
The Relevance。 of UML in the Development and
Documentation of Large Distributed Software Systems
1. Introduction？: The Unified Modeling Language and Its Role in
Software Engineering
1.1 Defining UML: Origins and Core Principles have

The Unified Modeling Language (UML) emerged in the late 1990s as a standardized
modeling language, providing a visual means to represent the architecture, behavior,
and interactions within software systems 1. Its development was a concerted effort to
unify the diverse notations prevalent in object-oriented methodologies at the time.
UML effectively integrated the most successful elements from earlier approaches,
such as the Object Modeling Technique (OMT), the Booch method, and Objectory 1.
The fundamental aim behind the creation of UML was to foster enhanced clarity,
mitigate ambiguity, and improve communication among the various teams involved in
software projects 3. By establishing a common, visual vocabulary, UML sought to
provide a more effective way to specify, visualize, construct, and document the often
intricate artifacts of software systems. This standardization was particularly crucial in
an era where object-oriented principles were gaining prominence, and the need for a
unified approach to modeling complex software was becoming increasingly apparent.
The convergence of different methodologies into UML reflected an industry-wide
acknowledgment of the necessity for a shared visual language to tackle the growing
complexity of software development.

1.2 Intended Applications of UML: From Design to Documentation

The scope of UML's intended applications was broad, encompassing the modeling of
various types of systems, including distributed ones, as well as supporting activities
like analysis, system design, and deployment 3. It was envisioned as a versatile tool
that could be applied across different phases of the software development lifecycle,
from the initial high-level design stages through to the implementation and
subsequent maintenance of the software 2. UML diagrams were designed to act as a
crucial link between the abstract concepts of high-level design and the concrete
details of implementation. This visual representation was intended to facilitate
effective communication among all stakeholders involved in a software project, from
architects and developers to testers and even non-technical team members 2. The
initial vision for UML was indeed ambitious, positioning it as a universally applicable
instrument capable of addressing the diverse needs of software development across
various system complexities and throughout the entire project lifecycle. The specific

mention of distributed systems within its intended applications is particularly
noteworthy, given the user's inquiry about UML's relevance in this domain.

2. The Perceived Decline of UML in Large Distributed Systems: An
Examination of Online Discourse
2.1 The Rise of Agile Methodologies and the Shift in Focus

The increasing prominence of Agile methodologies in software development is
frequently cited as a significant factor contributing to the perceived decrease in UML
usage, particularly in the context of large distributed systems 9. As Agile approaches
gained traction, the meticulous and often detailed nature of UML began to feel like an
encumbrance in the fast-paced, iterative cycles characteristic of Agile projects 9. In
such dynamic environments, the creation and maintenance of extensive UML
diagrams were sometimes regarded as bureaucratic overhead rather than as
genuinely helpful aids in the development process 9. Agile methodologies place a
strong emphasis on working software, continuous delivery, and close collaboration
with customers, often prioritizing these aspects over the production of comprehensive
documentation, which can include detailed UML diagrams 10. This shift in focus, driven
by the core values of Agile, which emphasize rapid iteration and flexibility, can
potentially lead to a diminished emphasis on formal modeling techniques like UML
that are often associated with more traditional, sequential development processes.
The inherent tension between the detailed planning and documentation often linked
to UML and the emergent, adaptive nature of Agile development suggests a
fundamental difference in approach that could explain the perceived decline in UML
adoption in certain modern software development contexts.

2.2 Challenges of Maintaining UML in Complex and Evolving Systems

The creation and, more critically, the sustained maintenance of UML diagrams for
large, intricate software systems, especially those that are distributed, can present
substantial practical challenges 7. These systems often involve thousands of
interconnected classes and components, making the initial effort to model them
comprehensively a time-consuming and resource-intensive endeavor 7. Furthermore,
software systems, particularly in the domain of large distributed applications, are
rarely static; they continuously evolve through updates, new features, and refactoring.
As the codebase changes, any existing UML diagrams can quickly become outdated
and inconsistent with the actual implementation 2. Keeping these diagrams
synchronized with the evolving reality of the code requires a significant and ongoing
investment of time and effort 2. For systems characterized by a vast number of
interconnected components, the resulting UML diagrams can themselves become so

complex and unwieldy that they ultimately lose their intended utility as tools for
understanding and communication 11. The dynamic and expansive nature of large
distributed systems, therefore, poses a considerable obstacle to the long-term
viability and value of detailed UML documentation, as the cost of maintaining
accuracy can easily outweigh the perceived benefits.

2.3 The Preference for Lightweight and Informal Visualizations

In the contemporary software development landscape, many practitioners
demonstrate a preference for more lightweight and informal approaches to
visualization compared to the rigor of formal UML diagrams 1. For instance, for
conveying architectural overviews or brainstorming design ideas, developers often
find informal, hand-drawn diagrams or basic block diagrams to be sufficient and more
readily adaptable 1. In smaller projects or within the context of Agile methodologies,
lightweight tools such as simple flowcharts, Kanban boards for workflow visualization,
or even the use of sticky notes for quick conceptualization are frequently favored for
their speed and inherent flexibility 9. When it comes to understanding the intricate,
low-level behavior of specific components within a system, developers often find that
the actual source code itself, or well-maintained API specifications, provides a more
direct and authoritative source of information than high-level UML diagrams 11. This
trend suggests a move towards pragmatism in visual modeling, where the perceived
value of investing in the creation and maintenance of formal UML diagrams is weighed
against the agility and immediacy offered by more lightweight and code-centric
approaches. The industry appears to be leaning towards a "just enough
documentation" philosophy, where the level of formality in modeling and
documentation is carefully considered based on the specific needs of the project, the
team, and the context.

