
CS Town Hall F21 Survey Responses
Aggregated and Anonymized Responses to survey responses

Curriculum

Courses that students enjoyed

Which course(s) did you really enjoy? What made these courses enjoyable?

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS 111 -
Operating Systems Principles, CS 131 -
Programming Languages

Good, engaging lecturers and thick, meaningful
projects that really force you to learn something

CS 1 - Freshman Computer Science Seminar, CS
31 - Introduction to Computer Science I, CS 32 -
Introduction to Computer Science II, CS 118 -
Computer Network Fundamentals Detailed instructions, reasonable expectations

CS 131 - Programming Languages, CS 132 -
Compiler Construction, CS 231

I liked the topics covered in those classes. For
132 in particular, I liked how it was project
focused and there was significant programming
involved, which is not really true for any other CS
class I have taken at UCLA.

CS 33 - Introduction to Computer Architecture,
CS M51A - Logic Design of Digital Systems, CS 111
- Operating Systems Principles, CS M151B -
Computer Systems Architecture, CS M152A -
Introductory Digital Design Laboratory

Professor's well organized slide and workload,
passionate TA and professor

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS
35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles, CS 118 - interesting subject matter

Computer Network Fundamentals, CS 131 -
Programming Languages, CS 132 - Compiler
Construction, CS 180 - Introduction to Algorithms
and Complexity

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
M51A - Logic Design of Digital Systems, CM124 -
Machine Learning Applications in Genetics, CS
M146 - Introduction to Machine Learning, CS 180
- Introduction to Algorithms and Complexity, CS
188 - Special Courses in Computer Science:
Introduction to Computer Vision The professors and content

CS 188 - Special Courses in Computer Science:
Introduction to Computer Vision Good content and teaching was thorough

CS 32 - Introduction to Computer Science II, CS
131 - Programming Languages, CS 134 -
Distributed Systems, CS 181 - Introduction to
Formal Languages and Automata Theory

Interesting topics with very visible applications in
industry, fun problems

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
35L/97 - Software Construction Laboratory, CS
131 - Programming Languages, CS 180 -
Introduction to Algorithms and Complexity, CS
181 - Introduction to Formal Languages and
Automata Theory

Intersting course material, cool projects (like the
bomb lab in 33, A* implementation in 32, ocaml
lab in 131), professors had a deep understanding
and were interested in topic

CS 131 - Programming Languages, CS 161 -
Fundamentals of Artificial Intelligence, CS 181 -
Introduction to Formal Languages and Automata
Theory, CS 183 - Introduction to Cryptography emphasis on theory and rigor

CS 111 - Operating Systems Principles, CS 174A -
Introduction to Computer Graphics, CS 188 -
Special Courses in Computer Science:
Introduction to Computer Vision

These courses have fun and relevant
applications.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS M51A -
Logic Design of Digital Systems

31 and 32 were thorough introductions to
computer science topics with interesting lectures
and meaningful homework assignments. m51a
covers interesting ideas and builds up to a
overarching goal throughout the quarter which

makes the class meaningful

CS 32 - Introduction to Computer Science II I liked doing the projects.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II

professors were engaging and the
homework/projects were doable. content was
easy to learn

CS 32 - Introduction to Computer Science II, CS
180 - Introduction to Algorithms and Complexity,
CS 181 - Introduction to Formal Languages and
Automata Theory

Great professors. Nachenberg for 32,
Sarrafzadeh for 180, and Sahai for 181.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II

They were heavily focused on just learning
coding and doing projects, which were enjoyable
and rewarding to complete

CM124 - Machine Learning Applications in
Genetics, CS 143 - Database Systems, CS M184 -
Introduction to Computational and Systems
Biology

Reasonable workload, interesting and relevant
content that I could readily use outside of class,
good organization (everything built on top on
each other nicely)

CS 30 - Principles & Practices of Computing, CS
31 - Introduction to Computer Science I, CS 118 -
Computer Network Fundamentals, CS 143 -
Database Systems, CS M151B - Computer
Systems Architecture, CS 161 - Fundamentals of
Artificial Intelligence

Great professors and interesting, engaging
curriculum.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS M51A -
Logic Design of Digital Systems, CS 111 -
Operating Systems Principles

The professors! They were great lecturers, and
gave us fewer great homework
assignments/projects as opposed to a barrage of
pointless memorization exercises each week

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II

The consistency of the class work, e.g. a project
every 1-2 weeks, as well as the pacing which I
found to be good.

