
Chapter 2: Getting Started with
MicroProfile

Introduction
In this chapter, you’ll embark on your MicroProfile journey! We will guide you through
creating your first microservice, equipping you with the essential understanding to
leverage this robust framework for building modern, cloud-native applications. This
journey begins with setting up your development environment, then diving into
creating a microservice.

Topics Covered
●​ Development Environment Setup
●​ Configuring Build Tools
●​ Creating a Java Project for MicroProfile
●​ Choosing Right Modules for your MicroProfile application
●​ Building a RESTful Web Service
●​ Deploying your MicroProfile Application
●​ Testing your Microservices
●​ Exploring Further with MicroProfile

Development Environment Setup
Let’s begin by preparing your workspace for MicroProfile development:

Java Development Kit (JDK)
MicroProfile, a Java framework, runs on the Java Virtual Machine (JVM), making the
Java Development Kit (JDK) an essential component of your development
environment.

To install JDK, follow the steps below:

●​ Download: Visit the official OpenJDK website and download the JDK version
compatible with your operating system.

●​ Install: Follow the installation instructions provided on this official OpenJDK
Installation guide.

●​ Verify: After Installation, run the following command in your command line or
terminal to verify the Installation:

java -version

https://openjdk.org/
https://openjdk.org/install/
https://openjdk.org/install/

You should an output similar to the one below:

openjdk 17.0.10 2024-01-16 LTS​
OpenJDK Runtime Environment Microsoft-8902769 (build 17.0.10+7-LTS)​
OpenJDK 64-Bit Server VM Microsoft-8902769 (build 17.0.10+7-LTS, mixed mode,

sharing)

This confirms that JDK 17 has been successfully installed on your system.

Note For most MicroProfile implementations, JDK 11 or later is
recommended. In this tutorial, we will be using JDK 17. While OpenJDK
is used here, other JDK providers such as Oracle JDK, Amazon
Corretto, and Azul Zulu also offer compatible JDK distributions.

Build Tools (Maven or Gradle)
Build tools like Apache Maven or Gradle are commonly used for managing project
dependencies and building Java applications. You can install the one that best fits
your project needs. Here's a brief overview to help you decide:

●​ Apache Maven: Known for its convention-over-configuration approach,
Maven is a popular choice due to its simple project setup and extensive plugin
repository.

●​ Gradle: Offers a flexible, script-based build configuration, allowing for highly
customized build processes. Gradle is renowned for its superior performance,
due to its incremental builds and caching mechanisms. It's a great choice for
complex projects requiring customization.

Important If your existing project’s build uses Maven wrapper (mvnw) or
Gradle wrapper (gradlew), you don't have to install any of these
build tools. These wrappers help ensure a consistent build
environment without requiring the build tools to be installed on
your system.

Installing Apache Maven
To install Maven follow the steps below:

1.​ Visit the Installing Apache Maven web page to download the latest version.
2.​ Follow the installation instructions provided on the site.
3.​ Verify the Maven installation by running this command in your terminal or

command line.

mvn -v

https://maven.apache.org/
https://gradle.org/
https://https//maven.apache.org/install.html

You should see output similar to:

Apache Maven 3.9.6 (bc0240f3c744dd6b6ec2920b3cd08dcc295161ae)​
Maven home: /usr/local/sdkman/candidates/maven/current​
Java version: 17.0.10, vendor: Microsoft, runtime:

/usr/lib/jvm/msopenjdk-current​
Default locale: en_US, platform encoding: UTF-8​
OS name: "linux", version: "6.2.0-1019-azure", arch: "amd64", family: "unix"

After Maven is installed, you can configure the pom.xml file in your project to include
the MicroProfile dependencies.

Installing Gradle

To install Gradle follow the step below:

1.​ Visit the Gradle | Installation web page to download the latest version.
2.​ Follow the installation instructions provided on the site.
3.​ Verify the installation by running this command in your terminal or command

line.

gradle -version

You should see output similar to:

Welcome to Gradle 8.6!​
​
Here are the highlights of this release:​
 - Configurable encryption key for configuration cache​
 - Build init improvements​
 - Build authoring improvements​
​
For more details see https://docs.gradle.org/8.6/release-notes.html​
​
--​
Gradle 8.6​
--​
​
Build time: 2024-02-02 16:47:16 UTC​
Revision: d55c486870a0dc6f6278f53d21381396d0741c6e​
​
Kotlin: 1.9.20​
Groovy: 3.0.17​
Ant: Apache Ant(TM) version 1.10.13 compiled on January 4 2023​
JVM: 17.0.10 (Microsoft 17.0.10+7-LTS)​
OS: Linux 6.2.0-1019-azure amd64

https://gradle.org/install/

After Gradle is installed, you can configure the build.gradle file in your project to
include the MicroProfile dependencies.

Whether you opt for Maven's stability and convention or Gradle's flexibility and
performance, understanding how to configure and use your chosen build tool is
important for MicroProfile development.

Integrated Development Environments
Integrated Development Environments (IDEs) enhance developer productivity by
providing a rich set of features and extensions such as project bootstrapping,
dependency management, intelligent code completion, configuration assistance, test
runners, build, hot deployment and debugging tools. For MicroProfile development,
the choice of IDE can significantly affect your development speed and efficiency.
Below is a list of popular IDEs and their key features related to Java and MicroProfile
development:

Eclipse for Enterprise Java and Web Developers

Overview: Eclipse is a widely used IDE for Java development, offering extensive
support for Java EE, Jakarta EE, and MicroProfile, among other technologies.

Getting Started: The official Eclipse documentation containing instructions about
creating Java projects - Creating your first Java Project

IntelliJ IDEA
Overview: IntelliJ IDEA by JetBrains supports a wide range of programming
languages and frameworks, including Java, Kotlin, and frameworks like Spring,
Jakarta EE, and MicroProfile.

Getting Started: Refer to this IntelliJ IDEA guide on Creating a Java Project Using
IntelliJ IDEA 2024.1.

Apache NetBeans

Overview: NetBeans is an open-source IDE that supports Java development,
including Java SE, Java EE, JavaFX, and more.

Getting Started: Check out this NetBeans Java Quick Start Tutorial for a tutorial on
creating a Java application.

