
Building a Four Monitor Media Show using Raspberry Pis
 By Michael Groschadl and John Hilgart​

As one of the 2,917 FIRST (www.usfirst.org) robotics teams worldwide, we were

given the task of having four monitors running various photos and videos within a
slideshow for our “pit” at competitions. The “pit” is a spot within the robotics competition
arena where the team sets up and gets ready to compete. It
is also a place to show other teams what we have
accomplished in our build season that year.
​ Our first thought was to have photos on two monitors
and videos on the other two; so, we did some research and
found a few programs that would accomplish this. The
software we found includes fbi, Qiv, pqiv and Omxplayer. This

software is free and we thought this
was great; after all our time doing
research, we had finally found what
we needed. When playing around
with the software, we ran into some
challenges. We found that fbi, Qiv
and pqiv are geared more for
photos, whereas Omxplayer is
geared for videos.
 You may ask, “Why is this a problem? Why does this not
work? This is what is needed, right?” With our plan, yes, this
was perfect. However, when given the materials for the “pit”
slideshows we realized that it would be a lot better to use an
application that is able to play both photos and videos at the
same time.

We discovered another free software called Pi Presents, which was originally
intended for use in museums. With this software, we found that we are able to play
photos and videos at the same time without the need to change software. This was the
perfect software to download on all four of our Raspberry Pis. In order to do so, we
followed all the information listed in the document “README.md.”
​ This is how to download Pi Presents:

1.​ Open the LX Terminal

http://www.usfirst.org

2.​ Type and command the Pi to do the following (wait for the previous
command to finish before moving on to the next), and make sure you are
doing so in your home directory:

a.​ “sudo apt-get update”
b.​ “sudo apt-get install python-imaging”
c.​ “sudo apt-get install python-imaging-tk”
d.​ “sudo apt-get install x11-xserver-utils”
e.​ “sudo apt-get install unclutter”
f.​ “wget http://pexpect.sourceforge.net/pexpect-2.3.tar.gz”
g.​ “tar xzf pexpect-2.3.tar.gz”
h.​ “cd pexpect-2.3”
i.​ “sudo python ./setup.py install”
j.​ “cd ~”
k.​ “wget https://github.com/KenT2/pipresents/tarball/master | tar xz”

 3. Pi Presents is now installed
 4. Next, download the example files in the home directory with the command
“wget https://github.com/KenT2/pipresents-examples/tarball/master | tar xz”
 5. Pi Presents also requires the installation of xpdf. Do this in the LX Terminal
by typing “sudo apt-get install xpdf”​

Though the manual was difficult to understand, when working with Pi Presents

we were able to learn about the program’s multiple potential usages. For the purpose of
using just photos and videos within different slideshows for each Pi, we used the portion
of the software called Mediashow. When using the LX Terminal in the Pi, the Mediashow
is referred to as ‘pp_mediashow.’ Once all the examples are installed, along with Pi
Presents, the Mediashow is able to be tested for correct installation. Once this is done,
you can test the example by doing the following:

1.​ cd ./pipresents
2.​ python pipresents.py -p pp_mediashow

The cursor will go to the next line and will hold there for a few seconds, and then a
screen that says, “Welcome To Pi Presents” should show up. This is the first part of the
example Mediashow. It should then go on to a short clip from the show Suits, followed
by a default photo of a lady. Another screen will then appear which says, “The Show
Will Be Repeating Soon…” ; it should now resume to the first part of the Mediashow. It
will keep repeating over and over until you exit the program. To exit, press ALT-F4 on
the keyboard.

http://pexpect.sourceforge.net/pexpect-2.3.tar.gz
https://github.com/KenT2/pipresents/tarball/master
https://github.com/KenT2/pipresents-examples/tarball/master

To create, edit, and test a new mediashow, in LX Terminal, make sure you are in
the directory “/home/pi/pipresents/” and then do a directory listing by typing ‘ls’ and hit
enter. You should see a python program called ‘pp_editor.’ This program allows you to
edit any portion of Pi Presents and to create your own Mediashow, or whatever you
wish to do, with this software. To launch the software, type “python pp_editor.py” and a
new window should open. You have successfully launched the editor for Pi Presents.

To start making your own Mediashow, go to ‘Profile’ then highlight over “New
Form Template” and click ‘Mediashow.’ You will then be prompted to create a filename.
You have now completed the first step in the creation of your new Mediashow. The file is
located in “/home/pi/pp_home/pp_profiles/your filename”; this is where the pp_editor
and pipresents.py look for the file.