3. UML Usage in the Documentation of Open-Source Large
Distributed Systems
3.1 Investigating Documentation Practices in Prominent Projects

Research into the documentation practices of open-source software development
(OSSD) projects, which often involve the creation and maintenance of large and
distributed systems, reveals that the use of UML is not a consistently mandated
practice and tends to vary considerably from one project to another 12. Unlike
commercial software development environments where specific processes and
documentation standards might be enforced, the adoption of UML in OSSD is typically
driven by the individual project's community and their collective perception of its
necessity and benefits 12. In this context, the decision to utilize UML often stems from

a recognized need within the developer community for enhanced communication and
a desire to codify high-level architectural knowledge in a visual and standardized
format 12. The voluntary nature of contributions in open-source projects likely plays a
significant role in shaping documentation choices, with UML being embraced when
the developers themselves deem it a valuable tool for their specific project's needs
and communication goals. This provides a real-world perspective on how UML is
adopted and utilized in the absence of strict organizational mandates, reflecting its
perceived utility by practitioners in the field of large, often distributed, software
systems.

3.2 Types of UML Diagrams Commonly Found in Open-Source Documentation

Studies examining open-source software development projects indicate that certain
types of UML diagrams are more frequently encountered in their documentation than
others 2. Among the most commonly used are class diagrams, which are effective in
depicting the static structure of a system by illustrating classes, their attributes, and
methods, and use case diagrams, which are valuable for outlining the functional
requirements of the system and how users interact with it 2. Additionally, component
diagrams and package diagrams are often employed to visualize the decomposition of
the system into modular components and to show the dependencies between these
components and packages, providing a high-level view of the system's organization 3.
While sequence diagrams, which model the interactions between objects over time,
and activity diagrams, which illustrate process flows and workflows, are sometimes
used to explain specific features or intricate operational sequences, their prevalence
in open-source documentation appears to be less than that of the structural diagram
types 13. This observed preference for structural diagrams in the documentation of
open-source projects suggests that UML might be perceived as particularly beneficial
for conveying the fundamental architecture and high-level design of distributed
systems, focusing on the system's static organization and primary functionalities
rather than detailing every aspect of its dynamic behavior across all possible
scenarios.

3.3 The Extent of UML Diagram Correspondence with Implementation Code

An interesting observation from research on UML usage in open-source software
development projects is that the UML diagrams found in their documentation often do
not maintain a complete and one-to-one correspondence with the actual
implementation code 12. For instance, studies have noted that the number of classes
depicted in UML class diagrams is typically less than the total number of classes that
exist within the project's source code 12. This discrepancy suggests that UML, in this
context, might be primarily utilized for representing abstract, high-level design

concepts or for illustrating specific, key aspects of the system's architecture, rather
than serving as an exhaustive and precise visual representation of the entire
codebase 12. This phenomenon reinforces the idea that in practice, particularly within
the dynamic and often volunteer-driven environment of open-source projects, UML
may function more as a tool for communication and conceptualization of the system's
essential structure and functionality, rather than as a form of "living documentation"
that is rigorously kept in perfect synchronization with every detail of the
implementation. The challenges associated with maintaining such a high level of
fidelity between diagrams and code, especially in large and actively evolving systems,
likely contribute to this more pragmatic approach to UML usage.

4. UML as a Communication Tool in Development Teams for Large
Distributed Systems
4.1 Facilitating Understanding and Collaboration Among Stakeholders

One of the primary intentions behind the development of UML was to establish it as a
robust communication tool capable of bridging the gap between various stakeholders
involved in software development 2. This includes not only the technical team
members such as developers and designers but also testers, business analysts, and
even clients or end-users. By providing a standardized visual language, UML aims to
simplify complex technical concepts and intricate system relationships, making them
more readily understandable to individuals who may not possess a deep technical
background 4. UML diagrams can serve as a central point of reference, helping teams
to align their understanding of the system's intended design, its functionalities, and
the overall progress of the project 15. The inherent strength of UML in this regard lies
in its ability to abstract away the often overwhelming details of implementation code
and present a higher-level, more conceptual view of the system's architecture and
behavior. This abstraction fosters a shared mental model among team members with
diverse roles and expertise, thereby facilitating more effective discussions, informed
decision-making, and ultimately, better collaboration throughout the software
development lifecycle.

4.2 Specific UML Diagrams for Communication in Distributed Contexts

Within the realm of large distributed systems, certain types of UML diagrams prove to
be particularly valuable for communication due to their ability to represent the unique
characteristics and complexities of such architectures 3. Deployment diagrams, for
example, are crucial for visualizing the physical deployment of software components
across various hardware nodes in a distributed environment, aiding in the
understanding of the system's overall topology and the distribution of responsibilities

3. Component diagrams are essential for describing the organization of software
components and their dependencies on each other, which is vital for comprehending
how different parts of a distributed system interact, often over network interfaces 3.
Sequence diagrams are highly useful for modeling the interactions between different
objects or components in a time-ordered manner, thereby clarifying the flow of data
and control across the distributed system 2. Lastly, activity diagrams can effectively
model the workflows and processes that span across multiple components of a
distributed system, including the representation of parallel processes and
synchronization points that are common in such architectures 4. These specific UML
diagram types, therefore, retain significant relevance as communication tools by
providing visual representations tailored to the distinct aspects and challenges of
distributed systems.

4.3 The Role of UML Compared to Other Communication Methods in Distributed
Teams

Development teams working on large distributed systems typically rely on a diverse
array of communication tools and methods to coordinate their efforts effectively 17.
These commonly include asynchronous communication channels such as email and
various chat platforms like Slack, as well as synchronous methods like video
conferencing for meetings and discussions. Additionally, project management tools
like Jira and Trello are frequently used to track tasks, share status updates, and
manage workflows across distributed team members 17. Effective communication
within distributed teams often emphasizes the importance of over-communicating to
compensate for the lack of face-to-face interaction, strategically leveraging different
tools based on the context and urgency of the information, and making a conscious
effort to schedule virtual "face time" to foster better team cohesion 17. In this
landscape, UML diagrams can play a complementary role by offering a visual and
standardized means to represent the system's design and architecture 22. While UML
can be particularly useful for communicating complex design ideas asynchronously,
especially in teams spread across different time zones, it is unlikely to entirely replace
the need for regular verbal and written communication, which allows for more
nuanced discussions, immediate clarifications, and the conveyance of rationale
behind design decisions 18. Therefore, UML should be viewed as one valuable tool
within a broader communication toolkit for distributed teams, with its effectiveness
contingent on its thoughtful integration with other communication practices and the
team's overall proficiency in utilizing it.

