

# राष्ट्रीय प्रौद्योगिकी संस्थान पटना / NATIONAL INSTITUE OF TECHNOLOGY PATNA

संगणक विज्ञान एंव अभियांत्रिकी विभाग / DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING अशोक राजपथ, पटना-८००००५, बिहार / ASHOK RAJPATH, PATNA-800005, BIHAR

Phone No.: 0612-2372715, 2370419, 2370843, 2371929 Ext- 200, 202 Fax-0612-2670631 Website: www.nitp.ac.in

| No:- | Date: |
|------|-------|
| 140. | Dutc. |

CS032001: Design and Analysis of Algorithms L-T-P-Cr: 3-0-2-4

Pre-requisites: Data Structures, Knowledge of Programming languages.

## **Objectives:**

- To provide a solid foundation in algorithm design and analysis.
- Apply important algorithmic design paradigms and methods of analysis.
- Synthesize efficient algorithms in common engineering design situations.

#### **Course Outcomes:**

At the end of the course, a student should have:

| Sl. | Outcome                                                         | Mapping to POs  |  |  |
|-----|-----------------------------------------------------------------|-----------------|--|--|
| No. |                                                                 |                 |  |  |
| 1.  | Acquire knowledge about analyzing worst-case running time of    | PO1, PO2        |  |  |
|     | algorithms using asymptotic analysis.                           |                 |  |  |
| 2.  | Apply the different algorithm design techniques for designing a | PO3, PO4, PO9   |  |  |
|     | solution of different applications.                             |                 |  |  |
| 3.  | Analyse the performance of algorithms using different           | PO1, PO2        |  |  |
|     | algorithmic design techniques.                                  |                 |  |  |
| 4.  | Evaluate the possibility of implementation of various           | PO2, PO4        |  |  |
|     | algorithms based on design techniques.                          |                 |  |  |
| 5.  | Design and innovate efficient algorithms in the field of        | PO12, PO3, PO4, |  |  |
|     | computer science & engineering and industry related             | PO5             |  |  |
|     | applications using the different algorithm design techniques.   |                 |  |  |

|   |                                      | Program Outcomes |                                                |            |                                   |                                       |  |                  |                                      |  |            |                                  |
|---|--------------------------------------|------------------|------------------------------------------------|------------|-----------------------------------|---------------------------------------|--|------------------|--------------------------------------|--|------------|----------------------------------|
| 3 | PO-1<br>Engineerir<br>g<br>snowledge | analysis)        | PO-3<br>Design/deve<br>opment<br>of solutions) | of complex | PO-5<br>(Modern<br>tool<br>usage) | PO-6<br>(The engineer<br>and society) |  | PO-8<br>(Ethics) | PO-9<br>Individual and<br>team work) |  | managamant | PO-12<br>(Life-long<br>learning) |

UNIT I: Introduction: 7 Lectures

Introduction to Algorithms, Analysis and Design Techniques, performance evaluation of algorithms, space & time complexity, notion of optimality, Master's Theorem. **Divide and Conquer:** General Concept, Finding the maximum and minimum, Quick Sort, Merge Sort, Binary Search, Strassen's matrix multiplication.

### **UNIT II: Greedy Algorithm**:

8 Lectures

General Concept, Motivation, Thirsty Baby Problem, Knapsack Problem (Fractional Knapsack), Job Sequencing with Deadline, Huffman's Codes, Minimum Cost Spanning Tree- Kruskal's Algorithm, Prim's Algorithm, Single Source Shortest Path-Dijkstra's Algorithm.

#### **UNIT III: Dynamic Programming:**

8 Lectures

General Concept, Matrix-Chain Multiplication, 0/1 Knapsack problem, Coin Changing Problem, Single Source Shortest Path- Bellman Ford Algorithm, All pairs shortest paths, Traveling salesman problem.

#### **UNIT IV: Backtracking:**

9 Lectures

Basic idea, 8-Queens problem, Graph Coloring, Hamiltonian Cycles. **Branch-And-Bound:** Basic idea, LC search, the 15-puzzle problem, LC Branch-and-Bound, 0/1 Knapsack Problem.

#### **UNIT V: Graph Algorithms:**

7 Lectures

Breadth First Search (BFS), Depth First Search (DFS), Strongly Connected Components, Bi-Connected Components and DFS, Euler Tour.

#### **UNIT VI: Introduction to NP-Completeness:**

3 Lectures

Basic concepts on NP- hard and NP-Complete Problems, Discussion on one NP- hard graph problem-CDP.

#### Text/Reference Books:

- 1) *Introduction to Algorithm*, 2e, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, PHI.
- 2) Beginning Algorithms by Simen Harris, James Ross, Wiley India.
- 3) Fundamentals of Computer Algorithms by E. Horowitz and S. Sahni.
- 4) Algorithm Design, 1e, by J. Kleinberg, E. Tardos, Pearson Education.