Change Logs
Proposal rev3
Proposal rev2
Proposal rev1

Examples
Discussion

2016.06.09 - Initial discussion
2016.06.29 - Brad K. comments:
What "Weak Linking" Really Means
Target properties

Change Logs

2016.06.09 - Initial discussion with CMake team. Scikit-build issue #37 created.

2016.06.28 - Finalized initial version of opadron/weak-linking-demo

2016.06.29 - Draft rev1 presented to CMake team

2016.06.29 - Based on Brad K. comments, we are revisiting our initial approach to use generator
expression like $<LINK_WEAK:somelib>

2016.06.30 - Re-organized document adding “Proposal rev2” section

2016.07.25 - Added “Proposal rev3” section + send email to CMake core dev

Proposal rev3

Instead of adding new option to target_link_libraries, a dedicated CMake module (based on
prior work of Bradley Lowekamp) has been created.

See

https://github.com/scikit-build/scikit-build/blob/master/skbuild/resources/cmake/targetLinkLibrarie
sWithDynamiclLookup.cmake

Proposal rev2

TBD

weak-linking-demo could be updated to output the command for the different scenario. That
would address the comment "proposal should show examples of how the actual link command
lines will look in each case (and for each type of platform support).”

https://github.com/scikit-build/scikit-build/issues/37
https://github.com/opadron/weak-linking-demo
https://github.com/scikit-build/scikit-build/blob/master/skbuild/resources/cmake/targetLinkLibrariesWithDynamicLookup.cmake
https://github.com/scikit-build/scikit-build/blob/master/skbuild/resources/cmake/targetLinkLibrariesWithDynamicLookup.cmake

CMake sources related to TargetLinkLibraries:
- Documentation

- https://github.com/Kitware/CMake/blob/master/Tests/RunCMake/set_property/LIN
K LIBRARIES.cmake

- https://github.com/Kitware/CMake/blob/master/Help/command/link_libraries.rst

- Platform description (e.g Linux-GNU-CXX)

- https://github.com/Kitware/CMake/blob/master/Modules/Platform/Linux-GNU-CX
X.cmake

- https://github.com/Kitware/CMake/blob/master/Modules/Platform/Linux-GNU.cma
ke

- https://github.com/Kitware/CMake/blob/master/Modules/Platform/GNU.cmake
- Implementation

- cmComputeLinkinformation.cxx

- cmTarget.cxx

- cmTargetLinkLibrariesCommand.cxx

- cmGeneratorExpressionDAGChecker.cxx
- cmGeneratorTarget.cxx

Proposal rev1

To support weak-linking in CMake, we propose:

® To introduce a new property for binary targets, "SYMBOL RESOLUTION", that
would indicate whether undefined symbols are allowed to be resolved at

load time (SYMBOL RESOLUTION=DYNAMIC). Default: "LINK".

e To introduce another new property for binary targets, "WEAK LIBS", that
would maintain the set of all dependency libraries that are not meant to

actually be included in the linker command.

® To introduce a new keyword to the target link libraries CMake command,
"WEAK", that would apply to every library specified after it in the
argument list. Internally, this keyword would have the effect of
amending the target's "WEAK LIBS" property with any specified dependency
libraries that are not already there -- as well as setting the target's

"SYMBOL RESOLUTION" property to "DYNAMIC".

https://github.com/Kitware/CMake/blob/master/Tests/RunCMake/set_property/LINK_LIBRARIES.cmake
https://github.com/Kitware/CMake/blob/master/Tests/RunCMake/set_property/LINK_LIBRARIES.cmake
https://github.com/Kitware/CMake/blob/master/Help/command/link_libraries.rst
https://github.com/Kitware/CMake/blob/master/Modules/Platform/Linux-GNU-CXX.cmake
https://github.com/Kitware/CMake/blob/master/Modules/Platform/Linux-GNU-CXX.cmake
https://github.com/Kitware/CMake/blob/master/Modules/Platform/Linux-GNU.cmake
https://github.com/Kitware/CMake/blob/master/Modules/Platform/Linux-GNU.cmake
https://github.com/Kitware/CMake/blob/master/Modules/Platform/GNU.cmake

To introduce a new system introspection routine (i.e.:
try compile/try run) that would determine if the linker supported weak

linking. (See weak-linking-demo for a reference implementation.)

To introduce another new system introspection routine (i.e.:

try compile/try run) that would determine if at run-time, the loader
could de-duplicate identical symbols that have been duplicated across
link boundaries (e.g.: Linux). (See weak-linking-demo for a reference

implementation.)

©0 In the case where the platform linker does not support
weak-linking, but the run-time loader can de-dupe (e.g.: Linux),
silently treat the "weak-linking" operation as a normal, proper
linking. This would be equivalent to internally setting the
target's SYMBOL RESOLUTION property back to "LINK", changing the
set of library dependencies to UNION (dependencies, WEAK LIB), and

clearing the target's WEAK LIB property.

