The following elements are used in the
subsequent descriptions:

 <comment> A statement's comment field
 <label> A statement label
 <expression

>
An Assembler expression

 <expr> An Assembler expression
 <number> A numeric constant
 <string> A string of ASCII characters
 <delimiter> A string delimiter
 <option> An Assembler option
 <symbol> An Assembler symbol
 <sym> An Assembler symbol
 <sect> A relocatable program section
 <reg list> M6809 register list
 <reg exp> M6809 register expression
In the following descriptions of the various directives, the syntax, or format, of the
directive is given first. This will be followed with the directive's description.

BSZ - BLOCK STORAGE OF ZEROS

(<label>) BSZ <expression> (<comment>)
The BSZ directive causes the Assembler to allocate a block of bytes. Each byte is
assigned the initial value of zero. The number of bytes allocated is given by the
expression in the operand field. If the expression contains symbols that are either
undefined or forward referenced (i.e. the definition occurs later on in the file), or if the
expression has a value of zero, an error will be generated.

EQU - EQUATE SYMBOL TO A VALUE

<label> EQU <expression> (<comment>)
The EQU directive assigns the value of the expression in the operand field to the label.
The EQU directive assigns a value other than the program counter to the label. The
label cannot be redefined anywhere else in the program. The expression cannot
contain any forward references or undefined symbols. Equates with forward
references are flagged with Phasing Errors.

FCB - FORM CONSTANT BYTE

(<label>) FCB <expr>(,<expr>,...,<expr>) (<comment>)
The FCB directive may have one or more operands separated by commas. The value
of each operand is truncated to eight bits, and is stored in a single byte of the object
program. Multiple operands are stored in successive bytes. The operand may be a
numeric constant, a character constant, a symbol, or an expression. If multiple
operands are present, one or more of them can be null (two adjacent commas), in
which case a single byte of zero will be assigned for that operand. An error will occur if
the upper eight bits of the evaluated operands' values are not all ones or all zeros.

FCC - FORM CONSTANT CHARACTER STRING

(<label>) FCC <delimiter><string><delimiter> (<comment>)
The FCC directive is used to store ASCII strings into consecutive bytes of memory.
The byte storage begins at the current program counter. The label is assigned to the
first byte in the string. Any of the printable ASCII characters can be contained in the
string. The string is specified between two identical delimiters which can be any
printable ASCII character. The first non-blank character after the FCC directive is used
as the delimiter.
Example:
LABEL1 FCC , ABC,
assembles ASCII ABC at location LABEL1

FDB - FORM DOUBLE BYTE CONSTANT

(<label>) FDB <expr>(,<expr>,...,<expr>) (<comment>)
The FDB directive may have one or more operands separated by commas. The 16-bit
value corresponding to each operand is stored into two consecutive bytes of the object
program. The storage begins at the current program counter. The label is assigned to
the first 16-bit value. Multiple operands are stored in successive bytes. The operand
may be a numeric constant, a character constant, a symbol, or an expression. If

multiple operands are present, one or more of them can be null (two adjacent
commas), in which case two bytes of zeros will be assigned for that operand.

FILL - FILL MEMORY

(<label>) FILL <expression>,<expression>
The FILL directive causes the assembler to initialize an area of memory with a
constant value. The first expression signifies the one byte value to be placed in the
memory and the second expression indicates the total number of successive bytes to
be initialized. The first expression must evaluate to the range 0-255. Expressions
cannot contain forward references or undefined symbols.

OPT - ASSEMBLER OUTPUT OPTIONS

OPT <option>(,<option>,...,<option>) (<comment>)
The OPT directive is used to control the format of the Assembler output. The options
are specified in the operand field, separated by commas. All options have a default
condition. Some options can be initialized from the command line that invoked the
Assembler, however the options contained in the source file take precedence over any
entered on the command line. In the following descriptions, the parenthetical inserts
specify "DEFAULT", if the option is the default condition. All options must be entered in
lower case.
c Enable cycle counting in the listing. The total cycle count for that instruction

will appear in the listing after the assembled bytes and before the source
code.

cre Print a cross reference table at the end of the source listing. This option, if
used, must be specified before the first symbol in the source program is
encountered. The cross reference listing format may be found in Appendix D.

l Print the listing from this point on. A description of the listing format can be
found in Appendix D.

noc (DEFAULT) Disable cycle counting in the listing. If the "c" option was used
previously in the program, this option will cause cycle counting to cease until
the next "OPT c" statement.

nol (DEFAULT) Do not print the listing from this point on. An "OPT l" can
re-enable listing at a later point in the program.

s Print symbol table at end of source listing. The symbol table format can be
found in Appendix D.