In the directory of your Mediashow, you will notice two files including ‘media.json’
and ‘pp_showlist.json,’ in the LX Terminal or GUI (Graphical User Interface...aka the Pi’s
desktop). You do not need to do anything with these files; they are only worked on with
the pp_editor.

Now that you are in your all new Mediashow, you are going to want to learn how
to edit it with the ‘pp_editor.’ In the editor there are three boxes, “Shows,” “Medialists,”
and “Tracks In Selected Medialist.” For our purposes, we never touched the “Shows”
box and only clicked on ‘media.json’ in “Medialists.” By clicking on ‘media.json,’ it allows
the user to edit his Mediashow within the “Tracks In Selected Medialist.” Since we are
working with four Pis, we kept everything the same except for the contents of each
‘media.json.’

In your new Mediashow, the only thing in the “Tracks In Selected Medialist” is an
example track. This can be deleted. Do this by selecting the example track and hitting
‘Track” followed by ‘Remove.’ You will notice that it is no longer there. We noticed that
when there are multiple tracks that you would like to delete at once, that the ‘pp_editior’
is not capable to doing so. Instead, it acts as if it was not told a command and there will
be an error message in the LX Terminal.

To add a file, or files, click the ‘Add’ button next to the “Tracks In Selected
Medialist” box. Next, locate the files you want to show in your presentation. You can
change the order of the files by selecting each one and hitting the ‘Up’ and ‘Down’
buttons. Just like removing files, you can not add more than one at a time.

You will notice there is not a ‘Save” button within any of the menus or on the
boxes GUI interface. This is because the ‘pp_editor’ autosaves. Once all of your
changes are made, you can simply click out of the editor.

To test your file, in the LX Terminal, make sure you are in the
“/home/pi/pipresents/” directory. Then, as with the ‘pp_mediashow’ before, you do the
same exact command; however, instead of ‘pp_mediashow,’ use the filename that you
created for your personal Mediashow. It should start to run.

You will notice, unless working on an HDMI TV, that your Mediashow is probably
not in fullscreen. To fix this, before the ‘-p’ in the command line, type ‘-ftop.’ This will
change your output to fullscreen.

Challenges that we ran into with the Pi Presents Mediashow were with photos,
pixel aspect ratios and videos, and the type of video files able to be used.

First, if your photo or video is too large for the screen, it will either not show the
full picture or, as in the case of videos, it will likely not play. If you are running into these
issues, the solutions are simple.

For photos, make two programs that coincide in order to change the pixel aspect
ratio to your monitor’s correct pixels. We created a shell script, ‘sh’ program, called
“reduce.sh” and a python program called “resize3.py.” The reasoning behind the 3, is
that it took three versions before it was perfected. “Reduce.sh” uses “resize3.py” to run.

To make a new file in your home directory (“/home/pi/”), type “nano” and what
you would like to call the file. In this case, “nano reduce.sh”, and hit enter. Now you can
start writing the code. The coding for “reduce.sh” is:

#!/bin/sh
echo “Look for the downsampled images in a sub-directory called resize
echo “JPEGs GIFs and PNGs are looked at in the current directory mkdir resize
2>/dev/null
ls -1 *jpg *jpeg *JPG *png *PNG *gif *GIF 2>/dev/null|while read file; do
 echo downsampling $file
downsample the image file
 python ~/resize3.py “$file”
done

Exit out of the nano editor by pressing CTRL+X. You will be asked if you are sure you
want to save and you would type “y”,or “yes”, depending on what is listed as the proper
response prompted on the screen. Then, type the filename and exit.
​ As with the coding of “Reduce.sh,” you will notice that “resize3.py” will need to be
created. You do this the same way as with “Reduce.sh.” Make sure you are in the home
directory (“/home/pi/”) and type “nano resize3.py” The coding for “resize3.py” is:

​ import Image
​ import sys
​ # DrJ 2.2015
​ # somewhat inspired by http://www.riisen.dk/dop/pil.html
​ # image file should be provided as argument

http://www.riisen.dk/dop/pil.html

​ # Designed for Acer v173 display which the Pi sees as a strange 1232 x 992
pixel display
​ # though it really is 1 more run-of-the-mill 1280 x 1024
​
​ imageFile = sys.argv[1]
​ im1 = Image.open(imageFile)