CS 31 - Introduction to Computer Science I, CS
M51A - Logic Design of Digital Systems, CS M148
- Introduction to Data Science, CS 181 -
Introduction to Formal Languages and Automata
Theory

Lectures, homework/projects, and examinations
were all connected (i.e., the course didn't feel
disconnected). The professors who taught them
were also very clear in their lectures.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -

For all of them, good prof, interesting topic and
very well designed projects.

Introduction to Computer Architecture, CS 143 -
Database Systems, CS 161 - Fundamentals of
Artificial Intelligence, CS 174A - Introduction to
Computer Graphics

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 35L/97 -
Software Construction Laboratory, CS 111 -
Operating Systems Principles, CS 143 - Database
Systems, CS 174A - Introduction to Computer
Graphics

The hands-on approaches that they had,
especially the revamped 35L/97 and 111

CS 30 - Principles & Practices of Computing, CS
31 - Introduction to Computer Science I, CS 32 -
Introduction to Computer Science II, CM121 -
Introduction to Bioinformatics, CM122 -
Algorithms in Bioinformatics, CM124 - Machine
Learning Applications in Genetics, CS M146 -
Introduction to Machine Learning, CS 180 -
Introduction to Algorithms and Complexity

CS 31 - Introduction to Computer Science I, CS
174A - Introduction to Computer Graphics, CS
188 - Special Courses in Computer Science:
Introduction to Computer Vision

Projects were directly related to the material
learned in class. They had concrete, visual
results.

CS 35L/97 - Software Construction Laboratory, CS
M51A - Logic Design of Digital Systems, CS 131 -
Programming Languages, CS 180 - Introduction
to Algorithms and Complexity, CS 181 -
Introduction to Formal Languages and Automata
Theory

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
111 - Operating Systems Principles, CS 180 -
Introduction to Algorithms and Complexity

33 - enjoyed reinman and the content itself was
very interesting and labs were fun
32 - enjoyed nachenberg and content was good
to learn and helped with interviews
111 - enjoyed eyolfson and content is in same
vein as 33 so enjoyable for similar reasons
180 - I enjoy professor hsieh and content is very
high level and proof based which I enjoy

CS 143 - Database Systems, CS 145 - Introduction
to Data Mining, CS M146 - Introduction to

I like the new development of using big data to
making informed decisions! I also like learning

Machine Learning, CS 161 - Fundamentals of
Artificial Intelligence, CS 174A - Introduction to
Computer Graphics

how to emulate graphics using code.

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
111 - Operating Systems Principles, CS 118 -
Computer Network Fundamentals, CS 136 -
Introduction to Computer Security, CS M146 -
Introduction to Machine Learning, CS 168 -
Computational Methods for Medical Imaging, CS
181 - Introduction to Formal Languages and
Automata Theory, CS 183 - Introduction to
Cryptography

I generally enjoyed the professors I took them
with as well as the content of the courses; I
prefer lower level and conceptual classes and
these courses aligned well with my interests.
They are also among the most practical courses I
have taken (especially 111) since I am now
working in industry with low level code.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS 111 -
Operating Systems Principles, CS 118 - Computer
Network Fundamentals, CS 130 - Software
Engineering, CS 188 - Special Courses in
Computer Science: Secure Software Design and
Development

Passionate lecturers as well as projects that were
longer-term but had plenty of resources for help
if one were to get stuck.

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
M51A - Logic Design of Digital Systems, CS 143 -
Database Systems, CS 144 - Web Applications, CS
M151B - Computer Systems Architecture, CS 188
- Special Courses in Computer Science:
Introduction to Computer Vision

Professor John Cho is such a gem, he is a really
great communicator and is the only professor
who seems to understand student questions the
first time they're asked. He make 143 and 144
really enjoyable and they are my favorite CS
courses at UCLA.

The topics taught in CS 33 and M151B are pretty
interesting, learning how programs are
converted into silicon and I found Reinman's
flipped classroom format to work fairly well.

Korf's M51A offering adapted very well to the
virtual format, and I appreciated him writing and
drawing everything by hand. This made the
content super easy to follow and really easy to
take notes. Definitely the best professor for
M51A.

I also really enjoyed the way the computer vision
188 was structured. Though the lectures were
not the most clear at times, the projects were all
very enjoyable and the content taught was
always linked to real world applications

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS M51A -
Logic Design of Digital Systems, CS 174A -
Introduction to Computer Graphics, CS 180 -
Introduction to Algorithms and Complexity, CS
181 - Introduction to Formal Languages and
Automata Theory

For each of these courses, I found the material
interesting and the professors engaging. I could
not say the same for any of the other computer
science courses I took.

