
Meeting Minutes for CS2103-T16-3

This document is a comprehensive overview of meeting minutes for CS2103-T16-3. Refer to the
document outline for a table of contents. Team Members are:

●​ Bec Kyung Huhn (Nationality: 🇸🇬, MT: 한국어)
●​ Chloe Lee (Nationality: 🇲🇾, MT: 中文)
●​ Loh Jing Yen (Nationality: 🇸🇬, MT: 中文）
●​ New Jun Jie (Nationality: 🇸🇬, MT: 中文)
●​ Mayank Keoliya (Nationality: 🇮🇳, MT: English)

I.​ Minutes for 2020-08-29

Agenda
●​ Start collaborative doc
●​ Decide project direction

○​ User profile
○​ Problem Addressed + Value Proposition

Product Name

ResiReg

Target User Profile

●​ Target users
○​ OHS* admin at Residential Colleges (RCs)* in NUS

Value Proposition

●​ Manage students, room allocations and billing faster than a typical GUI app.

Product Optimization

Potential Features

-​ CRUD features for students
-​ Matric Number
-​ Name
-​ Faculty
-​ Major
-​ Modules this semester
-​ Residence

-​ isRA (if true, then 0 fees)

-​ CRUD for room type
-​ Room with air-con
-​ Corridor with air-con
-​ Type: ‘Quarantine Suite’ (0 vacancy, only for SHN students)

-​ CRUD features for room allocation

-​ Assigning a student to a room

-​ CRUD for staff
-​ Authentication with password

-​ Register electrical appliance/portable aircon

-​ Student can install appliance in room, with appropriate billing
-​ Amount to student bill

-​ Billing

-​ Generate student bill based on room type
-​ Set due date
-​ Pay Bill
-​ Late fee (automatically $50, 10 days after due date)
-​ Award 10 demerit points if fees not paid in 30 days

Summary

The team eventually settled on a Residence management solution named ResiReg,
in spirit of the recent housing challenges. The meeting concluded at 1155.

II.​ Minutes for 2020-09-05

User Stories

Refer here.

Rough Plan for Project

1.​ v1.2 (MVP) : Housing Management (CRUD Student + Room)
2.​ v.1.3 : Finance Management (Bill Student)
3.​ v.1.4 UX (“Help”, “Man”, Import CSV, Export Full Project, Auto-Backup)

https://github.com/AY2021S1-CS2103-T16-3/tp/projects/1

III.​ Minutes for 2020-09-12

In this meeting, we decided on the features for v1.2 of our product, and drafted a
User Guide for it. We updated the table in 2020-09-05’s minutes, to display the
commands (syntax) and their behavior, as well as assigned each team member
their features to work on for 1.2.

Note: Most of our changes have been absorbed into the previous meeting’s notes,
as well as the GitHub Kanban.

IV.​ Minutes for 2020-09-19

Agenda

1.​ Deciding work distribution
a.​ Issue Tracker
b.​ Activity
c.​ Tasks

Tasks assigned (tentative deadline: Sunday afternoon)

1.​ AboutUs: All of Us
a.​ Add role + images + email
b.​ Make PRs from your fork to the ream repo for each

2.​ Refine user stories in UG: All of us
a.​ Make PRs from your fork to the team repo for each.

3.​ Update UG + README: Jet and Kevin
4.​ Update DG: Jing Yen and Mayank

Roles Assigned

1.​ Team Lead: Jing Yen
2.​ Documentation: Jet New
3.​ Testing: Chloe
4.​ Code Quality: Mayank
5.​ Deliverables and deadlines: Kevin Bec Kyung Huhn
6.​ Integration: Jing Yen
7.​ Scheduling and tracking: Mayank
8.​ Git expert: Chloe
9.​ IntelliJ expert: Kevin Bec and Jet

In this meeting, the team agreed to drop the COVID-related stories, since it would
be adding quantity (not quality) to the user experience. Instead, we chose to add
new features that provide a faster CLI experience to the target user, and thus
improve productivity. For example, we added user stories for tasks such as
undo/redo, autocomplete, viewing command history, and more.