ORG - SET PROGRAM COUNTER TO ORIGIN

ORG <expression> (<comment>)
The ORG directive changes the program counter to the value specified by the
expression in the operand field. Subsequent statements are assembled into memory
locations starting with the new program counter value. If no ORG directive is
encountered in a source program, the program counter is initialized to zero.
Expressions cannot contain forward references or undefined symbols.

PAGE - TOP OF PAGE

PAGE
The PAGE directive causes the Assembler to advance the paper to the top of the next
page. If no source listing is being produced, the PAGE directive will have no effect. The
directive is not printed on the source listing.

RMB - RESERVE MEMORY BYTES

(<label>) RMB <expression> (<comment>)
The RMB directive causes the location counter to be advanced by the value of the
expression in the operand field. This directive reserves a block of memory the length
of which in bytes is equal to the value of the expression. The block of memory
reserved is not initialized to any given value. The expression cannot contain any
forward references or undefined symbols. This directive is commonly used to reserve
a scratchpad or table area for later use.

ZMB - ZERO MEMORY BYTES (same as BSZ)

(<label>) ZMB <expression> (<comment>)
The ZMB directive causes the Assembler to allocate a block of bytes. Each byte is
assigned the initial value of zero. The number of bytes allocated is given by the
expression in the operand field. If the expression contains symbols that are either
undefined or forward references, or if the expression has a value of zero, an error will
be generated.

APPENDIX A

CHARACTER SET
The character set recognized by the Freeware Assemblers is a subset of ASCII. The
ASCII code is shown in the following figure. The following characters are recognized
by the Assembler:

1.​ The upper case letters A through Z and lower case letters a through z.
2.​ The digits 0 through 9.
3.​ Five arithmetic operators: +, -, *, / and % (remainder after division).
4.​ Three logical operators: &, |, and ^.
5.​ The special symbol characters: underscore (_), period (.), and dollar sign ($).

Only the underscore and period may be used as the first character of a symbol.
6.​ The characters used as prefixes for constants and addressing modes:

Immediate addressing
$ Hexadecimal constant
& Decimal constant
@ Octal constant
% Binary constant
' ASCII character constant

7.​ The characters used as suffixes for constants and addressing modes:

,X Indexed addressing
,PCR M6809 indexed addressing
,S M6809 indexed addressing
,U M6809 indexed addressing
,Y M6809 and M68HC11 indexed addressing

8.​ Three separator characters: space, carriage return, and comma.
9.​ The character "*" to indicate comments. Comments may contain any printable

characters from the ASCII set.
10.​The special symbol backslash "\" to indicate line continuation. When the

assembler encounters the line continuation character it fetches the next line and
adds it to the end of the first line. This continues until a line is seen which
doesn't end with a backslash or until the system maximum buffer size has been
collected (typically greater or equal to 256).

11.​For the M6809 Assembler, the character "<" preceding an expression to indicate
direct addressing mode or 8-bit offset in indexed mode, and the character ">"
preceding an expression to indicate extended addressing mode or 16-bit offset
in indexed mode.

12.​For the M6809 Assembler, the characters used to indicate auto increment and
auto decrement in the indexed mode: +, ++, -, --.

ASCII CHARACTER CODES
LSB MSB 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ` p
1 SOH DC1 : 1 A Q a q
2 STX DC2 ! 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ' 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k {
C FF FS , < L \ l ;
D CR GS - = M] m }
E SO RS . > N ^ n ~
F S1 US / ? O o DEL

APPENDIX B

ADDRESSING MODES
M6800/M6801 ADDRESSING MODES.