Extend the current logic that is carried out when building targets to

include an additional post-build step that resembles the following:

CHECK (the target's SYMBOL RESOLUTION property)
IF (SYMBOL RESOLUTION is "DYNAMIC")
INSPECT (the produced binary for undefined symbols)
FOREACH (undefined symbol, S)
SEARCH (through every dependency library and
RECURSIVELY through their dependencies
(including "WEAK LIBS"))
IF (a definition for S can not be found)
ADD (S to a list of problematic symbols)
IF (problem symbols list is non-empty)
ISSUE (warning)

Introduce a global property and target-specific property that can be used
to suppress or escalate warnings due to undefined symbols for which the
CMake post-build step could not find a matching library dependency.
Perhaps something like "WARN MISSING WEAK SYMBOLS"; "WARN" for default

behavior, "SUPPRESS" to supp

to FATAL errors.

Examples

Refe

rence implementation

ress the warnings, or "FATAL" to promote them

https://github.com/opadron/weak-linking-demo

Hypothetical application that requires weak-linking for proper execution.

"wea
"str
"mod

"mai

klib.c"

onglib.cpp"

ule.cpp"
Shared library (aka module)
linked against "weaklib". S

n.cpp"
Strongly linked against exte

loaded at runtime (i.e.: "MODULE"), weakly

trongly linked against "stronglib".

rnal library: "lib"

add library(weaklib SHARED weaklib.c)

add library(stronglib SHARED stronglib.cpp)

add_library (module MODULE module.cpp)

if (SIMPLE_VERSION)
target link libraries (module
else() # FINER-GRAINED CONTROL
target link libraries (module
set target properties(module
set target properties (module

endif ()

stronglib WEAK weaklib)

stronglib)
PROPERTIES SYMBOL_RESOLUTION DYNAMIC)
PROPERTIES WEAK LIBS weaklib)

https://github.com/opadron/weak-linking-demo

add executable (main main.cpp)

target link libraries(main 1lib)

Changes to SimplelTK

BEFORE
sitk target link libraries with dynamic lookup (
${SWIG MODULE SimpleITKPython TARGET NAME}
S{PYTHON LIBRARIES})

AFTER
target link libraries(
${SWIG_MODULE_SimpleITKPython_TARGET_NAME}
WEAK ${PYTHON_LIBRARIES})

Discussion

Email chain as of this writing:

2016.06.09 - Initial discussion

On 06/09/2016 03:20 PM, Jean-Christophe Fillion-Robin wrote:

> To allow weak linking against libraries like "libpython', we now have two
> separate modules in ITK and VTK allowing to do weak linking:

>

> vtkTargetLinkLibrariesWithDynamicLookup.cmake

<https://qgitlab.kitware.com/vtk/vtk/merge_requests/1511>
> jtkTargetLinkLibrariesWithDynamicLookup.cmake <http://review.source.kitware.com/#/c/21091/>

The meat of those appears to be the following macro along with

the check for allowed undefined symbols:

macro(vtk_target_link_libraries_with_dynamic_lookup target)
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set_target_properties(${target} PROPERTIES LINK_FLAGS "-undefined dynamic_lookup")
elseif(VTK_UNDEFINED_SYMBOLS_ALLOWED)
linker allows undefined symbols, let's just not link
else()
target_link_libraries (${target} ${ARGN})

https://gitlab.kitware.com/vtk/vtk/merge_requests/1511
http://review.source.kitware.com/#/c/21091/

endif()

endmacro()

[IUC the idea is to use this when ${target} comes from add_library()
with the MODULE option, and the goal is to not actually link to
anything but instead tolerate undefined symbols by putting in a note
for the dynamic loader to link them at runtime. | see options for

OS X above. Do we know of equivalents on other platforms?

> What is the path forward regarding these modules:

>

> (1) Add a module named "CMakeTargetLinkLibrariesWithDynamicLookup.cmake"
Probably not.

> (2) Improve "target_link_libraries"

Maybe. Certainly there can be a first-class solution. We just need to

figure out what the right interface is to do this.

What do you propose for the "Improve target_link_libraries" approach?

add library(libl MODULE source(.cxx sourcel.cxx ...)

target link libraries(libl WEAK dep 1ib0 dep libl ...)

add_executable (main main.cxx)
NOT USING WEAK, HERE (SOMEONE HAS TO ACTUALLY LINK)

target link libraries(main dep 1ib0 dep libl ...)

2016.06.29 - Brad K. comments:

On Wed, Jun 29, 2016 at 11:18 AM, Brad King <brad.king@kitware.com> wrote:

There was a lot of work done to make the LINK_LIBRARIES target
property the authoritative reference on direct link dependencies.
The WEAK_LIBS target property splits some of the information out
elsewhere and introduces the possibility of inconsistent values.
Instead one could use a generator expression inside the value of
the LINK_LIBRARIES property to indicate weak linking, e.g.