​ def imgResize(im):
​ # Our display as seen by the Pi is a strange 1232 x 992 pixels
​ width = im.size[0]
 ​ height = im.size[1]

​ # If the aspect ratio is wider than the display screen’s aspect ratio,
​ # constrain the width to the display’s full width
​ if width/float(height) > 1232.0/992.0:
​ widthn = 1232
​ heightn = int(height*1232.0/width)
​ else:
​ heightn = 992
​ widthn = int(width*992.0/height)

​ im5 = im.resize((widthn, heightn), Image.ANTIALIAS) # best down-sizing filter

​ im5.save(“resize/” + imageFile)

​ imgResize(im1)

Save as described before and check to make sure that both files are saved into the
more directory by doing a directory listing. This can be done by typing ‘ls’ in the LX
Terminal in the home directory.
​ As with any computer and computer program, it is never recommended to just
unplug the Raspberry Pi at the end of the day. To stop the program from running, we
created a file called “kill.sh” in the home directory. Make sure you are in the home
directory and type “nano kill.sh” and the nano editor should open. The coding for “kill.sh”
is:

​ #!/bin/sh
​ pkill -f pipresents.py
​ pkill omxplayer

You are now able to save as you did with “Reduce.sh” and “resize3.py.”
​ You may be wondering why we are using coding to stop Omxplayer. You are
probably thinking since we decided not to use omxplayer for videos that it was not used;
however, Pi Presents actually does use Omxplayer.
​ As with any computer, the Raspberry Pi will eventually go into screensaver or
standby mode. Since there are a couple hours of “pit” time, and the screensaver turns
on in minutes, we needed to figure out how to disable the blanking of the screen. This is
accomplished by doing the following:

1.​ Change to the directory “/home/pi/etc/kbd/” in the LX Terminal and “sudo nano
config”

2.​ Scroll to where it says “BLANK_TIME=30” and change the thirty to zero
3.​ Scroll to where it says “POWERDOWN_TIME=30” and change the thirty to zero
4.​ Save this file the same way you have been saving all the other files
5.​ Now, go up a directory and make sure you are in “/home/pi/etc/” in the LX

Terminal and then go to “/home/pi/etc/lightdm”
6.​ Then, “sudo nano lightdm.conf”
7.​ Scroll to where it says “[SeatDefault] and add a line near the end saying

‘xserver-command=X -s 0 dpms’

Your Raspberry Pi should never again go into screensaver/standby mode.
​ We managed to get the Pi Presents to auto start upon boot up of the Raspberry
Pi. This was done to avoid the need of a keyboard and mouse in the “pit” during
competitions. To auto start, we did the following:

1.​ Type into the LX Terminal, “$ cd /etc/xdg/autostart”
2.​ Make a new file in this directory by typing ‘nano’ and then typing the name of the

new file. The new file name is “pipresents.desktop.” All together, it should look
like “nano pipresents.desktop”

3.​ In the “pipresents.desktop” file, type the following coding:
​
​ ​ [Desktop Entry]
​ ​ Type=Application
​ ​ Name=pipresents
​ ​ Exec=python pipresents/pipresents.py -ftop -p YourMediaShow
​ ​ Terminal=true

​ 4. You can put this coding into the “.config” directory as well. This is necessary
because not all Raspberry Pis support the way just shown. You can insure that this will
work by ‘cd ~’ to go to the home directory and then type “$ mkdir ~/.config/autostart”
​ 5. Then, create the same file as above

​ Now, we want the Mediashow to autostart. Doing the following will make this
happen:

1.​ In the LX Terminal, type “$ mkdir -p ~/.config/lxsession/LXDE”
2.​ Then, “$ cd !$; echo “python pipresents/pipresents.py -ftop -p YourMediaShow”>

autostart
3.​ After that, “$ chmod +x autostart”

This should enable the Pi Presents Mediashow to startup upon booting the Raspberry
Pi.

 So that we do not need to attach a keyboard or mouse to the Pi, we find it
convenient to run “pp_editor” in a virtual display created by VNC. The problem is that Pi
Presents will also launch in the VNC session and really slow things down. The following
is a solution we worked out in order to have only one instance of Pi Presents run, even
in the event that xsessions are launched on other displays. Note that this is a general
solution and applies to any autostarted program.