INHERENT OR ACCUMULATOR ADDRESSING

The M6800 includes some instructions which require no operands. These instructions
are self-contained and employ the inherent addressing or the accumulator addressing
mode.
IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one or two bytes of information that
immediately follow the operation code in memory. Immediate addressing is indicated
by preceding the operand field with the pound sign or number sign character (#). The
expression following the # will be assigned one or two bytes of storage, depending on
the instruction.
RELATIVE ADDRESSING
Relative addressing is used by branch instructions. Branches can only be executed
within the range -126 to +129 bytes relative to the first byte of the branch instruction.
For this mode, the programmer specifies the branch address expression and places it
in the operand field. The actual branch offset is calculated by the assembler and put
into the second byte of the branch instruction. The offset is the two's complement of
the difference between the location of the byte immediately following the branch
instruction and the location of the destination of the branch. Branches out of bounds
are flagged as errors by the assembler.
INDEXED ADDRESSING
Indexed addressing is relative to the index register. The address is calculated at the
time of instruction execution by adding a one-byte displacement (in the second byte of
the instruction) to the current contents of the X register. Since no sign extension is
performed on this one-byte displacement, the offset cannot be negative. Indexed
addressing is indicated by the characters ",X" following the expression in the operand
field. The special case of ",X", without a preceding expression, is treated as "0,X".
DIRECT AND EXTENDED ADDRESSING
Direct and extended addressing utilize one (direct) or two (extended) bytes to contain
the address of the operand. Direct addressing is limited to the first 256 bytes of
memory. Direct and extended addressing are indicated by only having an expression
in the operand field. Direct addressing will be used by the Assembler whenever
possible.

M6804/M68HC04 ADDRESSING MODES

INHERENT OR ACCUMULATOR ADDRESSING
The M6800 includes some instructions which require no operands. These instructions
are self-contained and employ the inherent addressing or the accumulator addressing
mode.
IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one byte of information that immediately
follows the operation code in memory. Immediate addressing is indicated by preceding
the operand field with the pound sign or number sign character (#). The expression
following the # will be assigned one byte of storage.
RELATIVE ADDRESSING
Relative addressing is used by branch instructions. Branches can only be executed
within the range -15 to +16 bytes relative to the first byte of the branch instruction. For
this mode, the programmer specifies the branch address expression and places it in
the operand field. The actual branch offset is calculated by the assembler and put into

the second byte of the branch instruction. The offset is the two's complement of the
difference between the location of the byte immediately following the branch
instruction and the location of the destination of the branch. Branches out of bounds
are flagged as errors by the assembler.
DIRECT AND EXTENDED ADDRESSING
Direct and extended addressing utilize byte to contain the address of the operand.
Direct addressing is limited to the first 256 bytes of memory. Extended addressing
concatenates the four least-significant bits of the opcode with the byte following the
opcode to form a 12-bit address. Direct and extended addressing are indicated by only
having an expression in the operand field. Direct addressing will be used by the
Assembler whenever possible.
SHORT DIRECT
Some opcodes allow 4 memory locations in data space ram ($80, $81, $82, and $83
to be referenced as part of the opcode. The opcode determines the data space RAM
location, and the instruction is only one byte. The X and Y registers are at locations
$80 and $81, respectively. An expression used with short direct addressing must not
be forward referenced (that is its definition must occur before, not after this point in the
file) and must equate to the range $80-$83.
BIT SET AND CLEAR
In the bit set/clear addressing mode, the bit to be set or cleared is part of the opcode.
The byte following the opcode specifies the direct address of the byte which will have
the bit set or cleared. Any bit in the 256 byte data space memory that can be written
(with the exception of the data direction registers) can be set or cleared with these two
byte instructions.
BIT TEST AND BRANCH
The bit test and branch addressing mode is a combination of the direct addressing
and relative addressing. The bit to be tested, and it condition (set or clear), is included
in the opcode. The data space address of the byte to be tested is in the single byte
immediately following the opcode byte and follows direct addressing rules. The third
byte is sign extended by the processor during execution to form the 12-bit relative
address which is added to the program counter if the condition is true. This allows
branches based on any readable bit in the data space. The branch span is -125 to
+130 from the opcode address. The branch target address is used by the programmer
to signify the relative offset -- the assembler calculates the offset value. Branches out
of bounds are flagged as errors by the assembler.
REGISTER INDIRECT
In the register indirect mode, the operand is at the address in data space pointed to by
the contents of one of the indirect registers, X or Y. The particular indirect register is
encoded in bit 4 of the opcode by the assembler. The assembler operand syntax for
register indirect is
[<X> or <Y>]
MOVE IMMEDIATE
The MVI (move immediate) instruction has its own format:
mvi <expression 1>,#<expression 2>
where <expression 1> is a direct address and <expression 2> is the data
value to be written.
MISCELLANEOUS SYNTAX ISSUES
The registers in the 6804/HC6804 are memory locations and have addresses

assigned to them. The assembler has predefined
a = A = $FF
b = B = $80
c = C = $81
This also means that for the '04 assembler clr x is equivalent to clrx since
x is both a register and a memory location.
The '04 series has separate program and data spaces. There is no program
memory in the range $10-$7F. Bytes assembled into that range will go into the data
space.