Visual Studio Code

Overview: Visual Studio Code is a lightweight, powerful source code editor that
supports Java development through extensions.

https://www.eclipse.org/downloads/packages/release/2023-12/r/eclipse-ide-enterprise-java-and-web-developers
https://www.eclipse.org/downloads/packages/release/2023-12/r/eclipse-ide-enterprise-java-and-web-developers
https://help.eclipse.org/latest/topic/org.eclipse.jdt.doc.user/gettingStarted/qs-3.htm
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/help/idea/2024.1/creating-and-running-your-first-java-application.html
https://www.jetbrains.com/help/idea/2024.1/creating-and-running-your-first-java-application.html
https://netbeans.apache.org/front/main/
https://netbeans.apache.org/front/main/
https://netbeans.apache.org/tutorial/main/kb/docs/java/quickstart/
https://code.visualstudio.com/
https://code.visualstudio.com/

Getting Started: To start with Java in VS Code, follow this Getting Started with Java
in VS Code documentation.

Selecting an IDE should be based on personal preference, as the best choice varies
depending on individual needs, familiarity, and the specific features that enhance
your productivity. Each IDE offers unique advantages for MicroProfile development.

Setting up MicroProfile Runtime
MicroProfile applications require a runtime that supports MicroProfile specifications
or a MicroProfile-compatible server to run your applications. Below are some popular
options, each with unique features tailored to different needs:

Open Liberty

Open Liberty is a flexible server framework from IBM that supports MicroProfile,
allowing developers to build microservices and cloud-native applications with
ease.Open Liberty is known for its dynamic updates and lightweight design, which
enhances developer productivity and application performance.

Downloading Open Liberty page provides access to its latest releases and
documentation to help you set up your environment.

Quarkus

Quarkus is known for its container-first approach, offering fast startup times and low
memory footprint. It aims to optimize Java for Kubernetes and cloud environments

This Getting Started with Quarkus page will guide you through creating your first
Quartus project and exploring its cloud-native capabilities.

Payara Micro

Payara Micro is a lightweight middleware platform suited for containerized Jakarta
EE and MicroProfile applications.

The Payara Platform Community Edition enables easy packaging of applications into
a single, runnable JAR file, simplifying deployment and scaling in cloud
environments. This site about Payara Platform Community Edition offers downloads
and documentation to get started.

WildFly

WildFly is a flexible, lightweight, managed application runtime that offers full Jakarta
EE and MicroProfile support. WildFly is designed for scalability and flexibility in both
traditional and cloud-native environments.

WildFly Downloads page offers the latest versions and documentation to get you
started.

https://code.visualstudio.com/docs/java/java-tutorial
https://code.visualstudio.com/docs/java/java-tutorial
https://openliberty.io/
https://openliberty.io/
https://openliberty.io/start/#downloads-pkg
https://quarkus.io/
https://quarkus.io/guides/getting-started
https://www.payara.fish/products/payara-micro/
https://www.payara.fish/downloads/payara-platform-community-edition/
https://www.payara.fish/downloads/payara-platform-community-edition/
https://www.wildfly.org/
https://www.wildfly.org/downloads/

Helidon

Developed by Oracle, Helidon MP implements MicroProfile specifications. It provides
a familiar programming model for Jakarta EE developers and enables efficient
microservice development.

Helidon Documentation provides comprehensive resources to help developers get
started with the framework, understand its core concepts, and develop microservices
efficiently.

Apache TomEE

TomEE integrates several Apache projects with Apache Tomcat to provide a Jakarta
EE environment. It offers support for MicroProfile, allowing developers to build and
deploy microservices using the well-known Jakarta EE technologies with additional
MicroProfile capabilities.

TomEE Downloads and TomEE MicroProfile Documentation page provide the
necessary resources to get started with TomEE for MicroProfile development.

MicroProfile Starter
To kickstart your MicroProfile project, use the MicroProfile Starter to generate a
sample project with your chosen server and specifications. This tool provides a
customizable project structure and generates necessary boilerplate code and
configuration.

1.​ Visit the MicroProfile Starter page - the official website for generating the
MicroProfile project templates.

2.​ Provide a groupId for your project, it's an identifier for your project and
should be unique to avoid conflicts with other libraries or projects.

Tip Its recommended convention is to start your groupId with the reverse
domain name of your organization (for example, io.microprofile).

3.​ Enter the artifact ID, which is the name of your project (e.g., product-ws).
4.​ Select the Java SE version your project will use.
5.​ Select the MicroProfile version you want to use. Ideally, you should choose

the latest version for the most up-to-date features but also consider the
runtime’s support.

6.​ Select the specifications you want to include in your project. These could be
Config, Fault Tolerance, JWT Auth, Metrics, Health, Open API, Open Tracing,
Rest Client. Choose what is relevant to your application.

7.​ Click the "Download" button.
8.​ Unzip the generated project and import it into your IDE.

This completes the development environment setup. Now we are all set to begin
development using MicroProfile.

https://helidon.io/
https://helidon.io/docs/
https://tomee.apache.org/
https://tomee.apache.org/download.html
https://tomee.apache.org/microprofile-6.0/javadoc/
https://start.microprofile.io/

Important At the time of writing this tutorial, the latest MicroProfile released
version was 6.1. The MicroProfile Starter does not currently
support this version. Hence, we will not be using MicroProfile
Starter to generate the project structure.

Creating a Java Project for MicroProfile Development

Using Your IDE:

Most modern IDEs have built-in support for creating Java and Maven projects.
Depending on your chosen IDE, look for options like "New Project", or "New Maven
Project" to get started. These options typically guide you through the setup process,
including specifying the project's groupId, artifactId, and dependencies.

Using Maven from Command Line (Terminal)

For developers who prefer using the command line or for those setting up projects in
environments without an IDE, Maven can generate the base structure of a Java
project through its archetype mechanism. To create a project using Maven, open
your terminal or command line and run the following command:

mvn archetype:generate -DgroupId=io.microprofile.tutorial -DartifactId=store

-DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

Explanation:

●​ mvn archetype:generate goal in this command initializes the project creation
process and instructs Maven to generate a new project based on an
archetype template.

