
Big-O Practice Problems: 
 
1. What does it mean if: 
​ f(n) ≠ O(g(n))     and    g(n) ≠ O(f(n))    ??? 
 
2. Is   2n+1 = O(2n)   ? 
    Is   22n = O(2n)   ? 
 
3. Does f(n) = O(f(n)) ? 
 
4. If   f(n) = O(g(n))  and g(n) = O(h(n)), 
    can we say f(n) = O(h(n))  ? 
 
5. 

 

6. Finding one hundred. Many possible algorithms exist to determine if 
any pair of values in a vector add up to 100.  For each of the four programs 
below, identify the asymptotic worst-case running time. 
  

A: Use for loops to consider each possible pair 

bool HasSum100_A(std::vector<int> vals) { 

  for (int i = 0; i < vals.size(); i++) { 



​ for (int j = 0; j < i; j++) { 

  ​ if (vals[i] + vals[j] == 100) return true; 

​ } 

  } 

  return false; 

} 

  

B: (C++ Challenge Problem) Test current pair and then recurse (with a pass by reference!) for 
the next one until all options are considered. 

bool HasSum100_B(std::vector<int> & vals, int i=1, int j=0) { 

  if (i >= vals.size()) return false;        // Base case! 

  if (vals[i] + vals[j] == 100) return true; // Found pair! 

  ++j;                                   ​ // Next pair! 

  if (j == i) { ++i; j = 0; }            ​ // (adjust i if needed) 

  return HasSum100_B(vals, i, j);        ​ // Keep testing! 

} 

  

C: Test current pair and then recurse (with a pass by value!) for the next one until all options are 
considered. 

 ​ Hint: When passing a vector by value, all elements in the array are copied in Q(n) time. 

  

bool HasSum100_C(std::vector<int> vals, int i=1, int j=0) { 

  if (i >= vals.size()) return false;          // Base case! 

  if (vals[i] + vals[j] == 100) return true;   // Found pair! 

  ++j;                                     ​ // Next pair! 



  if (j == i) { ++i; j = 0; }              ​ // (adjust i if 
needed) 

  return HasSum100_C(vals, i, j);          ​ // Keep testing! 

} 

 

D: Sort values first and then, for each value in the vector, search for the remaining value needed 
to sum to 100. 

 ​ Hint: std::sort takes Theta(n log n) time and std::binary_search finds a value in 
Theta(log n) time. 

  

bool HasSum100_D(std::vector<int> vals) { 

  std::sort(vals.begin(), vals.end());   // Sort all values! 

  for (int i = 0; i < vals.size(); i++) { 

​ int val_needed = 100 – vals[i]; 

​ bool found = std::binary_search(vals.begin(), vals.end(), 
val_needed); 

​ if (found) return true; 

  } 

  return false; 

} 

  

Testing asymptotic notation: 
Use this website (https://rithmschool.github.io/function-timer-demo/) to test out how 
asymptotic notation works in the real world! 
 
Choose one of the 7 functions along the top and do the following: 

https://rithmschool.github.io/function-timer-demo/


1.​ From looking at the code, try to figure out what complexity class you expect it to 
be in 

2.​ Try gradually increasing the problem size and running the code to see how long it 
takes (be careful to increase N gently, as the website will hang if you give it too 
large a value) 

3.​ Does the time complexity you observe match what you were expecting based on 
the code? 

4.​ If you have time, try another function and see how the results compare! 
 
Note: I recommend starting with a function other than logAllBinaries - it is substantially 
more challenging than the others. 


	Big-O Practice Problems: 
	  
	Testing asymptotic notation: 