V.​ v1.2 Milestone

Listing all Rooms

Listing only vacant rooms

Listing only allocated rooms

Allocating a room to a student

Deallocating a room for a student

Reallocating a room for a student

Help

Edit Student Details

Find Student

Delete a Student

Clear all Data

Exit
It exits the app.

Problems Identified
●​ Lack of “Big Features” With a Lot of Code

We’re optimizing for grade - which means each of us should end with atleast:
●​ Ownership of 2 big features (e.g. refactoring Allocation, implementing

undo/redo command, support for archiving semesters).
●​ Atleast 5 commands added/modified.
●​ 5k lines of code contributed. This means that we need to add multiple

features that require a lot of lines of code written.
●​ 7 use cases in documentation.
●​ 1 major write-up about design considerations.

●​ Lack of effort in UI

Currently, UI looks very similar to AB3. A peer reviewer from another team would
NOT consider our effort spent in working on the UI to be atleast the same as
AB3.

●​ Testing, Logging and Assertions

Counts for 10 marks (individual). Our code coverage as a team has dropped to
55%, and logging/assertions are non-existent. It is now incumbent on every team
member to add tests, logging and assertions along with their code for every PR
made after Thursday’s meeting.

Task List due by Saturday

●​ UI:
Assigned to: Jing Yen or Chloe
Due by: Sunday night.

●​ Currently, our UI is strikingly similar to AB3 (same theme, same font).
●​ The Command History on the left pane doesn’t serve much purpose.

●​ Ideal:

○​ Change to a UI that looks like this (but with 2 tabs: rooms and
students).

○​ Remove “History” Pane, show feedback only from the last
command.

○​ The central pane should show the active tab.
■​ Each item on the central pane should be collapsible.
■​ Preferably, the central pane should appear like a table with

multiple expandable rows.
○​ The pane on the left (here, “Kor Ming Soon”, etc) should show

cards in the inactive tab.

●​ Enabling filtering/finding of rooms: Chloe (tonight)
○​ Requires only the addition of 2-3 commands.

■​ Benefit: Increases LoC and feature list
○​ Enhancement: improve naming and syntax of commands (make them

more consistent).

●​ Archiving Semesters: Jing Yen (PRed, tonight)
○​ Requires addition of multiple commands (load, archive), and a change in

the file storage system.

○​ Analogous to HireLah’s sessions feature.
●​ Aliasing: Mayank (PR - merge by afternoon - Chloe)

○​ Need to update UserPrefs and Command Map. WIll be documenting
decisions made in the DG.

○​ CLI-friendly
●​ Command History: Kevin (Sunday night)

○​ Shows previous command on pressing “up” arrow key
○​ Benefit: LoC and CLI-friendliness

●​ Undo/Redo: Kevin
○​ Update DG with design decisions

●​ Allocate, Deallocate and Reallocate Commands: Jet
○​ Add tests, assertions and logging (Sat night)

■​ Unit testing to be done by Jet (including JsonAdaptedRoom)
■​ Integration testing to be done by Kevin with Undo/Redo

○​ Update DG with design decisions (Sun night)

●​ Add Testing and Documentation (UG + DG) for whatever code you’ve written
so far. Optionally, update your contributions on the profile page.

Big Features for next week (to be assigned on Saturday):

1.​ Add Bills Model and relevant commands (dependency: UI) : Jing Yen
○​ A Student contains a list of bills

■​ Exactly like larry’s tP
○​ A bill has 2 states: paid or unpaid
○​ A bill has due date
○​ If bill due date has passed, then UI shows an orange colour for the student

card
○​ Commands: add bill for student, delete bill for student, mark bill as paid.

2.​ Statistics + 1 small feature : Jet

○​ As an admin I want to visually view statistics of the vacancy of rooms so
that I can communicate easier to admins of other buildings.

○​ Show a chart of vacant, and non-vacant rooms in the building
disaggregated by room type.