●​ -DgroupId=io.microprofile.tutorial Specifies the groupId for the project. The
groupId is a unique identifier for your project and is usually based on the
domain name of your organization in reverse. In this case,
io.microprofile.tutorial represents a project related to MicroProfile tutorial.

●​ -DartifactId=store: Sets the artifactId for the project. The artifactId is the
name of the project and is used as the base name for the project’s artifacts
(e.g., WAR files). Here, store is used as the project name to indicate this
project is related to an e-commerce store application.

●​ -DarchetypeArtifactId=maven-archetype-quickstart: Indicates which archetype
to use for generating the project. The maven-archetype-quickstart is a basic
template for a Java application, providing a simple project structure that
includes a sample application (App.java) and a unit test (AppTest.java).

●​ -DinteractiveMode=false: This option disables interactive mode, meaning
Maven will not prompt you for input during the project generation process. All
necessary information is provided via the command-line options, allowing the
command to execute without further user interaction.

Next, using your file explorer or command line, create the following folder structure:

.
├── pom.xml
├── readme.md
└── src
 └── main
 │ └── java
 │ └── io
 │ └── microprofile
 │ └── tutorial
 │ └── store
 │ └── product
 │ │ ├── entity
 │ │ │ └── Product.java
 │​ │ └── service
 │ │ └── ProductService.java
 │ └── ProductRestApplication.java
 └── test
​ └── java
 └── io
 └── microprofile
 └── tutorial
 └── store
​ ​ ​ └── product
 └── ProductServiceTest.java

The standard location for your Java source code is this folder:

src/main/java

And, the standard location for your test code is this folder:

src/test/java

You can delete App.java and AppTest.java files from the poject as these are not
required in MicroProfile development.

The heart of your Maven project is pom.xml (Project Object Model) file. It defines
project metadata, dependencies, build configurations and plugins.

The content for the pom.xml file should look as below, ensure MicroProfile
depencency is added:

<?xml version="1.0" encoding="UTF-8"?>​
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd"

xmlns="http://maven.apache.org/POM/4.0.0"​
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">​
 <modelVersion>4.0.0</modelVersion>​
​
 <groupId>io.microprofile.tutorial</groupId>​
 <artifactId>mp-ecomm</artifactId>​
 <packaging>war</packaging>​
 <version>1.0-SNAPSHOT</version>​

​
 <!-- Setting the source and target of the Java Compiler !>​
 <properties>​

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>​

<project.reporting.outputEncoding>UTF-8</project.reporting.outputE

ncoding>​
 <maven.compiler.source>17</maven.compiler.source>​
 <maven.compiler.target>17</maven.compiler.target>​
 </properties>​
...​
...​
 <!-- Add Lombok dependency -->​
 <dependency>​
 <groupId>org.projectlombok</groupId>​
 <artifactId>lombok</artifactId>​
 <version>1.18.26</version>​
 <scope>provided</scope>​
 </dependency>​
​
​
 <!-- Adding Jakarta EE dependencies -->​
 <dependency>​
 <groupId>jakarta.platform</groupId>​
 <artifactId>jakarta.jakartaee-api</artifactId>​
 <version>10.0.0</version>​
 <scope>provided</scope>​
 </dependency>​
​
​
 <!-- Adding MicroProfie dependency -->​
 <dependency>​
 <groupId>org.eclipse.microprofile</groupId>​
 <artifactId>microprofile</artifactId>​
 <version>6.1</version>​
 <type>pom</type>​
 <scope>provided</scope>​
 </dependency>​
​
​
 <!-- JUnit Jupiter API for writing tests -->​

 <dependency>​
 <groupId>org.junit.jupiter</groupId>​
 <artifactId>junit-jupiter-api</artifactId>​
 <version>5.8.2</version>​
 <scope>test</scope>​
 </dependency>​
​
 <!-- JUnit Jupiter Engine for running tests -->​
 <dependency>​
 <groupId>org.junit.jupiter</groupId>​
 <artifactId>junit-jupiter-engine</artifactId>​
 <version>5.8.2</version>​
 <scope>test</scope>​
 </dependency>​
...

Below is the list of essential dependencies you need to add to your Maven pom.xml
for a MicroProfile project:

●​ Lombok Dependency - Simplifies your model by auto-generating getters,
setters, constructors, and other boilerplate code.

●​ Jakarta EE API Dependency - Provides the APIs for Jakarta EE, which are
often used alongside MicroProfile for enterprise Java applications.

●​ MicroProfile Dependency - This is the core MicroProfile dependency that
allows you to use MicroProfile specifications in your project.

●​ JUnit Jupiter API for Writing Tests - Essential for writing unit tests for your
MicroProfile services.

●​ JUnit Jupiter Engine for Running Tests - Enables the execution of JUnit tests.

These dependencies provide a foundation for building MicroProfile applications,
including aspects like model simplification with Lombok, the application of Jakarta
EE APIs for building robust enterprise applications, and testing with JUnit.
Remember to adjust the versions based on your project requirements and the
compatibility with your MicroProfile runtime​​.

Tip Execute the $ mvn validate command. This checks the pom.xml file for
correctness, ensuring that all necessary configuration is present and
valid.

Choosing Right Modules for Your MicroProfile Application

Choosing the right modules for your MicroProfile application is crucial for ensuring
that your application is lean, maintainable, and only includes the necessary
functionalities to meet its requirements.

Before diving into MicroProfile modules, it’s essential to have a clear understanding
of your application’s requirements. Consider aspects such as configuration needs,
security, health checks, data metrics, fault tolerance, and the need for distributed
tracing. Mapping out these requirements will guide you in selecting the most relevant
MicroProfile specifications. MicroProfile provides a selection of APIs that you can
choose from based on the specific needs of your application. However, with the
variety of specifications available, it’s important to understand which ones best fit
your project’s needs.

This section aims to help you make informed decisions about which MicroProfile
modules to use.

Use the Entire MicroProfile Dependency

If you’re beginning a new MicroProfile-based project and are unsure which
specifications you will need, starting with the entire MicroProfile dependency can
give you immediate access to the full suite of MicroProfile APIs. This approach
allows you to explore and experiment with different specifications without modifying
your pom.xml to add or remove dependencies frequently.

