
Render state tracking 
Relevant issue: https://github.com/defold/defold/issues/6179 

Brief 
Currently, when executing a render list (or calling draw) from the renderer, we don’t keep track 
of what the state is that has already been set for certain parameters (blending, stencil ops, face 
winding). This can cause issues between render objects A and B where A sets a few of these 
parameters and B doesn’t. In this case B will use the same render state as A even though that 
is usually not the wanted effect. 
 
Furthermore, since we don’t track any state changes in the renderer, there is also the potentially 
added cost of triggering unnecessary state changes between draw calls since it’s really when 
the actual draw call happens that we need to have an updated draw state. 
 
I.e if you set render.set_blend_func(...) 10x times from the render script before a draw call, we 
will still issue 10x glBlendFunc calls even though we only need the last one before drawing. 

Technical 
To solve this issue, we could ask the graphics module to give us the latest set value and keep 
track of what values have changed during the execution of the draw list. For OpenGL, this 
usually means calling glGet(..) with the parameter you want to get, which is very costly because 
of cpu/gpu synchronization. In vulkan (and other modern graphics adapters), we already have 
this functionality available through a 64-bit “pipeline” variable which can easily be compared in 
order to know which states that need to be updated. The pipeline variable is updated when the 
renderer calls a certain draw state function, such as Enable/Disable state, or setting the 
blending function. 

Implementation 
●​ Expose a way to get draw state values from the graphics adapters before executing the 

list of render objects 
○​ For vulkan and “other” graphics adapters, this should be easy since we already 

have a small representation of the current render state 
■​ Note: This representation must be expand to support all the state 

changes we all, currently the pipeline objects doesn’t store values for 
separate stencils for examples, which the renderobjects technically can 
set (only rive so far from what I know) 

○​ For OpenGL, we need to add a similar design either by: 
■​ Using the current pipeline structure setup 

●​ Pros: We can apply the pipeline before drawing and only set the 
states that have actually changed between two draw calls 

https://github.com/defold/defold/issues/6179


●​ Cons: A little bit of work to make sure it’s correct, the OpenGL 
state is the “ground truth” so we don’t want to make mistakes here 
and have an out-of-sync representation 

●​ Note: If people do some very special OpenGL rendering outside of 
our renderer, the state can get out-of-sync, but I don’t know if we 
can solve that gracefully other than hope that people don’t mess 
about with the state. 

■​ Exposing via glGet 
●​ Pros: Easy to implement, it’s just a call for the thing you want to 

query 
●​ Cons: Slow! Probably not a good idea at all.. 


	Render state tracking 
	Brief 
	Technical 
	Implementation 