5. UML in Academia: An Analysis of Computer Science Curricula

at Top Universities
5.1 UMass Lowell: Software Design Principles and Potential Implicit Inclusion

The undergraduate Computer Science curriculum at UMass Lowell offers students a
range of specialized options, including General Computer Science, Cybersecurity,
Data Science, and Bio-Cheminformatics 23. While a review of the publicly available
course descriptions for these options 26 does not explicitly mention the Unified
Modeling Language by name, it is plausible that the principles and practices of visual
modeling, potentially including UML concepts, are implicitly incorporated within
courses that focus on broader software design principles. For example, project-based
courses, which often require students to design and implement software systems,
might necessitate the use of visual design tools and methodologies to conceptualize
and communicate their designs. In such contexts, instructors might introduce or
expect students to utilize UML diagrams as a standard way to represent system
architecture and behavior, even if the course description itself does not specifically
list UML as a topic. Therefore, while explicit references to UML are absent in the initial
review of the curriculum, its underlying concepts and practical application could still
be a part of the educational experience, particularly within courses aimed at
developing software design and architecture skills.

5.2 Stanford University: Explicit Coverage in Database and Software Engineering
Courses

In contrast to UMass Lowell, the Computer Science curriculum at Stanford University
explicitly acknowledges and integrates UML into specific courses 28. Notably, the
course "Databases: Modeling and Theory" directly addresses the data-modeling
component of UML, exploring how UML diagrams can be used to represent database
schemas and how they are subsequently translated into relational database designs
28. This indicates a recognition of UML's continued relevance in the domain of
database systems. Furthermore, at the graduate level, the course CS446 is dedicated
to providing an overview of essential software engineering principles, with a specific
focus on modeling software systems using UML as a key topic of instruction 31. At the
undergraduate level, courses such as CS108, titled "Object-Oriented Systems
Design," likely incorporate UML as a fundamental aspect of teaching object-oriented
design principles and methodologies 30. The inclusion of UML in these diverse
courses, spanning database theory, software engineering, and object-oriented
design, demonstrates a clear emphasis on the importance of visual modeling and UML
as a valuable skill for computer science students at Stanford. This suggests that the
university considers UML a relevant and practical tool for both understanding and

designing software systems in specific contexts.

5.3 Carnegie Mellon University: UML as Part of Software Construction and Design

Carnegie Mellon University's School of Computer Science also integrates UML into its
curriculum, particularly within courses focused on software construction and design
32. The course "Principles of Software Construction: Objects, Design and
Concurrency" includes a dedicated module that covers the essentials of UML, aptly
titled "Just enough UML" 33. This inclusion suggests that UML is considered a relevant
tool for teaching the fundamental principles of software construction and design.
Additionally, the course 17-214, titled "Applying UML and Patterns," explicitly focuses
on both UML and design patterns, indicating a deeper exploration of these concepts
within the curriculum 32. Moreover, the Saylor Academy's software engineering course,
which utilizes materials developed by Carnegie Mellon University, also incorporates
UML as part of its teaching on software modeling 34. The presence of UML in these
various educational contexts within and associated with Carnegie Mellon underscores
its perceived value in equipping computer science students with practical skills in
software design and communication through visual modeling techniques. This
reinforces the idea that UML continues to be considered a significant component of
software engineering education at this institution.

5.4 Massachusetts Institute of Technology (MIT): Less Explicit Mention in Core CS
Courses

A review of the core Computer Science course descriptions available in the MIT
course catalog does not reveal explicit mentions of the Unified Modeling Language 35.
The curriculum at MIT appears to place a strong emphasis on foundational concepts
such as algorithms, data structures, theoretical computer science, and system design,
with course descriptions focusing primarily on these areas. While courses related to
software design are offered, the provided snippets do not indicate a specific focus or
requirement on learning or using UML. It is possible that the principles of visual
modeling and system representation are covered within these courses, but perhaps
through different notations or with a less explicit emphasis on the UML standard itself.
The absence of direct references to UML in the core Computer Science curriculum
descriptions at MIT might suggest a different pedagogical approach or a prioritization
of other fundamental computer science concepts over the explicit teaching of UML.
This observation highlights that while software design principles are undoubtedly
important in computer science education, the specific tools and notations
emphasized can vary among top universities.

5.5 Technische Universität München (TUM) (via edX): Explicit Inclusion in Software

Engineering Essentials

The "Software Engineering Essentials" course offered by Technische Universität
München (TUM) through the edX platform explicitly includes the Unified Modeling
Language as a key component of its curriculum 38. The course description lists
"Unified Modeling Language (UML)" as one of the core topics that participants will
learn and apply. This explicit inclusion of UML as a fundamental aspect of software
engineering education at TUM demonstrates its continued relevance in the academic
context, particularly in a European university setting. The course aims to teach
students how to apply UML modeling, along with other essential software engineering
practices like agile methods, object-oriented programming, and project management
techniques, in the development of complex software systems. This indicates that UML
is still considered a valuable and necessary skill for aspiring software engineers at
TUM, highlighting its enduring importance in the field of software engineering
education internationally.