For projects that aim to leverage a wide range of MicroProfile specifications,
including advanced features like telemetry, metrics, and fault tolerance, including the
entire MicroProfile 6.1 dependency ensures that you have all the necessary APIs at
your disposal. This approach simplifies dependency management, especially for
complex applications.

Maven

<!-- MicroProfile 6.1 API -->​
<dependency>​
 <groupId>org.eclipse.microprofile</groupId>​
 <artifactId>microprofile</artifactId>​
 <version>6.1</version>​
 <type>pom</type>​
 <scope>provided</scope>​
</dependency>

Gradle

dependencies {​
 compileOnly 'org.eclipse.microprofile:microprofile:6.1'​
}

Use Individual MicroProfile Specification Dependencies

For applications where size and startup time are critical (e.g., serverless functions,
microservices with stringent resource constraints), including only the necessary
MicroProfile specifications can help minimize the application’s footprint. This
selective approach ensures that your application includes only what it needs,
potentially reducing memory usage and startup time.

To prevent potential conflicts or security issues associated with unused
dependencies, it’s prudent to include only the specifications your application directly
uses. This practice follows the principle of minimalism in software design, reducing
the surface area for bugs and vulnerabilities.

The list below is provided to help you select the appropriate modules for your
MicroProfile application:

●​ MicroProfile Config provides a way to fetch configurations from various
sources dynamically. You should use this dependency in your microservices if
they require external configuration or need to be run in different environments
without requiring repackaging.

Maven

<dependency>​
 <groupId>org.eclipse.microprofile.config</groupId>​
 <artifactId>microprofile-config-api</artifactId>​
 <version>3.1</version>​
</dependency>

Gradle
implementation 'org.eclipse.microprofile.config:microprofile-config-api:3.1'

●​ MicroProfile Health allows you to define health endpoints easily. If you’re
deploying your application in an environment where the service needs to
report its health status.

Maven

<dependency>

 <groupId>org.eclipse.microprofile.health</groupId>

 <artifactId>microprofile-health-api</artifactId>

 <version>4.0.1</version>

</dependency>

Gradle
implementation 'org.eclipse.microprofile.health:microprofile-health-api:4.0.1'

●​ MicroProfile Metrics offers a way to generate various metrics from your
application, which can be consumed by monitoring tools. You should use this

dependency in your microservices if you need to monitor the performance of
your application.

Maven

<dependency>

 <groupId>org.eclipse.microprofile.metrics</groupId>

 <artifactId>microprofile-metrics-api</artifactId>

 <version>5.1.0</version>

</dependency>

Gradle
implementation 'org.eclipse.microprofile.metrics:microprofile-metrics-api:5.1.1'

●​ MicroProfile Fault Tolerance helps applications in implementing patterns like
timeout, retry, bulkhead, circuit breaker, and fallback. Applications requiring
resilience and reliability, especially those facing network latency or failure in
microservices environments, will benefit from it.

Maven

<dependency>​
 <groupId>org.eclipse.microprofile.fault-tolerance</groupId>​
 <artifactId>microprofile-fault-tolerance-api</artifactId>​
 <version>4.0.2</version>​
</dependency>

Gradle

implementation

'org.eclipse.microprofile.fault-tolerance:microprofile-fault-tolerance-api:4.0.2'

●​ MicroProfile JWT Authentication provides a method for using JWT tokens for
securing your microservices, especially where propagation of identity and
authentication information is needed across services.

Maven

<dependency>​
 <groupId>org.eclipse.microprofile.jwt</groupId>​
 <artifactId>microprofile-jwt-auth-api</artifactId>​
 <version>2.1</version>​
</dependency>

Gradle

implementation

'org.eclipse.microprofile.jwt:microprofile-jwt-auth-api:2.1'

●​ MicroProfile OpenAPI offers tools for generating OpenAPI descriptions of your
endpoints automatically for documenting your REST APIs.

Maven

<dependency>​
 <groupId>org.eclipse.microprofile.openapi</groupId>​
 <artifactId>microprofile-openapi-api</artifactId>​
 <version>3.1.1</version>​
</dependency>

Gradle

implementation 'org.eclipse.microprofile.openapi:microprofile-openapi-api:3.1.1'

●​ MicroProfile Rest Client simplifies calling RESTful services over HTTP for
type-safe invocations of HTTP services for type-safe invocations of HTTP
services.

Maven

<dependency>​
 <groupId>org.eclipse.microprofile.rest.client</groupId>​
 <artifactId>microprofile-rest-client-api</artifactId>​
 <version>3.0</version>​
</dependency>

Gradle

implementation 'org.eclipse.microprofile.rest.client:microprofile-rest-client-api:3.0'

●​ MicroProfile Telemetry integrates OpenTelemetry for distributed tracing For
applications that need to trace requests across microservices to diagnose and
monitor.

Maven

<dependency>​
 <groupId>io.opentelemetry</groupId>​
 <artifactId>opentelemetry-api</artifactId>​
 <version>1.29.0</version>​
</dependency>

Gradle

implementation 'io.opentelemetry:opentelemetry-api:1.29.0'

●​ Jakarta EE Core Profile dependency provides the API set included in the
Jakarta EE 10 Core Profile, which is optimized for developing microservices
and cloud-native Java applications with a reduced set of specifications for a
lighter runtime footprint.

Maven

<dependency>​

 <groupId>jakarta.platform</groupId>​

 <artifactId>jakarta.jakartaee-core-api</artifactId>​

 <version>10.0.0</version>​

 <scope>provided</scope>

</dependency>

Gradle

compileOnly 'jakarta.platform:jakarta.jakartaee-core-api:10.0.0'

For rapidly evolving projects or those in the exploratory phase, starting with the full
MicroProfile dependency might be advantageous. However, for production
applications with well-defined requirements, opting for individual specifications can
lead to more efficient and maintainable solutions.

When choosing MicroProfile modules, start with the minimal set that meets your
application’s core requirements. You can always integrate additional specifications
as your application evolves. This approach keeps your application lightweight and
focused on its primary functionalities, improving maintainability and performance.
Always consider the compatibility between different versions of MicroProfile and your
runtime environment to ensure seamless integration and deployment.