M6805/68HC05 ADDRESSING MODES

INHERENT OR ACCUMULATOR ADDRESSING
The M6805 includes some instructions which require no operands. These instructions
are self-contained, and employ the inherent addressing or the accumulator addressing
mode.
IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one byte of information that immediately
follows the operation code in memory. Immediate addressing is indicated by preceding
the operand field with the pound sign or number sign character (#). The expression
following the # will be assigned one byte of storage.
RELATIVE ADDRESSING
Relative addressing is used by branch instructions. Branches can only be executed
within the range -126 to +129 bytes relative to the first byte of the branch instruction.
For this mode, the programmer specifies the branch address expression and places it
in the operand field. The actual branch offset is calculated by the assembler and put
into the second byte of the branch instruction. The offset is the two's complement of
the difference between the location of the byte immediately following the branch
instruction and the location of the destination of the branch. Branches out of bounds
are flagged as errors by the assembler.
INDEXED ADDRESSING
Indexed addressing is relative to the index register. The address is calculated at the
time of instruction execution by adding a one- or two-byte displacement to the current
contents of the X register. The displacement immediately follows the operation code
in memory. If the displacement is zero, no offset is added to the index register. In this
case, only the operation code resides in memory. Since no sign extension is
performed on a one-byte displacement, the offset cannot be negative. Indexed
addressing is indicated by the characters ",X" following the expression in the operand
field. The special case of ",X", without a preceding expression, is treated as "0,X".
Some instructions do not allow a two-byte displacement.
DIRECT AND EXTENDED ADDRESSING
Direct and extended addressing utilize one (direct) or two (extended) bytes to contain
the address of the operand. Direct addressing is limited to the first 256 bytes of
memory. Direct and extended addressing are indicated by only having an expression
in the operand field. Some instructions do not allow extended addressing. Direct
addressing will be used by the Macro Assembler whenever possible.
BIT SET OR CLEAR
The addressing mode used for this type of instruction is direct, although the format of

the operand field is different from the direct addressing mode described above. The
operand takes the form <expression 1>, <expression 2>. <expression
1> indicates which bit is to be set or cleared. It must be an absolute expression in the
range 0-7. It is used in generating the operation code. <expression 2> is handled
as a direct address, as described above. Since the bit manipulation address is direct,
only the first 256 locations may be operated on by bit manipulation operations.
BIT TEST AND BRANCH
This combines two addressing modes: direct and relative. The format of the operand
is:
<expression 1>, <expression 2>, <expression 3>
<expression 1> and <expression 2> are handled in the same manner as
described above in "bit set or clear". <expression 3> is used to generate a
relative address, as described above in "relative addressing".

M6809 ADDRESSING MODES

INHERENT OR ACCUMULATOR ADDRESSING
The M6809 includes some instructions which require no operands. These instructions
are self-contained, and employ the inherent addressing or the accumulator addressing
mode.
IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one or two bytes of information that
immediately follow the operation code in memory. Immediate addressing is indicated
by preceding the operand field with the pound sign or number sign (#) -- i.e.,
#<expression>. The expression following the # will be assigned one or two bytes
of storage, depending on the instruction. All instructions referencing the accumulator
"A" or "B", or the condition code register "CC", will generate a one-byte immediate
value. Also, immediate addressing used with the PSHS, PULS, PSHU, and PULU
instructions generates a one-byte immediate value. Immediate operands used in all
other instructions generate a two-byte value.
The register list operand does not take the form #<expression> but still generates
one byte of immediate data. The form of the operand is:
R1,R2,...,Rn
where Ri (i=1 to n) is one of the symbols A, B, CC, D, DP, PC, S, U, X or Y. The
number and type of symbols vary, depending on the specific instruction.
For the instructions PSHS, PULS, PSHU, and PULU, any of the above register names
may be included in the register list. The only restriction is that "U" cannot be specified
with PSHU or PULU, and "S" cannot be specified with PSHS or PULS. The one-byte
immediate value assigned to the operand is calculated by the assembler and is
determined by the registers specified. Each register name causes the assembler to
set a bit in the immediate byte as follows:

Register Bit
PC 7
U,S 6
Y 5
X 4
DP 3

B,D 2
A,D 1
CC 0

For the instructions EXG and TFR, exactly two of the above register names must be
included in the register list. The other restriction is the size of the registers specified.
For the EXG instruction, the two registers must be the same size. For the TFR
instruction, the two registers must be the same size, or the first can be a 16-bit register
and the second an 8-bit register. In the case where the transfer is from a 16-bit
register to an 8-bit register, the least significant 8 bits are transferred. The 8-bit
registers are A, B, CC, and DP. The 16-bit registers are D, PC, S, U, X, and Y. The
one-byte immediate value assigned to the operand by the assembler is determined by
the register names. The most significant four bits of the immediate byte contain the
value of the first register name; the least significant four bits contain the value of the
second register, as shown by the following table:

Register Value
(hex)

D 0
X 1
Y 2
U 3
S 4
PC 5
A 8
B 9
CC A
DP B

RELATIVE ADDRESSING
Relative addressing is used by branch instructions. There are two forms of the branch
instruction. The short branch can only be executed within the range -126 to +129
bytes relative to the first byte of the branch instruction. For this mode, the programmer
specifies the branch address expression and places it in the operand field. The actual
branch offset is calculated by the assembler and put into the second byte of the
branch instruction. The long branch can execute in the full range of addressing from
0000-FFFF (hexadecimal) because a two-byte offset is calculated by the assembler
and put into the operand field of the branch instruction. The offset is the two's
complement of the difference between the location of the byte immediately following
the branch instruction and the location of the destination of the branch.
DIRECT AND EXTENDED ADDRESSING
Direct and extended addressing utilize one (direct) or two (extended) bytes to contain
the address of the operand. Direct and extended addressing are indicated by having
only an expression in the operand field (i.e., <expression>). Direct addressing will be
used whenever
possible.
Regardless of the criteria described above, it is possible to force the Assembler to use
the direct addressing mode by preceding the operand with the "<" character. Similarly,
extended addressing can be forced by preceding the operand with the ">" character.

These two operand forms are: <<expression> and ><expression>.
INDEXED ADDRESSING
Indexed addressing is relative to one of the index registers. The general form is
<expression>,R. The address is calculated at the time of instruction execution by
adding the value of <expression> to the current contents of the index register. The
other general form is [<expression>,R]. In this indirect form, the address is calculated
at the time of instruction execution by first adding the value of <expression> to the
current contents of the index register, and then retrieving the two bytes from the
calculated address and address+1. This two-byte value is used as the effective
address of the operand. The allowable forms of indexed addressing are described
below. In the description below, R refers to one of the index registers S, U, X, or Y.
The accumulator offset mode allows one of the accumulators to be specified instead
of an <expression>. Valid forms are:
<acc>,R and [<acc>,R]
where <acc> is one of the accumulators A, B, or D. This form generates a one-byte
operand (post-byte only). When accumulator A or B is specified, sign extension occurs
prior to adding the value in the accumulator to the index register.
The valid forms for the automatic increment/decrement mode are shown below. For
each row, the three entries shown are equivalent.
R+ ,R+ 0,R+
-R ,-R 0,-R
R++ ,R++ 0,R++
--R ,--R 0,--R
[R++] ,R++] [0,R++]
[--R] [,--R] [0,--R]
In this form, the only valid expression is 0. Like the accumulator offset mode, this form
generates a one-byte operand (post-byte only). The valid forms for the expression
offset mode are:
R ,R <expression>,R
[R] [,R] [<expression>,R]
<R <,R <<expression>,R
<[R] <[,R] <[<expression>,R]
>R >,R ><expression>,R
>[R] >[,R] >[<expression>,R]
The "<" and ">" characters force an 8- or 16-bit offset, respectively, and are described
below. If no expression is specified, or if an expression with a value of zero is
specified, only the postbyte of the operand is generated. If an expression with a value
in the range -16 to +15 is specified without indirection, a one- byte operand is
generated which contains the expression's value, as well as the index register
indicator. At execution time, the expression's value is expanded to 16 bits with sign
extension before being added to the index register.
All other forms will generate a post-byte, as well as either a one- or two-byte offset
which contains the value of the expression. The size of the offset is determined by the
type and size of the expression. Expressions with values in the range -128 to +127
generate an 8-bit offset. All other cases will result in a 16-bit offset being generated. In
the case where an 8-bit offset is generated, the value is expanded to 16 bits with sign
extension at execution time.
Regardless of the criteria described above, it is possible to force the Assembler to