Table 1: UML Coverage in Computer Science Curricula at Selected Universities
(Section 5)

University Explicit UML Mention Relevant Courses

UMass Lowell No Project Courses (potential
implicit inclusion)

Stanford University Yes Databases: Modeling and
Theory, Software Engineering
(CS446), Object-Oriented
Systems Design (CS108)

Carnegie Mellon Yes Principles of Software
Construction, Applying UML
and Patterns (17-214),
Software Engineering (via
Saylor Academy)

MIT No Software Design courses
(potential implicit inclusion)

TUM (via edX) Yes Software Engineering
Essentials

6. Advantages and Disadvantages of Using UML in Modern
Distributed Systems Development
6.1 Advantages of UML in Distributed System Contexts

Despite the challenges and criticisms, UML offers several distinct advantages when
applied to the development of modern distributed systems 3. One of the most
significant benefits is the ability of UML diagrams to provide a clear visualization of
the inherent complexity of distributed systems 3. By representing the architecture,
components, and interactions visually, UML can simplify understanding for all
stakeholders involved. Furthermore, UML serves as a standardized visual language,
which enhances communication and collaboration across diverse teams working on
distributed systems, including architects, developers, and operations personnel 3.
Specific UML diagram types are particularly advantageous in this context.
Deployment and component diagrams are crucial for defining and standardizing the
architecture of distributed solutions, illustrating the physical distribution of
applications and their interdependencies 3. Sequence and activity diagrams are
effective in modeling the dynamic behavior and process flows within and between
distributed components, aiding in the comprehension of data flow and control
mechanisms 2. Additionally, UML can assist in planning for scalability and ensuring
consistent designs that are easier for multiple developers and new team members to
understand and follow 14. Finally, up-to-date UML documentation, especially class and
sequence diagrams, has been shown to improve code comprehension, reduce
maintenance time, and facilitate collaboration during software maintenance efforts 2.
These advantages highlight that, while not without its drawbacks, UML can still
provide significant value in the development and documentation of intricate
distributed systems.

6.2 Disadvantages and Limitations of UML for Modern Distributed Systems

Despite its benefits, the use of UML in the context of modern distributed systems
development also presents several disadvantages and limitations 7. A primary concern
is the time and effort required to create and, more importantly, maintain detailed UML
diagrams, especially for large and rapidly evolving distributed systems 7. Given the
dynamic nature of these systems and the prevalence of Agile development
methodologies, UML diagrams can quickly become outdated and inconsistent with the
actual codebase, diminishing their utility and potentially leading to confusion 2. The
comprehensive nature of UML, with its various diagram types and notations, can also

be complex and presents a steep learning curve for some team members, potentially
hindering its widespread adoption 7. For smaller or less complex distributed systems,
the formality and level of detail offered by UML might be perceived as excessive and
unnecessary overhead 7. Furthermore, the interpretation of UML diagrams can
sometimes be subjective, leading to potential ambiguities and misunderstandings
within a team 7. UML may also lack specific constructs needed to effectively model
certain critical aspects of distributed systems, such as user interfaces, serialization
protocols, mechanisms for object persistence, and fault tolerance strategies 39. The
emphasis on upfront design and extensive documentation often associated with
traditional UML usage can also clash with the iterative and emergent nature of Agile
development practices commonly employed for distributed systems 9. Finally, creating
UML diagrams that can effectively represent the sheer scale and complexity of very
large distributed systems, with their numerous components and intricate
interconnections, can be challenging and may result in diagrams that are too
cumbersome to be practically useful 40. These disadvantages underscore the need for
a careful and balanced approach to using UML in modern distributed systems
development, considering its limitations alongside its potential benefits.

Table 2: Advantages and Disadvantages of UML for Distributed Systems
(Section 6)

Category Points Supporting Snippets

Advantages Visualization of complexity,
enhanced communication,
architectural blueprinting
(deployment & component
diagrams), modeling dynamic
behavior (sequence & activity
diagrams), consistency and
scalability planning, improved
code comprehension and
maintenance.

2

Disadvantages Time and effort overheads,
potential for diagrams to
become outdated, complexity
and learning curve, overkill for
certain projects, ambiguity in
interpretation, limited support
for specific distributed system

2

concerns (UI, serialization,
persistence, fault tolerance),
clash with Agile principles,
scalability issues with
diagrams for very large
systems.

7. Alternative Modeling and Documentation Techniques
In response to the challenges and limitations associated with UML, especially in the
context of large distributed systems, several alternative modeling and documentation
techniques have gained prominence 9. In Agile environments, where speed and
flexibility are paramount, lightweight tools such as simple flowcharts, Kanban boards
for visualizing workflows, and even the use of sticky notes for rapid brainstorming and
conceptualization are often favored over the more formal and detailed UML diagrams
9. For conveying high-level architectural overviews, many practitioners prefer using
basic block diagrams, which are often less constrained by formal standards and can
be quickly adapted to specific needs, rather than adhering strictly to UML component
diagrams 11. Furthermore, in many modern development practices, the source code
itself is increasingly viewed as the most accurate and up-to-date form of
documentation, with developers sometimes finding well-written and commented
code, along with comprehensive API specifications, to be more informative than
external UML diagrams, which can easily fall out of sync with the implementation 11.
For specific aspects of distributed systems, such as performance evaluation,
techniques like queueing network models, computation structure models, and
hierarchical performance modeling are employed to analyze communication and
computation delays caused by the system's architecture 41. To address the
complexities of distributed system behavior and ensure correctness, formal modeling
languages like TLA+ and lightweight simulation techniques are utilized to describe and
verify system properties at various levels of abstraction 44. In the domain of machine
learning, which often involves large distributed systems for training models,
techniques like data parallelism and model parallelism have their own distinct
architectural considerations and documentation needs 43. Lastly, in service-oriented
architectures (SOA), domain-specific modeling languages and model weavers are
used to define the interactions and relationships between loosely coupled services 45.
These alternative techniques reflect a trend towards more specialized, lightweight, or
code-centric approaches to modeling and documenting large distributed systems,
often chosen based on the specific needs and context of the project.