Manually

Create a Java Project with the following folder structure:

First create a folder named mp-ecom-store. This will be the root of your Maven
project. Next, Inside the root folder, create a file named pom.xml and add the project’s
metadata (groupId, artifactId, version). Finally, add essential dependencies for
Microprofile, Jakarta EE and Lombok.

The content for the pom.xml file should look as below, ensure MicroProfile
dependency is added:

<?xml version="1.0" encoding="UTF-8"?>​
​
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"​
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">​
 <modelVersion>4.0.0</modelVersion>​
​
 <groupId>io.microprofile.tutorial</groupId>​
 <artifactId>mp-ecomm-store</artifactId>​
 <version>1.0-SNAPSHOT</version>​
 <packaging>war</packaging>​
​
 <!-- Setting the source and target of the Java Compiler -->​

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>​

<project.reporting.outputEncoding>UTF-8</project.reporting.outputE

ncoding>​
 <maven.compiler.source>17</maven.compiler.source>​
 <maven.compiler.target>17</maven.compiler.target>​
​
...​
...​
 <dependencies>​
 ​
 <!-- Add Lombok dependency -->​
 <dependency>​
 <groupId>org.projectlombok</groupId>​
 <artifactId>lombok</artifactId>​
 <version>1.18.26</version>​
 <scope>provided</scope>​
 </dependency>​
​
 <!-- Adding Jakarta EE dependencies -->​
 <dependency>​
 <groupId>jakarta.platform</groupId>​
 <artifactId>jakarta.jakartaee-api</artifactId>​
 <version>10.0.0</version>​
 <scope>provided</scope>​

 </dependency>​
​
 <!-- Adding MicroProfie dependency -->​
 <dependency>​
 <groupId>org.eclipse.microprofile</groupId>​
 <artifactId>microprofile</artifactId>​
 <version>6.1</version>​
 <type>pom</type>​
 <scope>provided</scope>​
 </dependency>​
​
 <!-- JUnit Jupiter API for writing tests -->​
 <dependency>​
 <groupId>org.junit.jupiter</groupId>​
 <artifactId>junit-jupiter-api</artifactId>​
 <version>5.8.2</version>​
 <scope>test</scope>​
 </dependency>​
 ​
 <!-- JUnit Jupiter Engine for running tests -->​
 <dependency>​
 <groupId>org.junit.jupiter</groupId>​
 <artifactId>junit-jupiter-engine</artifactId>​
 <version>5.8.2</version>​
 <scope>test</scope>​
 </dependency>​
 ​
 </dependencies>​
​
...

Tip: Execute the $ mvn validate command. This checks the pom.xml file for
correctness, ensuring that all necessary configuration is present and valid.

The heart of your Maven project is pom.xml. It defines project metadata,
dependencies, and build configurations.

Lombok helps keep your code concise and focused on the domain logic. The
Lombok changes are reflected when you compile your project, not directly in the
source file.

Next, create the source code and test directory structure as below:

mp-ecomm-store
├── pom.xml
├── README.md

└── src
 └── main
 │ └── java
 │ └── io
 │ └── microprofile
 │ └── tutorial
 │ └── store
 │ └── product
 │ ​ ​ ​ ​ ├── ProductRestApplication.java
 │ ├── entity
 │ │ └── Product.java

 │​ ​ └── resource
 │ └── ProductResource.java
 │
 └── test
​ └── java
 └── io
 └── microprofile
 └── tutorial
 └── store
​ ​ ​ └── ProductServiceTest.java

Standard location of Java source code.

src/main/java

Standard location of test code.

src/test/java

You can create these directories from the command line (using mkdir command on
Unix/Linux or md on Windows) or through your file explorer.

Some MicroProfile implementations allow embedding a server, you’ll likely want an
application server. Consider lightweight servers like OpenLiberty, WildFly, or Payara
Micro.

By following these steps, you've created a basic Java project structure using Maven,
including MicroProfile, Jakarta EE and Lombok dependencies, ready for further
development.

Developing a RESTful Web Service

Web Services are very popular nowadays because they allow for building
decoupled systems – services can communicate with each other without the
knowledge of each other’s implementation details.

There are many different ways to design and implement web services. One popular
way is to use the Representational State Transfer (REST) architecture.

A Jakarta RESTful Webservice is a web service that uses the Representational State
Transfer (REST) architecture. This type of web service makes it easy to build
modern, scalable web applications. The REST architecture is based on the principle
that all data and functionality should be accessed through a uniform interface. This
makes it easy to develop, test, and deploy web applications.

To understand this better, let’s create a simple RESTful service to manage a list of
products for our sample application, the MicroProfile ecommerce store. This RESTful
API will allow client applications to access the product information stored as
resources on the server. For example, let’s say you have a product catalog that you
want to make available as a web service. With REST, you would create a URL that
represents the resources (products) in your catalog. When a client (such as a web
browser) requests this URL, the server would return a list of products in JSON
format.

Creating an Entity class
An Entity class represents a specific object, in our case a product. It contains the
product's details id and name, and other properties like price, quantity etc. To
implement an entity class first, you need to create a Product class, as below:

package io.microprofile.tutorial.store.product.entity;​
​
import lombok.AllArgsConstructor;​
import lombok.Data;​
​
@Data​
@AllArgsConstructor​
@NoArgsConstructor​
public class Product {​
 private Long id;​
 private String name;​
 private String description;​
 private Double price;​
}

Explanation:

●​ The Product class is a Plain Old Java Object (POJO). It has an id, name,
description and price property. The id property is of type Long, The name and
description properties are of type String. The price property is of type Double.

●​ @Data annotation will generate constructors, getters, and setters for all fields.
By doing this, you enable the Jackson library to convert your Java objects to
JSON and vice versa. All properties must be of Object type as well. Jackson
cannot work with primitive types because they cannot be null.

●​ @AllArgsConstructor generates a constructor with one argument for each field
in the class. This is useful for instantiating objects with all their fields
initialized.

●​ @NoArgsConstructor generates a default constructor for the class.

Creating a Resource class
A resource class represents a collection of related resources. It includes methods for
creating, updating, deleting, and retrieving (CRUD) operations on the resources.

Let us now create a ProductResource class with a getProducts() method to return a list
of Product objects.

