Университет как двигатель будущего:

от уникальных проектов до национальных решений

Сергей Анатольевич Лукьянов, д.б.н., ректор Пироговского Университета, академик РАН, лидер команды разработчиков препарата против болезни Бехтерева.

Современные вызовы требуют от университетов не только решения технологических и инфраструктурных задач, но и формирования собственных уникальных направлений развития. Проекты, выделяющие вуз на фоне других, превращают его в центр притяжения для талантливых специалистов и стратегических партнёров, позволяют привлечь грантовое финансирование.

При этом возникает закономерный вопрос: как выбрать такие проекты? С одной стороны, существует представление о единой науке, и с этим трудно спорить. С другой — каждая организация обладает своей спецификой. Университеты, как правило, сталкиваются с ограниченными ресурсами, сложной бюрократией и нехваткой инфраструктуры. Однако у них есть и весомые преимущества: вековая история, сложившиеся научные коллективы под руководством харизматичных лидеров, а также мощная междисциплинарная синергия. Недаром подавляющее большинство Нобелевских премий в биомедицине получены именно университетскими командами.

Университету необходим хотя бы один «сверхпроект», способный притягивать ресурсы и молодёжь.

Выбор проекта должен опираться на несколько ключевых критериев. Во-первых, он должен решать значимую общечеловеческую проблему, с которой современная наука пока не справилась. Во-вторых, необходимо наличие оригинального компонента — новой идеи, технологического решения, того, что может позволить совершить прорыв в данной области. И, наконец, проект должен быть реализуем с точки зрения доступных ресурсов: партнеров, рынков, инфраструктуры, а также наличия сильного лидера и слаженной команды. При совпадении всех этих условий шансы на успех существенно возрастают.

Пироговский Университет уже реализует ряд таких проектов. Один из них — совместная разработка с фармацевтической компанией BIOCAD препарата «Трибувиа», антитела нового поколения для лечения болезни Бехтерева без системного подавления иммунной системы. Мы предложили новый подход к лечению аутоиммунных заболеваний и показали его эффективность. Метод, который уже применяется для терапии болезни Бехтерева, может быть адаптирован для других аутоиммунных заболеваний. Работа признана на

международном уровне и активно цитируется, а в США уже появляются стартапы с похожими решениями.

Другой пример — проекты по генно-заместительной терапии. Несмотря на то, что на рынке есть генотерапевтические препараты, например «Золгенсма», для большинства наследственных заболеваний, которых насчитывается тысячи, отсутствуют. создаем Центр. будут разрабатывать Мы где персонализированные лекарства, стоимостью от 3 до 6 миллионов рублей за дозу, рассчитанные на ограниченное количество пациентов. Реплицируя подобные центры, сможем системно решать проблемы МЫ наследственных заболеваний в масштабах страны.

Важно, чтобы университеты, даже при всей актуальности бизнес-инкубаторов, сохраняли фундаментальные научные инициативы. Готовность университетов к технологическим прорывам базируется на многолетней научной работе. Пример — исследование флуоресцентных белков, начатое десятилетия назад и приведшее к появлению инструментов биоимиджинга. Первым этапом было выделение флуоресцентного белка из медузы японским ученым Осаму Шимомурой в рамках фундаментальной работы.

Надо отметить, что фармацевтическая индустрия все активнее ориентируется на дорогие препараты для избранных. Поэтому, без участия государства системные решения невозможны. Но и государству важно вкладываться в перспективные направления, а не в бесперспективные лекарства.

Казалось бы, в мире сейчас появляются новейшие лекарства, и у нас на слуху такие препараты, такие как «Золгенсма». Но, объективно говоря, не более 20 болезней могут быть излечены с помощью препаратов, созданных и используемых сегодня, когда коммерческая компания выводит препарат на рынок. Это связано с тем, что орфанных заболеваний тысячи, а детей с этими заболеваниями мало, и все это коммерчески несостоятельно.

Мы же, при поддержке Минздрава России, предлагаем полные схемы, когда диагностика, создание препаратов, производство, лечение и реабилитация происходят в едином комплексе. Этого нет больше нигде в мире. Точно так же мы ведем исследования в области аутоиммунных и онкологических заболеваний, предлагая свое видение.

Тысячелетиями человек адаптировался к меняющейся среде, но теперь он изменяет её сам. Естественный отбор практически исчез: снижение детской смертности — заслуга последних 200—300 лет. В прошлом детям до 10 лет даже не давали имён, чтобы не привыкать — так высока была смертность, даже в обеспеченных семьях.