8. Case Studies: Real-World Examples of UML Usage (or

Avoidance)
While explicit case studies detailing extensive UML usage in contemporary large
distributed systems are not prominently featured in the provided material, several
instances and research directions offer insights into its application 42. The
PERMABASE project, for example, explored the adaptation of UML for specifying the
physical environment of distributed systems, indicating a past effort to leverage UML's
visual modeling capabilities in this domain 53. Books like "Designing Concurrent,
Distributed, and Real-Time Applications with UML" utilize case studies to illustrate the
application of UML-based methodologies, such as COMET, for designing these types
of complex systems 50. While these examples might not represent the latest trends,
they highlight historical applications of UML in distributed system design. Real-world
examples of prevalent large distributed systems, such as Netflix, Amazon, Uber, and
Airbnb, are often cited in discussions about distributed architectures 49; however, the
snippets do not provide specific details regarding their use of UML in their
development processes. Research focusing on open-source projects, which
frequently involve large and distributed systems, offers some empirical evidence of
UML usage, showing a tendency towards employing class and use case diagrams for
high-level conceptualization and knowledge sharing within the community 12.
Additionally, a thesis documents the application of UML for modeling a complex,
software-intensive simulation for a naval "digital ship," which can be considered a
form of a distributed system, showcasing a specific instance of UML's utility in a
sophisticated and intricate domain 54. These examples, while varied in context and
recency, suggest that UML's application in large distributed systems is not entirely
absent but might be more selective and context-dependent in modern software
development practices.

9. Conclusion: The Relevance of UML in the Age of Distributed
Systems
The analysis of online discussions, open-source documentation practices, team
communication methods, university curricula, advantages and disadvantages,
alternative techniques, and case studies suggests that the relevance of UML in the
development and documentation of large distributed software systems is nuanced
and has evolved over time. While UML may not be the universally adopted standard it
once was, particularly in the face of Agile methodologies and the increasing
complexity and dynamism of distributed systems, it continues to hold value in specific
contexts. Certain UML diagram types, such as deployment, component, sequence,
and activity diagrams, remain useful for visualizing and communicating specific

aspects of distributed system architecture and behavior.

The rise of Agile has led to a preference for lightweight and informal visualizations in
many cases, and the challenges of maintaining UML diagrams in rapidly evolving
systems are significant. Consequently, practitioners often favor simpler tools or rely
more directly on code and API specifications for detailed understanding. However,
research on open-source projects indicates that UML, especially class and use case
diagrams, is still used for high-level design and communication when deemed
beneficial by the community.

UML's role as a communication tool remains relevant, particularly for fostering a
shared understanding among diverse stakeholders. While distributed teams rely on a
variety of communication methods, UML can complement these by providing a
standardized visual representation of system design. The presence of UML in the
curricula of several top universities, including Stanford, Carnegie Mellon, and TUM,
indicates its continued importance in software engineering education, suggesting that
future generations of developers will still be familiar with its principles and
applications.

The advantages of UML in visualizing complexity, enhancing communication, and
aiding in architectural blueprinting, especially for distributed systems, cannot be
overlooked. However, the disadvantages, including time overhead, the potential for
diagrams to become outdated, and its limitations in modeling certain distributed
system concerns, necessitate a judicious and balanced approach to its use.
Alternative modeling and documentation techniques have emerged, reflecting a trend
towards more specialized, lightweight, or code-centric approaches.

Case studies, while not overwhelmingly abundant for modern large distributed
systems, still point to instances where UML has been successfully applied, particularly
in architectural design and system modeling.

In conclusion, UML is not obsolete in the realm of large distributed software systems,
but its application is more selective and strategic than it might have been in the past.
Its relevance lies in its ability to provide standardized visual representations for
specific aspects of system design and communication, particularly when the benefits
outweigh the costs of creation and maintenance. The decision to use UML should be
driven by a careful consideration of the project's needs, the team's expertise, and the
specific communication and documentation goals.

Works cited

1.​ Unified Modeling Language - Wikipedia, accessed March 23, 2025,
https://en.wikipedia.org/wiki/Unified_Modeling_Language

2.​ Unified Modeling Language (UML) and Its Contribution to Software Maintenance
Efficiency, accessed March 23, 2025,
https://www.researchgate.net/publication/389585787_Unified_Modeling_Languag
e_UML_and_Its_Contribution_to_Software_Maintenance_Efficiency

3.​ What is Unified Modeling Language (UML)? - Visual Paradigm, accessed March
23, 2025,
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-
uml/

4.​ Unified Modeling Language (UML) Diagrams - GeeksforGeeks, accessed March
23, 2025,
https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/

5.​ Introduction to UML. do you want to improve the software… | by Amina Rafaqat -
Medium, accessed March 23, 2025,
https://medium.com/@aminarafaqat12345678/introduction-to-uml-cf83bfeef950

6.​ UML diagrams vs. simulation in software design, accessed March 23, 2025,
https://softwaresim.com/blog/uml-diagrams-vs.simulation-in-software-design/

7.​ Advantages and Disadvantages of UML: Explained in Detail - The Knowledge
Academy, accessed March 23, 2025,
https://www.theknowledgeacademy.com/blog/advantages-and-disadvantages-o
f-uml/

8.​ What are the advantages and disadvantages of UML? - GeeksforGeeks,
accessed March 23, 2025,
https://www.geeksforgeeks.org/what-are-the-advantages-and-disadvantages-of
-uml/

9.​ Does It Still Have a Place?. Ah, UML — the Unified Modeling… | by Dave LumAI -
Medium, accessed March 23, 2025,
https://medium.com/@DaveLumAI/uml-does-it-still-have-a-place-71be1330ab31

10.​Is UML Still Relevant Today? How Is it Used in an Agile Environment?, accessed
March 23, 2025, https://managedagile.com/is-uml-still-relevant-today/

11.​Why isn't UML actually used in industry? : r/AskComputerScience - Reddit,
accessed March 23, 2025,
https://www.reddit.com/r/AskComputerScience/comments/1dmmq9/why_isnt_um
l_actually_used_in_industry/