You want to put a file called “startpipresents.sh” into your home directory. Type
‘nano startpipresents.sh’ and then type the following coding into the file:

#!/bin/bash
DISPLAY environment variable in :0.0 for the console display
echo $DISPLAY|grep :0 > /dev/null 2>&1
if [“$?” == “0”]; then
matched. start pipresents in this xsession, but not any other one
 python pipresents/pipresents.py -ftop YourMediaShow
fi

In doing this, the “pipresents.desktop” file becomes:

​ [Desktop Entry]
​ Type=application
​ Name=pipresents
​ Exec=/home/pi/startpipresents.sh

Terminal=true

​ In order for this to work, you are going to want to install the VNC server
application onto the Pi. Do this by typing “sudo apt-get install tightvncserver” into the LX
Terminal. (You need to download VNC Viewer onto your PC or Mac to be able to view
the VNC Server session.)
​ Since there will not be a keyboard, you will not be able to type into the LX
Terminal or the Raspberry Pi and prompt the VNC Server to turn on. We needed to
make it so that the VNC Server autostarts, just like Pi Presents. This is done by:

1.​ ‘Cd’ into “~/.config/autostart”
2.​ ‘Nano’ a file called “vnc.desktop”
3.​ Type in this coding:

​ ​ [Desktop Entry]
​ ​ Type=application
​ ​ Name=vncserver
​ ​ Exec=/home/pi/startvncserver.sh
​ ​ Terminal=false

 4. You now want to make a file in the home directory called “startvncserver.sh.” The
coding for this file is:

#!/bin/bash
DISPLAY environment variable is :0.0 for the console display
echo $DISPLAY|grep :0 > /dev/null 2>&1
if [“$?” == “0”]; then
matched. start vncserver in this xsession, but not any other one
 vncserver
fi

5. VNC will always autostart when the Pi is booted up

Keep in mind, VNC always requires a password when being logged into from a separate
source. Set the password to whatever you want. To set the password, simply launch a
VNC Server from the LX Terminal. This is done by typing “vncserver” into the LX
Terminal. The first time you start up VNC Server, it will ask for a password. The server is
then launched and can be connected from your computer.

​ Just in case the photos or videos need to be edited or deleted on the spot, we
decided to auto launch the “pp_editor” within the VNC Server. To do this, make a file in
the Pi’s home directory called “startppeditor.sh.” The coding for this ‘sh’ file is as follows:

#!/bin/bash
DISPLAY environment variable is :1.0 for the vnc display
echo $DISPLAY|grep :1 > /dev/null 2>&1
if [“$?” == “0”]; then
matched. start ppeditor in this xsession, but not any other one
 python pipresents/pp_editor.py
fi

And in the “~/.config/autostart” directory, make a file called “ppeditor.desktop” and type
in this coding:

​ [Desktop Entry]
​ Type=application
​ Name=ppeditor
​ Exec=/home/pi/startppeditor.sh
​ Terminal=true

Now the “pp_editor” will open within the VNC Server window on your computer uplink.
​ Even though Mac computers come with a terminal application and you are able
to download software called PuTTY for PC, in case we wanted to use the LX Terminal
within the VNC Server, we made that autostart as well. This was done by making a file
in the home directory called “startlxterminal.sh”. The coding for this is:

​ #!/bin/bash
​ # DISPLAY environment variable is :1.0 for the vnc display
​ echo $DISPLAY|grep :1 > /dev/null 2>&1

if [“$?” == “0”]; then
matched. start a large lxterminal in this xsession, but not any other one

 ​ lxterminal --geometry=100x40
fi

The file for the autostart of the LX Terminal goes in the same directory as the
“ppeditor.desktop” file. This file is now called “lxterminal.desktop.” The coding for
autostarting the LX Terminal is:

​ [Desktop Entry]
​ Type=Application
​ Name=lxterminal
​ Exec=/home/pi/startlxterminal.sh
​ Terminal=true

When the Raspberry Pi boots up, the “pp_editor” and LX Terminal will autostart in the
VNC Server .
​ Once the Raspberry Pis were all programmed, we needed to connect all four Pis
to the monitors and make the Pis easily accessible. This was done in order to allow
changes to the contents of the Mediashow as well as fixing issues in the event that

something goes wrong and the Pi gets messed
up. We got a 5-Port Hub and connected it to
each of the four Pis, along with a fifth ethernet
cable, to be able to be connected to a computer
at any needed time. Since the platform of the
monitors are standing upright, we secured the
Raspberry Pis to a plastic carrying box with
velcro. (Put holes in the side of the box so the
Pis can vent as they produce heat, just like any

