Render state tracking

Relevant issue: https://aithub.com/defold/defold/issues/6179

Brief

Currently, when executing a render list (or calling draw) from the renderer, we don’t keep track
of what the state is that has already been set for certain parameters (blending, stencil ops, face
winding). This can cause issues between render objects A and B where A sets a few of these
parameters and B doesn’t. In this case B will use the same render state as A even though that
is usually not the wanted effect.

Furthermore, since we don’t track any state changes in the renderer, there is also the potentially
added cost of triggering unnecessary state changes between draw calls since it’s really when
the actual draw call happens that we need to have an updated draw state.

l.e if you set render.set_blend_func(...) 10x times from the render script before a draw call, we
will still issue 10x glBlendFunc calls even though we only need the last one before drawing.

Technical

To solve this issue, we could ask the graphics module to give us the latest set value and keep
track of what values have changed during the execution of the draw list. For OpenGL, this
usually means calling glGet(..) with the parameter you want to get, which is very costly because
of cpu/gpu synchronization. In vulkan (and other modern graphics adapters), we already have
this functionality available through a 64-bit “pipeline” variable which can easily be compared in
order to know which states that need to be updated. The pipeline variable is updated when the
renderer calls a certain draw state function, such as Enable/Disable state, or setting the
blending function.

Implementation

e [Expose a way to get draw state values from the graphics adapters before executing the
list of render objects
o For vulkan and “other” graphics adapters, this should be easy since we already
have a small representation of the current render state
m Note: This representation must be expand to support all the state
changes we all, currently the pipeline objects doesn’t store values for
separate stencils for examples, which the renderobjects technically can
set (only rive so far from what | know)
o For OpenGL, we need to add a similar design either by:
m Using the current pipeline structure setup
e Pros: We can apply the pipeline before drawing and only set the
states that have actually changed between two draw calls


https://github.com/defold/defold/issues/6179

e Cons: A little bit of work to make sure it’s correct, the OpenGL
state is the “ground truth” so we don’t want to make mistakes here
and have an out-of-sync representation

e Note: If people do some very special OpenGL rendering outside of
our renderer, the state can get out-of-sync, but | don’t know if we
can solve that gracefully other than hope that people don’t mess
about with the state.

Exposing via glGet
e Pros: Easy to implement, it’s just a call for the thing you want to

query
e Cons: Slow! Probably not a good idea at all..



	Render state tracking 
	Brief 
	Technical 
	Implementation 