12.​UML Usage in Open Source Software Development : A Field Study - CEUR-WS,
accessed March 23, 2025, https://ceur-ws.org/Vol-1078/paper3.pdf

13.​UML usage in open source software development : A field study - ResearchGate,
accessed March 23, 2025,
https://www.researchgate.net/publication/289640651_UML_usage_in_open_sourc
e_software_development_A_field_study

14.​UML for Distributed System - Codemia, accessed March 23, 2025,
https://codemia.io/knowledge-hub/path/uml_for_distributed_system

15.​What is a UML Diagram? | Different Types and Benefits - Miro, accessed March 23,
2025, https://miro.com/diagramming/what-is-a-uml-diagram/

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://www.researchgate.net/publication/389585787_Unified_Modeling_Language_UML_and_Its_Contribution_to_Software_Maintenance_Efficiency
https://www.researchgate.net/publication/389585787_Unified_Modeling_Language_UML_and_Its_Contribution_to_Software_Maintenance_Efficiency
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/
https://medium.com/@aminarafaqat12345678/introduction-to-uml-cf83bfeef950
https://softwaresim.com/blog/uml-diagrams-vs.simulation-in-software-design/
https://www.theknowledgeacademy.com/blog/advantages-and-disadvantages-of-uml/
https://www.theknowledgeacademy.com/blog/advantages-and-disadvantages-of-uml/
https://www.geeksforgeeks.org/what-are-the-advantages-and-disadvantages-of-uml/
https://www.geeksforgeeks.org/what-are-the-advantages-and-disadvantages-of-uml/
https://medium.com/@DaveLumAI/uml-does-it-still-have-a-place-71be1330ab31
https://managedagile.com/is-uml-still-relevant-today/
https://www.reddit.com/r/AskComputerScience/comments/1dmmq9/why_isnt_uml_actually_used_in_industry/
https://www.reddit.com/r/AskComputerScience/comments/1dmmq9/why_isnt_uml_actually_used_in_industry/
https://ceur-ws.org/Vol-1078/paper3.pdf
https://www.researchgate.net/publication/289640651_UML_usage_in_open_source_software_development_A_field_study
https://www.researchgate.net/publication/289640651_UML_usage_in_open_source_software_development_A_field_study
https://codemia.io/knowledge-hub/path/uml_for_distributed_system
https://miro.com/diagramming/what-is-a-uml-diagram/

16.​Modeling a Distributed System Using Deployment Diagram - Visual Paradigm
Guides, accessed March 23, 2025,
https://guides.visual-paradigm.com/modeling-a-distributed-system-using-deploy
ment-diagram/

17.​Distributed Engineering Teams: Best Practices - Integrio Systems, accessed
March 23, 2025,
https://integrio.net/blog/distributed-engineering-teams-best-practices

18.​10 Communication Tips For Distributed And Offshore Teams - Praxent, accessed
March 23, 2025,
https://praxent.com/blog/distributed-offshore-team-communication-tips

19.​Effective Distributed Team Communication Guide | Best Practices & Tips - Web
Help Agency, accessed March 23, 2025,
https://webhelpagency.com/blog/a-guide-on-effective-distributed-team-commu
nication/

20.​Communication Tools for Distributed Software Development Teams - RTI
International, accessed March 23, 2025,
https://www.rti.org/sites/default/files/resources/rti_cpr07_virtualteam.pdf

21.​Effective Communication in Globally Distributed Scrum: A Model and Practical
Guidance, accessed March 23, 2025,
https://ajis.aaisnet.org/index.php/ajis/article/view/4501

22.​On the Usage of UML Diagrams in Open Source Projects - USI – Informatics,
accessed March 23, 2025,
https://www.inf.usi.ch/lanza/Downloads/MSc/Rome2023a.pdf

23.​Computer Science Major | Miner School of Computer and Information Sciences |
Kennedy College of Sciences | UMass Lowell, accessed March 23, 2025,
https://www.uml.edu/sciences/computer-science/programs/ugrad/computer-scie
nce-major.aspx

24.​Computer Science Major | UMass Lowell, accessed March 23, 2025,
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-sci
ence/computer-science-major.aspx

25.​Computer Science Major | Miner School of Computer and Information Sciences |
Kennedy College of Sciences | UMass Lowell, accessed March 23, 2025,
https://www.uml.edu/sciences/computer-science/programs/ugrad/computer-scie
nce-major.aspx/1000

26.​Computer Science | UMass Lowell, accessed March 23, 2025,
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-sci
ence/degree-pathways/dp-cs-data-science-2020.aspx

27.​Computer Science | UMass Lowell, accessed March 23, 2025,
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-sci
ence/degree-pathways/dp-cs-general-2020.aspx

28.​StanfordOnline: Databases: Modeling and Theory - edX, accessed March 23,
2025,
https://www.edx.org/learn/databases/stanford-university-databases-modeling-an
d-theory

29.​StanfordOnline: Databases: Modeling and Theory - edX, accessed March 23,

https://guides.visual-paradigm.com/modeling-a-distributed-system-using-deployment-diagram/
https://guides.visual-paradigm.com/modeling-a-distributed-system-using-deployment-diagram/
https://integrio.net/blog/distributed-engineering-teams-best-practices
https://praxent.com/blog/distributed-offshore-team-communication-tips
https://webhelpagency.com/blog/a-guide-on-effective-distributed-team-communication/
https://webhelpagency.com/blog/a-guide-on-effective-distributed-team-communication/
https://www.rti.org/sites/default/files/resources/rti_cpr07_virtualteam.pdf
https://ajis.aaisnet.org/index.php/ajis/article/view/4501
https://www.inf.usi.ch/lanza/Downloads/MSc/Rome2023a.pdf
https://www.uml.edu/sciences/computer-science/programs/ugrad/computer-science-major.aspx
https://www.uml.edu/sciences/computer-science/programs/ugrad/computer-science-major.aspx
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-science/computer-science-major.aspx
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-science/computer-science-major.aspx
https://www.uml.edu/sciences/computer-science/programs/ugrad/computer-science-major.aspx/1000
https://www.uml.edu/sciences/computer-science/programs/ugrad/computer-science-major.aspx/1000
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-science/degree-pathways/dp-cs-data-science-2020.aspx
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-science/degree-pathways/dp-cs-data-science-2020.aspx
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-science/degree-pathways/dp-cs-general-2020.aspx
https://www.uml.edu/catalog/undergraduate/sciences/departments/computer-science/degree-pathways/dp-cs-general-2020.aspx
https://www.edx.org/learn/databases/stanford-university-databases-modeling-and-theory
https://www.edx.org/learn/databases/stanford-university-databases-modeling-and-theory