■​ LARRY’S REPO
■​ Total # of allocated rooms, Total # of unallocated rooms

○​ Small Feature: Allow student ID and room label to be entered as an
alternative to si/ and ri/, e.g. sid/E0123456, r/08-110.

■​ Enhancement: if a user clicks on a student card, then it automatically copies
the student’s ID to the clipboard, that way they can speed up the typing of
commands

3.​ Importing and Exporting to CSV + Binning: Mayank

○​ Will require creation of an Exportable interface, that can convert a
UniqueStudentList or UniqueRoomList into a CSV file.

■​ See a tP that already does this -> copy it.
■​ Check if external library is needed (ask Damith or check the forum)

○​ Import CSV (for student and rooms - 2 commands)
■​ Overrides existing ResiReg data

4.​ Multiple Small Features (dependency on archiving) : Chloe

○​ Allow a one-time adding of rooms when ResiReg is used for the first time
■​ no addresbook.json (HireLah implementation)

○​ Edit Room by Type (1 command)
○​ Converting static enums to dynamic storage objects (suggestion)

■​ Will require some thinking.
■​ Faculties: Enum with 16 values.
■​ Room-Type: Enum with 4 values.

5.​ Demerit points : Kevin (dependency on archiving)

○​ Demerit points = 0 on construction
○​ Add demerit points
○​ Delete demerit points
○​ Set demerit point limits and when a student hits the limit show some kind

of message to remind the admin to email
○​ Prevent a student from being allocated a room if a student’s demerit points

is above ceiling​ ​

V1.4 (optional)

-​ Same enhancement of copying for Rooms
-​ Find by Matric Number
-​ Find by Faculty
-​ Find by Multiple Faculties
-​

November 5: midnight: self-imposed code freeze

November 9, midnight : deadline for tP

Final features added for v1.3:

●​ Undo and redo (using both keyboard shortcuts and commands)
●​ Command aliasing
●​ Concept of semester, and ability to archive data at the end of a semester
●​ Expanded room filtering
●​ Ability to view students and rooms either in separate tabs or side by side
●​ Unix shell-style command history
●​ Trash bin for deleted items
●​ Statistics

V1.3 features demo
Upon starting up the app without a data file (resireg.json), the user can add and delete
rooms:

Rooms can be added and deleted (see command history on left for commands
entered):

Any action can be undone/redone either using Ctrl-z/Ctrl-y or the undo/redo commands
(room deletion undone below):

Finalize the list of rooms:

Room allocation works the same way as it does it v1.2. But now you can choose to view
the students and rooms side by side to make it easier to do allocation. The toggle-split
command merges the rooms and students tab together:

Clicking on the statistics tab lets you see room allocation statistics (command to do this
coming soon):

Aliases can be added for frequently used commands. Aliases added can of course be
listed and deleted (not shown):

More advanced room filtering (below, we have filtered for all the corridor non-aircon
rooms on the 11th floor):

We now have a trash bin for deleted students:

Deleted items can be restored:

(not shown) items in the trash bin are deleted automatically after a certain number of
days. The number of days can be set using the set-bin-expiry command.

History of previously entered commands can listed using the history command.
Previously entered commands can also be accessed unix-shell style using the up/down
arrow keys to make it easier to enter similar commands repeatedly (not shown):

At the end of the semester, the data can be archived. The archived file in a folder
named after the current semester:

	Meeting Minutes for CS2103-T16-3
	I.​Minutes for 2020-08-29
	Product Name
	Target User Profile
	Value Proposition
	Product Optimization
	Potential Features

	Summary

	II.​Minutes for 2020-09-05
	User Stories

	III.​Minutes for 2020-09-12
	IV.​Minutes for 2020-09-19
	V.​v1.2 Milestone
	Listing all Rooms
	Listing only vacant rooms
	Listing only allocated rooms
	Allocating a room to a student
	Deallocating a room for a student
	Reallocating a room for a student
	Help
	Edit Student Details
	Find Student
	Delete a Student
	Clear all Data
	Exit