Сегодня каждый новорожденный несет около 100 новых мутаций, не подвергающихся отбору. С течением поколений это может привести к росту числа генетических заболеваний. Медицина должна развиваться достаточно быстро, чтобы компенсировать деградацию нашего генома.

Именно поэтому университеты с их уникальными проектами, научной независимостью и междисциплинарным подходом должны стать центрами притяжения новых идей, решений и надежды на будущее.

Справка о спикере

Сергей Анатольевич Лукьянов — выдающийся российский биохимик, академик РАН, ректор Российского национального исследовательского медицинского университета имени Н. И. Пирогова (РНИМУ). Его научные достижения и управленческие инициативы внесли значительный вклад в развитие молекулярной биологии и медицинского образования в России.

Научные достижения

Сергей Лукьянов является признанным экспертом в области молекулярной биологии и генной инженерии. Среди его ключевых достижений:

- Открытие эффекта селективной супрессии полимеразной цепной реакции, что позволило разработать новые методы анализа структуры и функции сложных геномов;
- Клонирование генов флуоресцентных белков у коралловых полипов, что расширило возможности визуализации биологических процессов в живых клетках и организмах;
- Исследование и применение флуоресцентных белков в биотехнологии, за что был удостоен премии имени Ю. А. Овчинникова РАН в 2006 году и международной премии RUSNANOPRIZE в 2012 году.

В 2015 году стал лауреатом Государственной премии Российской Федерации за разработку и внедрение комплекса технологий анализа структуры и функций сложных геномов.

Управленческая деятельность

С 2015 года исполнял обязанности ректора РНИМУ им. Н. И. Пирогова, а с 8 августа 2016 года официально утвержден в этой должности . Под его руководством университет достиг значительных успехов в образовательной и научной сферах.

Одним из ключевых проектов стало открытие первого в России медицинского Центра оценки и развития управленческих компетенций, направленного на развитие надпрофессиональных навыков у студентов и специалистов.

Также при его участии была создана лаборатория флуоресцентного биоимиджинга в Нижегородской государственной медицинской академии, на базе которой впоследствии был организован НИИ биомедицинских технологий.

Общественная и научно-организационная деятельность

Сергей Лукьянов активно участвует в научной и образовательной политике России. В 2012–2013 годах занимал должность помощника федерального министра в Министерстве здравоохранения РФ. Является членом Совета ректоров и принимает участие в формировании стратегий развития высшего медицинского образования в стране.

О препарате против неизлечимой болезни Бехтерева

Трибувиа (международное непатентованное наименование — сенипрутуг) — первый в мире таргетный препарат, способный остановить развитие болезни Бехтерева (анкилозирующего спондилита). Это результат многолетней научной работы коллектива Российского национального исследовательского медицинского университета имени Н. И. Пирогова под руководством ректора, академика РАН Сергея Анатольевича Лукьянова, в сотрудничестве с биотехнологической компанией BIOCAD.

Препарат действует на ключевое звено патогенеза заболевания — патологические Т-лимфоциты с рецептором TRBV9, которые запускают аутоиммунный процесс. Сенипрутуг представляет собой моноклональное антитело, селективно уничтожающее эти клетки, что позволяет достичь ремиссии без подавления всей иммунной системы и без эффекта привыкания.

Идея такого подхода была предложена Сергеем Лукьяновым и его научной группой после масштабного анализа репертуаров Т-клеточных рецепторов у больных и здоровых людей. Сам Лукьянов, страдающий болезнью Бехтерева, испытал препарат на себе, подтвердив его эффективность.

В апреле 2024 года Минздрав России зарегистрировал Трибувиа как первый в своем классе препарат для терапии активного рентгенологического аксиального спондилоартрита у взрослых пациентов, не получавших ранее

биологические препараты. Препарат вводится внутривенно: три инфузии в первый год и по две в последующие годы.

С 2025 года Трибувиа доступен в 45 регионах России и включен в систему OMC. Это благодаря стало возможным тесному взаимодействию академической науки и промышленности, которое ректор Пироговского «профессиональным Университета назвал счастьем» «примером объединения борьбы глобальными усилий для С аутоиммунными заболеваниями».

Сопроводительные изображения: https://disk.yandex.ru/d/EYLExZbvIrw7HA