2025,
https://www.edx.org/course/modeling-and-theory?source=aw&awc=6798_16064
79168_ba4acf678a5d8fef1d86aa2ee0e686a3&utm_source=aw&utm_medium=affi
liate_partner&utm_content=text-link&utm_term=539905_Benzinga

30.​Computer Science Department Courses | Stanford University Bulletin, accessed
March 23, 2025, https://bulletin.stanford.edu/departments/COMPUTSCI/courses

31.​Description of course CS446 - Stanford InfoLab, accessed March 23, 2025,
http://infolab.stanford.edu/cs446/

32.​17-214: Principles of Software System Construction, accessed March 23, 2025,
https://cmu-17-214.github.io/

33.​Principles of Software Construction: Objects, Design and Concurrency Just
enough UML, accessed March 23, 2025,
https://www.cs.cmu.edu/~charlie/courses/15-214/2014-spring/slides/09b-uml.pdf

34.​CS302: Software Engineering | Saylor Academy, accessed March 23, 2025,
https://learn.saylor.org/course/view.php?id=788

35.​Electrical Engineering and Computer Science (Course 6) - MIT Bulletin, accessed
March 23, 2025, https://catalog.mit.edu/subjects/6/

36.​Course 6: Electrical Engineering and Computer Science IAP/Spring 2025,
accessed March 23, 2025, https://student.mit.edu/catalog/m6a.html

37.​Computer Science and Engineering (Course 6-3) - MIT Bulletin, accessed March
23, 2025,
https://catalog.mit.edu/degree-charts/computer-science-engineering-course-6-
3/

38.​TUMx: Software Engineering Essentials - edX, accessed March 23, 2025,
https://www.edx.org/learn/software-engineering/technische-universitat-munchen
-software-engineering-essentials

39.​UML Advantages and Disadvantages | PDF | Unified Modeling Language - Scribd,
accessed March 23, 2025,
https://www.scribd.com/document/211538904/UML-advantages-and-disadvanta
ges

40.​Representing Software Architectures For Large Scale Systems: The Layered
Package Diagram, accessed March 23, 2025,
https://www.crystalclearsoftware.com/publications/2001/RepresentingArchitectu
res.html

41.​Hierarchical Performance Modeling for Distributed System Architectures -
ResearchGate, accessed March 23, 2025,
https://www.researchgate.net/publication/232650518_Hierarchical_Performance_
Modeling_for_Distributed_System_Architectures

42.​USING UML TO MODEL DISTRIBUTED SYSTEM ARCHITECTURES - Mara
Nikolaidou, accessed March 23, 2025,
https://mara.dit.people.hua.gr/publications/caine05.pdf

43.​Distributed Training: Guide for Data Scientists - neptune.ai, accessed March 23,
2025, https://neptune.ai/blog/distributed-training

44.​Curated list of resources on testing distributed systems - Andrey Satarin,
accessed March 23, 2025, https://asatarin.github.io/testing-distributed-systems/

https://www.edx.org/course/modeling-and-theory?source=aw&awc=6798_1606479168_ba4acf678a5d8fef1d86aa2ee0e686a3&utm_source=aw&utm_medium=affiliate_partner&utm_content=text-link&utm_term=539905_Benzinga
https://www.edx.org/course/modeling-and-theory?source=aw&awc=6798_1606479168_ba4acf678a5d8fef1d86aa2ee0e686a3&utm_source=aw&utm_medium=affiliate_partner&utm_content=text-link&utm_term=539905_Benzinga
https://www.edx.org/course/modeling-and-theory?source=aw&awc=6798_1606479168_ba4acf678a5d8fef1d86aa2ee0e686a3&utm_source=aw&utm_medium=affiliate_partner&utm_content=text-link&utm_term=539905_Benzinga
https://bulletin.stanford.edu/departments/COMPUTSCI/courses
http://infolab.stanford.edu/cs446/
https://cmu-17-214.github.io/
https://www.cs.cmu.edu/~charlie/courses/15-214/2014-spring/slides/09b-uml.pdf
https://learn.saylor.org/course/view.php?id=788
https://catalog.mit.edu/subjects/6/
https://student.mit.edu/catalog/m6a.html
https://catalog.mit.edu/degree-charts/computer-science-engineering-course-6-3/
https://catalog.mit.edu/degree-charts/computer-science-engineering-course-6-3/
https://www.edx.org/learn/software-engineering/technische-universitat-munchen-software-engineering-essentials
https://www.edx.org/learn/software-engineering/technische-universitat-munchen-software-engineering-essentials
https://www.scribd.com/document/211538904/UML-advantages-and-disadvantages
https://www.scribd.com/document/211538904/UML-advantages-and-disadvantages
https://www.crystalclearsoftware.com/publications/2001/RepresentingArchitectures.html
https://www.crystalclearsoftware.com/publications/2001/RepresentingArchitectures.html
https://www.researchgate.net/publication/232650518_Hierarchical_Performance_Modeling_for_Distributed_System_Architectures
https://www.researchgate.net/publication/232650518_Hierarchical_Performance_Modeling_for_Distributed_System_Architectures
https://mara.dit.people.hua.gr/publications/caine05.pdf
https://neptune.ai/blog/distributed-training
https://asatarin.github.io/testing-distributed-systems/