generate an 8-bit offset by preceding the operand with the "<" character. Similarly, a
16-bit offset can be forced by preceding the operand with the ">" character.
If the relative address calculated is not in the range -128 to +127, or if the expression
references a symbol that has not yet been defined, a two-byte offset is generated after
the post-byte. A one-byte offset is generated if the relative address is in the range
-128 to +127.
Like the expression offset mode, a one-byte offset can be forced by preceding the
operand with a "<". A ">" forces a two-byte offset. A byte overflow error is generated if
a one-byte offset is forced when the relative address is not in the range -128 to +127.
The extended indirect mode has the form:
[<expression>]
Although extended indirect is a logical extension of the extended addressing mode,
this mode is implemented using an encoding of the postbyte under the indexed
addressing mode. A post-byte and a two-byte offset which contains the value of the
expression is generated.

M68HC11 ADDRESSING MODES

PREBYTE
The number of combinations of instructions and addressing modes for the 68HC11 is
larger than that possible to be encoded in an 8-bit word (256 combinations). To
expand the opcode map, certain opcodes ($18, $1A, and $CD) cause the processor to
fetch the next address to find the actual instruction. These opcodes are known as
prebytes and are inserted automatically by the assembler for those instructions that
require it. In general the instructions contained in the alternate maps are those
involving the Y register or addressing modes that involve the Y index register. Thus
the programmer make the tradeoff between the convenience of using the second
index register and the additional time and code space used by the prebyte.
INHERENT OR ACCUMULATOR ADDRESSING
The M68HC11 includes some instructions which require no operands. These
instructions are self-contained, and employ the inherent addressing or the
accumulator addressing mode.
IMMEDIATE ADDRESSING
Immediate addressing refers to the use of one or more bytes of information that
immediately follow the operation code in memory. Immediate addressing is indicated
by preceding the operand field with the pound sign or number sign character (#). The
expression following the # will be assigned one byte of storage.
RELATIVE ADDRESSING
Relative addressing is used by branch instructions. Branches can only be executed
within the range -126 to +129 bytes relative to the first byte of the branch instruction.
For this mode, the programmer specifies the branch address expression and places it
in the operand field. The actual branch offset is calculated by the assembler and put
into the second byte of the branch instruction. The offset is the two's complement of
the difference between the location of the byte immediately following the branch
instruction and the location of the destination of the branch. Branches out of bounds
are flagged as errors by the assembler.
INDEXED ADDRESSING
Indexed addressing is relative one of the index registers X or Y. The address is

calculated at the time of instruction execution by adding a one-byte displacement to
the current contents of the X register. The displacement immediately follows the
operation code in memory. If the displacement is zero, zero resides in the byte
following the opcode. Since no sign extension is performed on a one-byte
displacement, the offset cannot be negative. Indexed addressing is indicated by the
characters ",X" following the expression in the operand field. The special case of ",X",
without a preceding expression, is treated as "0,X".
DIRECT AND EXTENDED ADDRESSING
Direct and extended addressing utilize one (direct) or two (extended) bytes to contain
the address of the operand. Direct addressing is limited to the first 256 bytes of
memory. Direct and extended addressing are indicated by only having an expression
in the operand field. Direct addressing will be used by the Assembler whenever
possible.
BIT(S) SET OR CLEAR
The addressing mode used for this type of instruction is direct, although the format of
the operand field is different from the direct addressing mode described above. The
operand takes the form
<expression 1> <expression 2>
where the two expressions are separated by a blank. <expression 1> signifies
the operand address and may be either a direct or an indexed address. When the
address mode is indexed, <expression 1> is followed by ',R' where R is either
X or Y. This allows bit manipulation instructions to operate across the complete 64K
address map. <expression 2> is the mask byte. The bit(s) to be set or cleared
are indicated by ones in the corresponding location(s) in the mask byte. The mask
byte must be an expression in the range 0-255 and is encoded by the programmer.
BIT TEST AND BRANCH
This combines two addressing modes: direct or indexed and relative. The format of
the operand is:
<expression 1> <expression 2> <expression 3>
where the expressions are separated by blanks. <expression 1> identifies the
operand an may indicate either a direct or indexed address. Indexed addresses are
signified with ',R' following the expression where R is either X or Y. <expression
2> is the mask byte. The bit(s) to be set or cleared are indicated by ones in the
corresponding location(s) in the mask byte. The mask byte must be an expression in
the range 0-255 and is encoded by the programmer. <expression 3> is used to
generate a relative address, as described above in "relative addressing".