$<LINK_WEAK:somelib>

One will also have to think about what this means when placed in
INTERFACE_LINK_LIBRARIES for consumption by dependents. | didn't
notice anything in the proposal about how WEAK_LIBS would be

treated with respect to such usage requirements.

Also, the proposal should show examples of how the actual link
command lines will look in each case (and for each type of platform
support).

What "Weak Linking" Really Means

What's really happening is that you're asking the linker to tolerate undefined
symbols while producing a binary (i.e.: executable or library). Normally, the
object files that constitute the binary in question would provide definitions
for those symbols, or at link time, the linker would be given a list of
libraries to search for definitions that aren't found in the source code (i.e.:

"normal" linking).

When "weak linking", you're effectively asking the linker to delay the
resolution of undefined symbols until the very last possible moment: when the

symbols are actually used. In exchange, you're making a "promise" that the

symbol definitions "will be there" when that time comes, since by then, it
would be too late for the linker to save you from your own lack of prudence. :)
Libraries are the usual mechanism for introducing symbols that were not
initially defined at link time (i.e.: "importing"), but they are not the only
one. You could load individual object files, synthesize new symbols at runtime
with a JIT compiler, or Jjust reassemble the jump tables on-the-fly, if you had

the inclination and the right lines of assembly.

So, I mention all of this to help you understand why the question of whether
weak linking applies to particular libraries or all libraries doesn't make
sense. The answer to that exact question is always "it depends on what you

mean".

If you gave me a binary that references symbols from three libraries, A, B, and
C, and you've asked the linker to tolerate undefined symbols, I still could not
tell you which libraries were being "weakly linked" - there's not enough
information. If you actually specify all three libraries when linking, the
answer is "none of them -- there are no undefined symbols, so the whole thing
is moot". If you leave out one of the libraries (say, B), then you could say
that the binary was "weakly linked" against it, but then again, you could say
the same thing about any library that exports a symbol by the same name as one
that your binary would need from B at run time. What about a fourth library,
D? In a sense, your binary would be "weakly linked" against it ... assuming it
actually refers to symbols exported by D that are otherwise undefined. If not,
then there's nothing actually "linking" the binary to D. You could go out of
your way to import D's symbols somehow and the only thing you'd accomplish is

wasting memory (and possibly colliding with symbols defined elsewhere).

On the matter of building a weak-linking model in CMake based on individual
symbols, I'll say it's something we can do, but it would be impractical for
large numbers of symbols; and I think it would be of little use since the only
symbols that matter are those that are undefined anywhere else. The only value
might be to keep you from accidentally leaving a symbol undefined, but you're
just as likely to accidentally *define* a symbol from another library and a
program crash + backtrace should work well enough to figure out when you've

made a mistake.

Also, I'll add this other thought I just had on the problem of undefined
symbols:

The only scenarios in which leaving a symbol undefined is problematic in
practice is when there is a violation of the API boundary, which is against
best practice, anyway.

If your program uses a symbol that is part of a library's public API, and you
upgrade to a version that breaks backwards compatibility by removing this
symbol, then your program would likely crash. But in this scenario, your
program is likely to crash for any number of reasons that have nothing to do
with how you were resolving symbols -- that's why you have a test suite. Now,
something we can and *absolute should* do is inspect the produced binary and
its dependencies and at least make sure that every undefined symbol has a
definition *somewhere*, or emit a warning otherwise. If you weakly-link your
library against some other library, and you refer to symbols that are not
explicitly advertised by your library's documentation as being part of the API,

well then the onus really should be on you to keep your own ducks in a row.

Interesting read:

e https://wiki.pvthon.org/moin/boost.python/CrossExtensionModuleDependencie

s
0 Very interesting. I must confess that when I was considering how
multiple copies of a symbol might cause problems, I was only
thinking with my C programmer hat. It doesn't surprise me that
static symbols and function pointers require extra care, but I
didn't even think about how this issue compounds with C++

semantics! -- Omar

https://wiki.python.org/moin/boost.python/CrossExtensionModuleDependencies
https://wiki.python.org/moin/boost.python/CrossExtensionModuleDependencies

Target properties

e SYMBOL RESOLUTION with values:
0 LINK: Default
0 DYNAMIC: indicate whether undefined symbols are allowed to be
resolved at load time
® WEAK LIBS: set of all dependency libraries that are not meant to actually

be included in the linker command

Interesting reads:
e h ://www.akkadi r r r r i f

e http://www.linuxjournal.com/article/6463

® https://www.akkadia.org/drepper/dsohowto.pdf

https://www.akkadia.org/drepper/goodpractice.pdf
http://www.linuxjournal.com/article/6463
https://www.akkadia.org/drepper/dsohowto.pdf

	Change Logs
	Proposal rev3
	Proposal rev2
	Proposal rev1
	
	Examples
	
	
	
	
	
	
	Discussion
	2016.06.09 - Initial discussion
	2016.06.29 - Brad K. comments:
	What "Weak Linking" Really Means
	Target properties