// ProductResource.java​
package io.microprofile.tutorial.store.product.resource;​
​
import java.util.ArrayList;​
import java.util.List;​
​
import io.microprofile.tutorial.store.product.entity.Product;​
import jakarta.enterprise.context.ApplicationScoped;​
import jakarta.ws.rs.GET;​
import jakarta.ws.rs.Path;​
import jakarta.ws.rs.Produces;​
import jakarta.ws.rs.core.MediaType;​
​
@Path("/products")​
@ApplicationScoped​
public class ProductResource {​
 private List<Product> products;​
​
 public ProductResource() {​
 products = new ArrayList<>();​
​
 products.add(new Product(Long.valueOf(1L), "iPhone", "Apple iPhone 15",

Double.valueOf(999.99)));​
 products.add(new Product(Long.valueOf(2L), "MacBook", "Apple MacBook Air",

Double.valueOf(1299.99)));​
 }​
​
 @GET​
 @Produces(MediaType.APPLICATION_JSON)​
 public List<Product> getProducts() {​
 // Return a list of products​
 return products;​
 } ​
}

Explanation:

●​ The ProductResource is annotated with @ApplicationScoped. This will ensure that
this class is available as long as the application is running.

●​ The ProductResource class has a getProducts() method, which returns a list of
products. This method is annotated with the @GET annotation, which maps this
method to the GET HTTP method.

●​ The @Produces annotation tells the server that this method produces JSON
content. This will return the following JSON response when we make a GET
request to the /api/products endpoint.

●​ RESTful web services can produce and consume many different media types,
including JSON, XML, and HTML.

●​ Annotations specify the media type that a method can consume or produce.
For example, if a method is annotated with
@Produces(MediaType.APPLICATION_JSON) it can produce JSON.

Creating an Application class

Create a class named ProductRestApplication as per the code below:

// ProductRestApplication.java​
package io.microprofile.tutorial.store.product;​
​
import jakarta.ws.rs.ApplicationPath;​
import jakarta.ws.rs.core.Application;​
​
@ApplicationPath("/api")​
public class ProductRestApplication extends Application{​
​
}

Explanation:

●​ The annotation @ApplicationPath("/api") specifies that any RESTful
resources registered within this application will be accessed under the base
path /api. For example, if you have a resource class named ProductResource
mapped to the path /products, it would be accessible at /api/products.

Building Your Application

You may build the application using the following commands from your project’s root
directory:

$ mvn compile

The above command will compile your project’s source code.

$ mvn test

The above command will run the test using a unit testing framework. These test
should not require the code to be packaged and deployed.

$mvn package

The above command will create a deployment package.

Deploying your microservices

This section guides you through deploying your newly created product microservice
to a runtime environment. Below are some of the general considerations:

General Considerations:
●​ Runtime Compatibility: Ensure your chosen runtime supports the MicroProfile

version used in your project.
●​ Packaging: Decide on a packaging format (e.g., WAR file, Docker image).
●​ Configuration: Review and adjust any runtime configuration necessary for

your service.
●​ Deployment Tools: Leverage runtime-specific tools or commands for

deployment.

Deployment Options
You can then deploy this application on a MicroProfile compatible server and access
the web service at http://localhost:<port>/<contextRoot>/api/products. Replace
<port> with the port number on which the web server or application server is
listening. The <contextRoot> is a placeholder for the context root of the web
application. The context root is part of the URL path that identifies the base path for
the application on the web server.

Below are the steps for popular options. Specific steps will depend on your chosen
runtime.

Open Liberty

●​ Package your application as a WAR file using Maven or Gradle by adding the
packaging tag in pom.xml

 <groupId>io.microprofile.tutorial</groupId>
 <artifactId>mp-ecomm-store</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>

●​ Add a server configuration file at the location /main/liberty/config/server.xml
with the content as below:

<server description="MicroProfile Tutorial Liberty Server">
 <featureManager>
 <feature>restfulWS-3.1</feature>
 <feature>jsonb-3.0</feature>
 </featureManager>

 <httpEndpoint httpPort="${default.http.port}"
httpsPort="${default.https.port}"
 id="defaultHttpEndpoint" host="*" />

http://localhost:8080/api/products

 <webApplication location="mp-ecomm-store.war"
contextRoot="${app.context.root}"/>
</server>

●​ Add the Open Liberty configuration in the pom.xml as below:

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <maven.compiler.source>17</maven.compiler.source>
 <maven.compiler.target>17</maven.compiler.target>
 <!-- Liberty configuration -->
 <liberty.var.default.http.port>9080</liberty.var.default.http.port>
 <liberty.var.default.https.port>9443</liberty.var.default.https.port>
 <liberty.var.app.context.root>mp-ecomm-store</liberty.var.app.context.root>
 </properties>

●​ Add the Open Liberty build plugin in the pom.xml as below:

<build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>3.3.2</version>
 </plugin>
 <plugin>
 <groupId>io.openliberty.tools</groupId>
 <artifactId>liberty-maven-plugin</artifactId>
 <version>3.8.2</version>
 <configuration>
 <serverName>productServer</serverName>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>3.0.0</version>
 <configuration>
 <systemPropertyVariables>
 <http.port>${liberty.var.default.http.port}</http.port>
 <war.name>${liberty.var.app.context.root}</war.name>
 </systemPropertyVariables>
 </configuration>
 </plugin>
 </plugins>
 </build>

Run Your Application
Refer to your runtime’s documentation for instructions on running your MicroProfile
application. For example, Consult the Open Liberty documentation for detailed
instructions: MicroProfile - Open Liberty Docs

https://openliberty.io/docs/latest/microprofile.html

Finally, use the mvn liberty:run command from the command line or terminal to run
the application on Liberty server. You can also run the following command to start the
liberty server in development mode.

mvn liberty:dev

Assuming your server is running on http://localhost:9080/, you can access your
service at:

http://localhost:9080/mp-ecomm-store/api/products

To call this RESTful web service, you can enter the URL in your browser. The
response is an array of JSON objects. Each object has an id, name, description and
price property. Please note only GET methods can be tested with browsers.

The response should be

[{"description":"Apple iPhone

15","id":1,"name":"iPhone","price":999.99},{"description":"Apple MacBook

Air","id":2,"name":"MacBook","price":1299.99}]

This uses an in-memory list; In the next chapter, in a real application you should
integrate a database (via Jakarta Persistence API). We will be learning about this in
the next chapter.