 APPENDIX C
DIRECTIVE SUMMARY

A complete description of all directives appears in Chapter 4.
ASSEMBLY CONTROL
ORG Origin program counter
SYMBOL DEFINITION
EQU Assign permanent value
DATA DEFINITION/STORAGE ALLOCATION

BSZ Block storage of zero; single bytes
FCB Form constant byte
FCC Form constant character string
FDB Form constant double byte
FILL Initialize a block of memory to a constant
RMB Reserve memory; single bytes
ZMB Zero Memory Bytes; same and BSZ
LISTING CONTROL
OPT c Enable cycle counting
OPT cre Print cross reference table
OPT l Print source listing from this point
OPT nol Inhibit printing of source listing from this point
OPT s Print symbol table
PAGE Print subsequent statements on top of next page

 APPENDIX D
ASSEMBLER LISTING FORMAT

The Assembler listing has the following format:
LINE# ADDR OBJECT CODE BYTES [# CYCLES] SOURCE LINE
The LINE# is a 4 digit decimal number printed as a reference. This reference
number is used in the cross reference. The ADDR is the hex value of the address for
the first byte of the object code for this instruction. The OBJECT CODE BYTES are
the assembled object code of the source line in hex. If an source line causes more
than 6 bytes to be output (e.g. a long FCC directive), additional bytes (up to 64) are
listed on succeeding lines with no address preceding them.
The # CYCLES will only appear in the listing if the "c" option is in effect. It is
enclosed in brackets which helps distinguish it from the source listing. The SOURCE
LINE is reprinted exactly from the source program, including labels.
The symbol table has the following format:
SYMBOL ADDR
The symbol is taken directly from the label field in the source program. The ADDR is
the hexadecimal address of the location referenced by the symbol.
The cross reference listing has the following format:
SYMBOL ADDR *LOC1 LOC2 LOC3 ...
The SYMBOL and ADDR are the same as above. The * indicates the start of the line
reference numbers. The LOCs are the decimal line numbers of the assembler listing
where the label occurs.

 APPENDIX E
S-RECORD INFORMATION

INTRODUCTION

The S-record output format encodes program and data object modules into a printable
(ASCII) format. This allows viewing of the object file with standard tools and allows

display of the module while transferring from one computer to the next or during loads
between a host and target. The S-record format also includes information for use in
error checking to insure the integrity of data transfers.

S-RECORD CONTENT

S-Records are character strings made of several fields which identify the record type,
record length, memory address, code/data, and checksum. Each byte of binary data is
encoded as a 2-character hexadecimal number: the first character representing the
high-order 4 bits, and the second the low-order 4 bits of the byte.
The 5 fields which comprise an S-record are:
TYPE RECORD-LENGTH ADDRESS CODE/DATA CHECKSUM
The fields are defined as follows:
FIELD CHARACTERS CONTENTS
Type 2 S-record type - S1, S9, etc.
Record 2 The count of the character pairs in the length record,

excluding the type and record length.
Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is

to be loaded into memory.
Code/data 0-2n From 0 to n bytes of executable code, memory

loadable data, or descriptive information.
Checksum 2 The least significant byte of the one's complement of

the sum of the values represented by the pairs of
characters making up the record length, address, and
the code/data fields.

Each record may be terminated with a CR/LF/NULL.

S-RECORD TYPES

Eight types of s-records have been defined to accommodate various encoding,
transportation, and decoding needs. The Freeware assemblers use only two types,
the S1 and S9:
S1 A record containing code/data and the 2-byte address at which the code/data is

to reside.
S9 A termination record for a block of S1 records. The address field may optionally

contain the 2-byte address of the instruction to which control is to be passed. If
not specified, the first entry point specifica tion encountered in the object
module input will be used. There is no code/data field.

S-RECORD EXAMPLE

The following is a typical S-record module:
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC
The module consists of four code/data records and an S9 termination record. The first

S1 code/data record is explained as follows:
S1 S-record type S1, indicating a code/data record to be loaded/verified at a

2-byte address.
13 Hex 13 (decimal 19), indicating 19 character pairs, representing 19 bytes of

binary data, follow.
00
00

Four-character 2-byte address field: hex address 0000, indicates location
where the following data is to be loaded.