45.​Model-driven Generative Techniques for Scalable Performabality Analysis of
Distributed Systems - Jeff Gray, accessed March 23, 2025,
https://gray.cs.ua.edu/pubs/ngs06.pdf

46.​How We Use Formal Modeling, Lightweight Simulations, and Chaos Testing to
Design Reliable Distributed Systems | Datadog, accessed March 23, 2025,
https://www.datadoghq.com/blog/engineering/formal-modeling-and-simulation/

47.​DISTRIBUTED COMPUTING AND MODELING & SIMULATION: SPEEDING UP
SIMULATIONS AND CREATING LARGE MODELS, accessed March 23, 2025,
https://www.informs-sim.org/wsc11papers/014.pdf

48.​Distributed System Simulation Methods For Model-Based Product Development -
DiVA portal, accessed March 23, 2025,
https://www.diva-portal.org/smash/get/diva2:872653/FULLTEXT01.pdf

49.​Distributed Architecture: 4 Types, Key Elements + Examples - vFunction,
accessed March 23, 2025, https://vfunction.com/blog/distributed-architecture/

50.​Designing Concurrent, Distributed, and Real-Time Applications With Uml -
Amazon.com, accessed March 23, 2025,
https://www.amazon.com/Designing-Concurrent-Distributed-Real-Time-Applicati
ons/dp/0201657937

51.​Examples and Applications of Distributed Systems in Real-Life - GeeksforGeeks,
accessed March 23, 2025,
https://www.geeksforgeeks.org/examples-and-applications-of-distributed-syste
ms-in-real-life/

52.​Using UML to Model Distributed System Architectures. - ResearchGate, accessed
March 23, 2025,
https://www.researchgate.net/publication/220923234_Using_UML_to_Model_Distr
ibuted_System_Architectures

53.​UML specification of distributed system environments, accessed March 23, 2025,
http://csis.pace.edu/~marchese/CS865/Papers/content.pdf

54.​Combat System Modeling: Modeling Large-Scale Software and Hardware
Application Using UML - VTechWorks, accessed March 23, 2025,
https://vtechworks.lib.vt.edu/server/api/core/bitstreams/ce03578a-21b1-45ec-b9f
5-36600e7c2c9a/content

https://gray.cs.ua.edu/pubs/ngs06.pdf
https://www.datadoghq.com/blog/engineering/formal-modeling-and-simulation/
https://www.informs-sim.org/wsc11papers/014.pdf
https://www.diva-portal.org/smash/get/diva2:872653/FULLTEXT01.pdf
https://vfunction.com/blog/distributed-architecture/
https://www.amazon.com/Designing-Concurrent-Distributed-Real-Time-Applications/dp/0201657937
https://www.amazon.com/Designing-Concurrent-Distributed-Real-Time-Applications/dp/0201657937
https://www.geeksforgeeks.org/examples-and-applications-of-distributed-systems-in-real-life/
https://www.geeksforgeeks.org/examples-and-applications-of-distributed-systems-in-real-life/
https://www.researchgate.net/publication/220923234_Using_UML_to_Model_Distributed_System_Architectures
https://www.researchgate.net/publication/220923234_Using_UML_to_Model_Distributed_System_Architectures
http://csis.pace.edu/~marchese/CS865/Papers/content.pdf
https://vtechworks.lib.vt.edu/server/api/core/bitstreams/ce03578a-21b1-45ec-b9f5-36600e7c2c9a/content
https://vtechworks.lib.vt.edu/server/api/core/bitstreams/ce03578a-21b1-45ec-b9f5-36600e7c2c9a/content

	The Relevance。 of UML in the Development and Documentation of Large Distributed Software Systems
	1. Introduction？: The Unified Modeling Language and Its Role in Software Engineering
	1.1 Defining UML: Origins and Core Principles have
	1.2 Intended Applications of UML: From Design to Documentation

	2. The Perceived Decline of UML in Large Distributed Systems: An Examination of Online Discourse
	2.1 The Rise of Agile Methodologies and the Shift in Focus
	2.2 Challenges of Maintaining UML in Complex and Evolving Systems
	2.3 The Preference for Lightweight and Informal Visualizations

	3. UML Usage in the Documentation of Open-Source Large Distributed Systems
	3.1 Investigating Documentation Practices in Prominent Projects
	3.2 Types of UML Diagrams Commonly Found in Open-Source Documentation
	3.3 The Extent of UML Diagram Correspondence with Implementation Code

	4. UML as a Communication Tool in Development Teams for Large Distributed Systems
	4.1 Facilitating Understanding and Collaboration Among Stakeholders
	4.2 Specific UML Diagrams for Communication in Distributed Contexts
	4.3 The Role of UML Compared to Other Communication Methods in Distributed Teams

	5. UML in Academia: An Analysis of Computer Science Curricula at Top Universities
	5.1 UMass Lowell: Software Design Principles and Potential Implicit Inclusion
	5.2 Stanford University: Explicit Coverage in Database and Software Engineering Courses
	5.3 Carnegie Mellon University: UML as Part of Software Construction and Design
	5.4 Massachusetts Institute of Technology (MIT): Less Explicit Mention in Core CS Courses
	5.5 Technische Universität München (TUM) (via edX): Explicit Inclusion in Software Engineering Essentials

	6. Advantages and Disadvantages of Using UML in Modern Distributed Systems Development
	6.1 Advantages of UML in Distributed System Contexts
	6.2 Disadvantages and Limitations of UML for Modern Distributed Systems

	7. Alternative Modeling and Documentation Techniques
	8. Case Studies: Real-World Examples of UML Usage (or Avoidance)
	9. Conclusion: The Relevance of UML in the Age of Distributed Systems
	Works cited