other computer, and they can potentially overheat). We attached the box to the back of
the monitors with zip ties. In order to accomplish this, holes were added to the corners
of the outside of the box .To avoid wire clutter, we drilled a big hole into one side of the
box and have all the VGA, power, and ethernet cables going through that hole. This also
enables the use of a lid for the box.
​ Something to note is that most videos, especially “homemade” videos, have
problems playing in Pi Presents. A video directly from a camera, or edited videos in
various video editing software, is not supported. Most file extensions (.mov, .avi, .mp4,
etc.) are supported, but even if they come out of a camera that way, they still need to be
fixed. To fix this problem, we imported the video into Windows Movie Maker and
exported the video into a file that is able to be played on an Android phone. This fixed
the problems with non-functional videos for the Raspberry Pis. We used the Android
phone setting because the Raspberry Pi operating system, Raspbian, and the Android
OS are both Linux based.
​ With some of the videos displayed on the Raspberry Pis, we wanted to be able to
hear audio. This would not be a problem with HDMI, right? Well, not necessiarily. Since
we are using monitors without speakers, the HDMI cable is not able to transmit the
audio of the video. There, thankfully, is a 3.5mm audio jack on the side of the Raspberry
Pi that we could plug speakers into. When we did this, still no sound was produced. In

the ‘pp_editor’ we needed to change one setting to enable the 3.5mm jack. In the
‘pp_editor’ go into your mediashow. In the ‘Shows’ box, click on “Mediashow
[mymediashow].” Then, click on the edit button to the right of that box. A popup box
should appear with a bunch of changeable settings. Find where it says ‘OMX Audio’ and
change the setting from ‘hdmi’ to ‘local.’ Now, the sound will be playing out of the 3.5mm
audio jack and not the HDMI cable.
​ Now that we have everything set up with the Raspberry Pi, we need to setup an
IP address so that we could access the Pis via VNC and PuTTY. Do this by doing the
following:

1.​ Open LX Terminal and make sure you are in the home directory
2.​ ‘Cd’ into “/etc/network”
3.​ Then “sudo nano interfaces”
4.​ Type:

​ ​
​ auto lo

​ iface lo inet loopback
​ #iface eth0 inet dhcp
​ iface eth0 inet static
​ address 10.31.42.1
​ netmask 255.255.255.0
​ network 10.31.42.0
​ broadcast 10.31.42.255

​ allow-hotplug wlan0
​ iface wlan0 inet manual
​ wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
​ iface default inet dhcp

 5. ‘CTRL-X’ and save the file
 6. Keep in mind, if you are using multiple Pis, you need to change the last digit of the
“address 10.31.42.1” so that each Pi is identifyable as different computers. Example:
“address 10.31.42.2”
​
Materials used with this process include:

1.​ Four Raspberry Pi B+ Micro Computers (Complete Starter Kit by Vilros) ($59.95
each, $299.75 total)

2.​ Four PiView HDMI to VGA Converter Adapters ($45.99 each, $183.96 total)

3.​ Five-Port Ethernet Hub ($32.99)
4.​ Five Ethernet Cables ($9.99 for pack of five)
5.​ One Laptop with VNC Viewer and (On Windows) PuTTY installed, Mac OSX has

Terminal by default instead of needing to download the software PuTTY
6.​ Four Monitors (Acer v173) ($159.99 each, $639.96 total)
7.​ Nine Electrical Outlets
8.​ Velcro and plastic box to house the Pis
9.​ A drill to make holes in the box and zip ties to mount the box and chords

Further Information:

To learn more about our school’s robotics team, known as FRC #3142 Team
Aperture, visit www.newtonroboticsteam.org

Starting on page 13 of this magizine, one of our articles is published,
http://www.omagdigital.com/publication/?i=198323. We have also been in local
newspapers.

Michael with the
Raspberry Pis
running in the ‘pit’

http://www.newtonroboticsteam.org
http://www.omagdigital.com/publication/?i=198323

John and Michael with two
representatives from our high tech partner, ThorLabs,
www.Thorlabs.com, who
wished to see the Raspberry Pi work

Michael and two other members of the
robotics programming team (Cameron
Osborn, left, and Brian Hoskins, right)
working on the Pis

Michael talking about the Pi work at the
robotics team STEM Night 2015

Downsampling photos with
‘Reduce.sh’ for the photo
MediaShow

http://www.tholrabs.com