Quarkus

●​ Build your application as a native executable or Docker image.
●​ Run the generated executable or deploy the Docker image to a container

platform.
●​ Refer to the Quarkus documentation for deployment guides: Creating your

first application - Quarkus

Payara Micro

●​ Package your application as a WAR file.
●​ Deploy the WAR to a Payara Micro server instance.
●​ See the Payara Micro documentation for specific instructions: Getting Started

with Payara Micro

WildFly

●​ Package your application as a WAR file.
●​ Deploy the WAR to a WildFly server instance.
●​ Refer to the WildFly documentation for deployment details: WildFly Developer

Guide

Helidon

http://localhost:8080/
https://quarkus.io/guides/getting-started
https://quarkus.io/guides/getting-started
https://www.payara.fish/learn/getting-started-with-payara-micro/
https://www.payara.fish/learn/getting-started-with-payara-micro/
https://docs.wildfly.org/31/Developer_Guide.html
https://docs.wildfly.org/31/Developer_Guide.html

●​ Choose between Helidon SE (native packaging) or Helidon MP (WAR
packaging).

●​ Build your application using Gradle.
●​ Follow the relevant Helidon documentation for deployment steps: Helidon -

Getting Started

TomEE:

●​ Package your application as a WAR file.
●​ Deploy the WAR file to the TomEE server instance.
●​ Refer to the TomEE documentation for instructions: Serverless TomEE

MicroProfile

Additional Considerations:

●​ Containerization: Consider using containerization technologies like Docker
and Kubernetes for portability and scalability.

●​ Cloud Deployment: Explore cloud platforms like AWS, Azure, or GCP.

Testing your Microservice

Testing your microservice is critical for ensuring the reliability and robustness of your
microservice. Maven, being a powerful project build management tool, simplifies this
process by automating the test execution.

To create tests for your microservice, start by creating a class called
ProductResourceTest, which contains unit tests for the ProductService class as below:

package io.microprofile.tutorial.store.product.resource;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNotNull;

import java.util.List;

import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import io.microprofile.tutorial.store.product.entity.Product;

public class ProductResourceTest {
 private ProductResource productResource;

 @BeforeEach
 void setUp() {
 productResource = new ProductResource();
 }

 @AfterEach
 void tearDown() {
 productResource = null;
 }

 @Test
 void testGetProducts() {
 List<Product> products = productResource.getProducts();

https://helidon.io/docs/v4/about/prerequisites
https://helidon.io/docs/v4/about/prerequisites
https://tomee.apache.org/latest/examples/serverless-tomee-microprofile.html
https://tomee.apache.org/latest/examples/serverless-tomee-microprofile.html

 assertNotNull(products);
 assertEquals(2, products.size());
 }
}

Below are the assertions to test the getProducts() method of ProductService.

●​ The assertNotNull(products); assertion checks that products are not null. It
ensures the method returns a list, even if it’s empty.

●​ The assertEquals(2, products.size()); assertion verifies that the list contains
two products.

Next Steps

Now that you have a basic MicroProfile service, consider exploring further:

●​ Adding configuration with MicroProfile Config
●​ Implementing health checks using MicroProfile Health
●​ Enhancing your service with MicroProfile Fault Tolerance

Resources

●​ MicroProfile Official Website: https://microprofile.io/
●​ MicroProfile GitHub Repository: https://github.com/eclipse/microprofile
●​ MicroProfile Documentation and Guides: [Official

documentation](https://microprofile.io/documentation/)

After completing this chapter, you should have a basic understanding of MicroProfile
and how to start building microservices with it. Continue exploring the specifications
and capabilities of MicroProfile to fully leverage its power in your microservices
architecture.

Package Structure
The Table below provides an overview of the package structure and their purposes
within a typical Java-based microservices architecture.

Package Description

dto Data Transfer Objects (DTOs) are used to transfer data
between processes, such as from your service to a REST
endpoint. They often mirror entity classes but can be tailored to
the needs of the client to avoid over-fetching or under-fetching
data.

https://microprofile.io/
https://github.com/eclipse/microprofile
https://microprofile.io/documentation/

entity Entity classes represent the domain model and are typically
mapped to database tables. These are the core classes that
represent the business data and are often used with ORM tools
like JPA.

repository Interfaces in this package abstract the data layer, making it
easier to perform CRUD operations without dealing with
database intricacies directly. This follows the Repository
pattern. Data access layer, interacting with databases or other
storage mechanisms (e.g., ProductRepository,
CustomerRepository)

resource REST resource classes (sometimes called controllers in other
frameworks) are the entry points for HTTP requests. They
interact with service classes to process these requests.
Interfaces defining endpoints for REST services (e.g.,
ProductResource, ShoppingCartResource)

common This package contains classes and interfaces that are shared
across different microservices, such as utility classes, common
configuration, exception handling, and security-related classes.

client For microservices to communicate with each other, they often
use HTTP clients. This package contains interfaces or classes
annotated for use with MicroProfile Rest Client or similar,
facilitating easy communication between your services.

config Configuration classes for MicroProfile Config

health

exception Custom exceptions for error handling (e.g.
ProductNotFoundException, PaymentFailedException)

util Helper and utility classes

Base Package: io.microprofile.tutorial.store

io.microprofile.tutorial.store
├── catalog
│ ├── resource
│ ├── config
│ ├── exception

│ ├── entity
│ ├── repository
│ └── util
├── cart
│ ├── resource
│ ├── entity
│ ├── repository
│ ├── client
│ ├── exception
│ └── util
├── user
│ ├── resource
│ ├── entity
│ ├── repository
│ ├── exception
│ └── util
├── inventory
│ ├── resource
│ ├── entity
│ ├── repository
│ ├── exception
│ └── util
├── order
│ ├── resource
│ ├── entity
│ ├── repository
│ ├── exception
│ └── util
├── payment
│ ├── resource
│ ├── entity
│ ├── repository
│ ├── exception
│ └── util
└── shipment
 ├── resource
 ├── entity
 ├── repository
 ├── exception
 └── util

// TODO: Current package structure is just a proposal will update after completing
the source code for all chapters

Glossary

Java Development Kit (JDK)

A software development environment used for developing Java applications. It

includes the Java Runtime Environment (JRE), an interpreter/loader (Java), a

compiler (javac), an archiver (jar), a documentation generator (Javadoc), and other

tools needed in Java development.