The next 16 character pairs are the ASCII bytes of the actual program code/data
2A Checksum of the first S1 record.
The second and third S1 code/data records each also contain $13 character pairs and
are ended with checksums. The fourth S1 code/data record contains 7 character pairs.
The S9 termination record is explained as follows:
S9 S-record type S9, indicating a termination record.
03 Hex 03, indicating three character pairs (3 bytes) to follow.
00
00

Four character 2-byte address field, zeroes.

FC Checksum of S9 record.

| EE-218 Homepage | Syllabus | Schedule | Lab News | Faculty | Contact Information
| Lab Info | Project |

Department of Electrical Engineering and Computer Science
Box 1824 Station B
Nashville, TN 37235

Phone: 322-2771
Fax: 343-6702

 | Search | Site Index | People Finder | Phone Directory | VUnet | VUmail | VU Library | Help |

Last Updated: Saturday, March 05, 2005
Juan J. Rodriguez-Moscoso

Copyright � 2003 Vanderbilt University

http://eecs.vanderbilt.edu/Courses/ee218/index.html
http://eecs.vanderbilt.edu/Courses/ee218/Syllabus.htm
http://eecs.vanderbilt.edu/Courses/ee218/Syllabus.htm#Topics%20and%20Schedule
http://eecs.vanderbilt.edu/Courses/ee218/notices_old.html
http://eecs.vanderbilt.edu/Courses/ee218/faculty.html
http://eecs.vanderbilt.edu/Courses/ee218/contact.html
http://eecs.vanderbilt.edu/Courses/ee218/Labs.html
http://eecs.vanderbilt.edu/Courses/ee218/assignments.html
http://www.vanderbilt.edu/search.html
http://www.vanderbilt.edu/siteindex.html
http://directory.vanderbilt.edu/
http://phonedirectory.vanderbilt.edu/
http://www.vanderbilt.edu/vunet/
http://www.vanderbilt.edu/vumail/
http://www.library.vanderbilt.edu/
http://www.vanderbilt.edu/help.html

	
	8-bit Cross Assemblers
	User's Manual
	CHAPTER 1
	GENERAL INFORMATION
	INTRODUCTION
	ASSEMBLY LANGUAGE
	OPERATING ENVIRONMENT
	ASSEMBLER PROCESSING

	CHAPTER 2
	CODING ASSEMBLY LANGUAGE PROGRAMS
	INTRODUCTION
	SOURCE STATEMENT FORMAT
	Label Field
	Operation Field
	2.2.3 Operand Field
	M6800/6801 Operand Syntax
	M6804/68HC Operand Syntax
	2.2.3.3 M6805/M68HC05 Operand Syntax
	M6809 Operand Syntax
	M68HC11 Operand Syntax
	Expressions
	Operators
	Symbols
	Constants

	Comment Field

	ASSEMBLER OUTPUT

	CHAPTER 3
	RUNNING THE ASSEMBLERS
	ASSEMBLER INVOCATION
	ERROR MESSAGES

	CHAPTER 4
	ASSEMBLER DIRECTIVES
	INTRODUCTION
	BSZ - BLOCK STORAGE OF ZEROS
	EQU - EQUATE SYMBOL TO A VALUE
	FCB - FORM CONSTANT BYTE
	FCC - FORM CONSTANT CHARACTER STRING
	FDB - FORM DOUBLE BYTE CONSTANT
	FILL - FILL MEMORY
	OPT - ASSEMBLER OUTPUT OPTIONS
	ORG - SET PROGRAM COUNTER TO ORIGIN
	PAGE - TOP OF PAGE
	RMB - RESERVE MEMORY BYTES
	ZMB - ZERO MEMORY BYTES (same as BSZ)

	APPENDIX A
	CHARACTER SET
	APPENDIX B
	ADDRESSING MODES
	M6800/M6801 ADDRESSING MODES.
	M6804/M68HC04 ADDRESSING MODES
	M6805/68HC05 ADDRESSING MODES
	M6809 ADDRESSING MODES
	M68HC11 ADDRESSING MODES

	 APPENDIX C
	 APPENDIX D
	 APPENDIX E
	INTRODUCTION
	S-RECORD CONTENT
	S-RECORD TYPES
	S-RECORD EXAMPLE

