
Wiki topics for Chapters 3 and 4 
Please write about one of these topics on the wiki.  Near the top of your wiki page, please insert 

●​ a link to the writeup of your topic (this page); 
●​ a link to the page (or pages) you started with, so that your reviewers can see what value 

you have added. 
  
The title of your wiki page should be 
        ​ CSC/ECE 506 Spring 2015/3x yy or 
        ​ CSC/ECE 506 Spring 2015/4x yy 
where "3x" or "4x" is your topic number (either 1b,  2a,or 2c); and 
yy is an arbitrary two-character string of your choosing. 
That is, once you get to the wiki, in the URL in the address bar, you should replace 
"Main_Page" with 
                    ​    CSC/ECE 506 Spring 2015/3x yy 

3a.  Language extensions for parallel programming 

Start with a brief introduction on how the three parallel programming models we have 
considered influence the style of programming.  Then take as examples  

●​ OpenMP for shared memory, 
●​ MPI for message passing, and 
●​ CUDA for data-parallel programming. 

Show how each programming-language extension realizes the concepts that are characteristic 
of the programming model it implements.  It is better to explain the different features of each 
programming-language extension with a coding example, rather than explaining the different 
directives in detail.  Summarize the advantages and disadvantages of the various language 
extensions.  You may cover more than these three extensions if you wish, but don’t leave out 
any of the three.  

Note:  You can use the APIs/ framework /set of compiler directives in place of languages. 
Examples of other programming languages/API/ framework /compiler directives are OpenCL 
and OpenACC. 

We suggest that you consult (not copy from!) the following sources. 

[1] http://en.wikipedia.org/wiki/List_of_concurrent_and_parallel_programming_languages  

http://en.wikipedia.org/wiki/List_of_concurrent_and_parallel_programming_languages


[2] https://computing.llnl.gov/tutorials/parallel_comp/#Models ​
 

3b. Map-reduce 
Begin by copying, not editing(!) the existing wiki page at 
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2013/3b_xz 
MapReduce is a programming model for processing massive data on large-scale clusters.  It 
was initially proposed by Google in 2004.  As indicated by the name “MapReduce”, this 
programming model consists of two major steps: map and reduce.  In the map step, the problem 
being solved are divided into a series of sub-problems and distributed to different workers.  After 
collecting results from workers, the computation enters the reduce step to combine and produce 
the final result. Nowadays many mainstream programming languages have their own 
implementations of MapReduce libraries.  MapReduce implementations can work on multiple 
kinds of systems, not only on clusters, but also multicore and multiprocessor systems.  Survey 
several MapReduce implementations.  Identify the differences between the implementations on 
clusters and multicore/multiprocessor systems. 

The existing page does a good job of describing MapReduce itself, but doesn’t do a very good 
job of describing how it’s used.  There are a few examples in the “More Examples” section down 
at the bottom.  But they are examples of problems that could be done with MapReduce; there is 
no suggestion of how to partition them.  It would be good to have such an explanation for two or 
three examples, including a short piece of pseudocode. 

Another important topic that is totally missing is what parallel architectures MapReduce can be 
used on.  Is there an advantage to running certain kinds of algorithms on shared-memory 
multiprocessors?  Message-passing multiprocessors? And, what about LANs? 

The organization of this page has been improved from earlier versions, but problems still 
remain.  Clearly, Google’s MapReduce and Hadoop are important.  I’m not sure that Phoenix is 
so important, and there’s no real explanation of why it is given so much space.  Is it the 
implementation of choice for shared-memory systems?  If not, can you describe shared-memory 
implementations more generically, maybe using Phoenix as an example?  It’s probably good to 
say something about MapReduce on graphics processors, but again, is Mars the best example 
of a GPU implementation?  And why should the section on graphics processors be so much 
longer than the others?  It would certainly be good to cut it, in favor of more useful content. 

What I’d like to see is this kind of organization: 

●​ What kinds of problems can be tackled by MapReduce on … 
○​ shared-memory machines; 
○​ distributed-memory machines; 
○​ LANs. 

●​ For each of these 3 kinds of architectures, describe MapReduce implementations 

https://computing.llnl.gov/tutorials/parallel_comp/#Models
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2012/3b_sk
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2012/3b_sk


generically, perhaps using a representative system as an example. 

3c. Steps in parallel programming 

As part of the course lecture, you have studied parallelizing ocean currents. Start with a different 
example from the literature, and explain the various steps involved in parallel programming like 
task creation, determining variable scope, task synchronization, grouping tasks into threads, 
mapping threads onto processors etc. Explain each step with a detailed diagram with 
code/pseudo code. 

4b.  Parallel implementations of Gaussian elimination 
Begin by copying the existing wiki page at 
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2011/ch4a_bm .  The current 
wiki page has a lot of code review explaining a few basic implementations of Gaussian 
elimination.  Please take time to make the sections more conforming throughout the wiki.  Also, 
the overview of gaussian elimination could use more details.  For a few of the examples, there 
are detailed walkthrough on how the code works.  Please extend this to all examples, as well as 
giving a detailed holistic description of each code segment.  Lastly, try to find scholarly articles 
that describe new approaches to Gaussian elimination implementation. 
 

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2011/ch4a_bm
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2011/ch4a_bm

	3b. Map-reduce 
	3c. Steps in parallel programming 
	4b.  Parallel implementations of Gaussian elimination 