Integrated Development Environment (IDE)

A software application that provides comprehensive facilities to computer

programmers for software development. Examples include Eclipse, IntelliJ IDEA,

NetBeans, and Visual Studio Code.

RESTful Service

A web service implementing REST (Representational State Transfer) principles,

providing interoperability between computer systems on the internet.

Runtime Environment

The environment in which programs are executed. It includes everything your

application needs to run in production, such as an operating system, a runtime (like

JVM for Java applications), libraries, and environment variables.

JUnit

A unit testing framework for Java, used to write and run repeatable tests.

Containerization

A lightweight alternative to full machine virtualization that involves encapsulating an

application in a container with its own operating environment.

Cloud Deployment

Deploying applications in cloud environments, leveraging cloud resources like

compute instances, storage, and networking capabilities.

	Chapter 2: Getting Started with MicroProfile
	Introduction
	Topics Covered
	Development Environment Setup
	Java Development Kit (JDK)
	Build Tools (Maven or Gradle)
	Installing Apache Maven
	Installing Gradle

	Integrated Development Environments
	Setting up MicroProfile Runtime
	MicroProfile Starter

	This completes the development environment setup. Now we are all set to begin development using MicroProfile.
	Creating a Java Project for MicroProfile Development
	Using Your IDE:
	Using Maven from Command Line (Terminal)

	Choosing Right Modules for Your MicroProfile Application
	Choosing the right modules for your MicroProfile application is crucial for ensuring that your application is lean, maintainable, and only includes the necessary functionalities to meet its requirements.
	Before diving into MicroProfile modules, it’s essential to have a clear understanding of your application’s requirements. Consider aspects such as configuration needs, security, health checks, data metrics, fault tolerance, and the need for distributed tracing. Mapping out these requirements will guide you in selecting the most relevant MicroProfile specifications. MicroProfile provides a selection of APIs that you can choose from based on the specific needs of your application. However, with the variety of specifications available, it’s important to understand which ones best fit your project’s needs.
	This section aims to help you make informed decisions about which MicroProfile modules to use.
	Use the Entire MicroProfile Dependency
	If you’re beginning a new MicroProfile-based project and are unsure which specifications you will need, starting with the entire MicroProfile dependency can give you immediate access to the full suite of MicroProfile APIs. This approach allows you to explore and experiment with different specifications without modifying your pom.xml to add or remove dependencies frequently.
	For projects that aim to leverage a wide range of MicroProfile specifications, including advanced features like telemetry, metrics, and fault tolerance, including the entire MicroProfile 6.1 dependency ensures that you have all the necessary APIs at your disposal. This approach simplifies dependency management, especially for complex applications.
	Maven
	Gradle

	Use Individual MicroProfile Specification Dependencies
	For applications where size and startup time are critical (e.g., serverless functions, microservices with stringent resource constraints), including only the necessary MicroProfile specifications can help minimize the application’s footprint. This selective approach ensures that your application includes only what it needs, potentially reducing memory usage and startup time.
	To prevent potential conflicts or security issues associated with unused dependencies, it’s prudent to include only the specifications your application directly uses. This practice follows the principle of minimalism in software design, reducing the surface area for bugs and vulnerabilities.
	The list below is provided to help you select the appropriate modules for your MicroProfile application:
	●​MicroProfile Config provides a way to fetch configurations from various sources dynamically. You should use this dependency in your microservices if they require external configuration or need to be run in different environments without requiring repackaging.
	Maven
	●​MicroProfile Health allows you to define health endpoints easily. If you’re deploying your application in an environment where the service needs to report its health status.
	Maven
	●​MicroProfile Metrics offers a way to generate various metrics from your application, which can be consumed by monitoring tools. You should use this dependency in your microservices if you need to monitor the performance of your application.
	Maven
	●​MicroProfile Fault Tolerance helps applications in implementing patterns like timeout, retry, bulkhead, circuit breaker, and fallback. Applications requiring resilience and reliability, especially those facing network latency or failure in microservices environments, will benefit from it.
	Maven
	●​MicroProfile JWT Authentication provides a method for using JWT tokens for securing your microservices, especially where propagation of identity and authentication information is needed across services.
	Maven
	●​MicroProfile OpenAPI offers tools for generating OpenAPI descriptions of your endpoints automatically for documenting your REST APIs.
	Maven
	●​MicroProfile Rest Client simplifies calling RESTful services over HTTP for type-safe invocations of HTTP services for type-safe invocations of HTTP services.
	Maven
	●​MicroProfile Telemetry integrates OpenTelemetry for distributed tracing For applications that need to trace requests across microservices to diagnose and monitor.
	Maven
	●​Jakarta EE Core Profile dependency provides the API set included in the Jakarta EE 10 Core Profile, which is optimized for developing microservices and cloud-native Java applications with a reduced set of specifications for a lighter runtime footprint.
	Maven
	For rapidly evolving projects or those in the exploratory phase, starting with the full MicroProfile dependency might be advantageous. However, for production applications with well-defined requirements, opting for individual specifications can lead to more efficient and maintainable solutions.
	When choosing MicroProfile modules, start with the minimal set that meets your application’s core requirements. You can always integrate additional specifications as your application evolves. This approach keeps your application lightweight and focused on its primary functionalities, improving maintainability and performance. Always consider the compatibility between different versions of MicroProfile and your runtime environment to ensure seamless integration and deployment.
	
	Manually

	Developing a RESTful Web Service
	Creating an Entity class
	Creating a Resource class
	Creating an Application class

	Building Your Application

	You may build the application using the following commands from your project’s root directory:
	
	The above command will create a deployment package.
	Deploying your microservices
	General Considerations:
	Deployment Options
	Open Liberty

	Run Your Application
	Quarkus
	Payara Micro
	WildFly
	Helidon
	TomEE:
	Additional Considerations:

	Testing your Microservice
	Next Steps
	Resources

	Glossary

