

B. Sc (Hons Math) (Semester – 5th)
DIFFERENTIAL GEOMETRY
Subject Code: BMATS1503
Paper ID: [19131222]

Time: 03 Hours **Maximum Marks: 60**

Instruction for candidates:

1. Section A is compulsory. It consists of 10 parts of two marks each.
2. Section B consist of 5 questions of 5 marks each. The student has to attempt any 4 questions out of it.
3. Section C consist of 3 questions of 10 marks each. The student has to attempt any 2 questions.

Section – A **(2 marks each)**

Q1. Attempt the following:

- a. Find the equation of tangent plane and normal of the surface $z = x^2 + y^2$ at the point $(1, -1, 2)$.
- b. Calculate first fundamental magnitudes for the right helicoids given by $x = u \cos\alpha$, $y = u \sin\alpha$, $z = c\alpha$
- c. Define curvilinear equation of the curve on the surface.
- d. Define Geodesics and give its equivalent definitions.
- e. The torsion of a Geodesics vanishes in a Principal Directions.
- f. The Geodesics curvature vector of any curve is orthogonal to the curve.
- g. Define Principal normal and Bi-normal.
- h. Calculate the arc length of a cycloid $a(t - \sin t, 1 - \cos t)$: where t is angle through which the circle has rotated
- i. Define involute and Evolute.
- j. Explain Osculating Sphere.

Section – B **(5 marks each)**

- Q2. State and Prove Gauss Bonnet theorem.
- Q3. The necessary and sufficient condition that on the general surface , the curve $v = c$ be geodesic is $EE_2 + FE_1 - 2EF_1 = 0$ when $v = c$ for all values of u
- Q4. The necessary and sufficient condition for the curve to be plane curve is $[Y', Y'', Y'''] = 0$
- Q5. Show that the curvature of the circle of radius R and centered at origin is the reciprocal of its radius..
- Q6. Explain Geometric interpretation of 2nd fundamental form.

Section – C **(10 marks each)**

- Q7. Derive Weingarten Equation.
- Q8. State and prove Serret Frenet Formula.
- Q9. Find the Curvature and Torsion of Evolute.