CS 1 - Freshman Computer Science Seminar, CS
31 - Introduction to Computer Science I, CS 131 -
Programming Languages, CS 145 - Introduction
to Data Mining, CS M146 - Introduction to
Machine Learning, CS 161 - Fundamentals of
Artificial Intelligence, CS 180 - Introduction to
Algorithms and Complexity, CS 181 - Introduction
to Formal Languages and Automata Theory, CS
188 - Special Courses in Computer Science:
Introduction to Computer Vision, CS M192A -
Introduction to Collaborative Learning Theory
and Practice proofs, pedagogy

CS 111 - Operating Systems Principles, CS 143 -
Database Systems

CS 35L/97 - Software Construction Laboratory, CS
M146 - Introduction to Machine Learning Good professors, material, and TAs

CS 30 - Principles & Practices of Computing, CS
31 - Introduction to Computer Science I

The professors and the fact that the workload
was not overbearing. I felt like doing the projects
and the homework was actually building on what
I was learning and they werent too long or hard
to where I was constantly stressing out.

CS 32 - Introduction to Computer Science II, CS
144 - Web Applications, CS 188 - Special Courses
in Computer Science: Scalable Internet Services

In both CS 32 and CS 144, I got to build chonkier
projects. I like that feeling.

I actually did not take 188 Scalable Internet

Services but I heard glowing reviews about it
from last year and I'm extremely sad that it isn't
being offered this year.

CS 174A - Introduction to Computer Graphics The topic interested me.

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
35L/97 - Software Construction Laboratory

Enjoyable content presented in a mostly lecture
format. Midterms allowed me to make up project
grades.

CS 143 - Database Systems

CS 131 - Programming Languages, CS 132 -
Compiler Construction, CS M146 - Introduction to
Machine Learning, CS M148 - Introduction to
Data Science, CS 180 - Introduction to Algorithms
and Complexity, CS 188 - Special Courses in
Computer Science: Introduction to Computer
Vision

CS188/132/146/148 - elective classes with
specifications I am very interested in
CS131 - I am interested in programming
language, and the discussions of concurrency,
parsing, and functional programming have been
very helpful to me

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS 131 -
Programming Languages, CS 161 - Fundamentals
of Artificial Intelligence

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
35L/97 - Software Construction Laboratory, CS
M51A - Logic Design of Digital Systems

CS 32: Carey
CS 33: The labs were fun and I liked learning
about the lower-level parts of computers
CS 35L: Filled in some knowledge gaps about
Linux
CS M51A: Same deal as 33; I like learning about
the lower-level parts of computers

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 35L/97 -
Software Construction Laboratory, CS M51A -
Logic Design of Digital Systems, CS 111 -
Operating Systems Principles

CS 31 - Knowing the content ahead of time, and
Smallberg, exams were fair and fun
CS 32 - Smallberg and Carey, Knowing the
content ahead of time, I love data structures,
exams were fair and fun, Project 3 unironically
was the most fun I've had doing a project

CS 35L - Knowing the first half of content already,
TA Daniel who gave the hints slides made the
experience 100 times better
CS M51A - Only because of Korf and no exams

CS 32 - Introduction to Computer Science II, CS
111 - Operating Systems Principles, CS 143 -
Database Systems, CS 188 - Special Courses in
Computer Science: Scalable Internet Services Real world applicable

CS 32 - Introduction to Computer Science II, CS
132 - Compiler Construction, CS 134 - Distributed
Systems, CS M151B - Computer Systems
Architecture, CS 161 - Fundamentals of Artificial
Intelligence, CS 168 - Computational Methods for
Medical Imaging, CS 188 - Special Courses in
Computer Science: Scalable Internet Services, CS
188 - Special Courses in Computer Science: Turn
Your Idea into Company the profs, the material

CS 32 - Introduction to Computer Science II, CS
33 - Introduction to Computer Architecture, CS
130 - Software Engineering, CS 131 -
Programming Languages, CS 132 - Compiler
Construction, CS 161 - Fundamentals of Artificial
Intelligence, CS 239 - Quantum Computing

CS 33: I really liked the hands-on nature of the
labs. They were fun but also clearly connected to
the course material, and I still remember the
content to this day (i.e. I feel like I really "learned"
it).
CS 130: I took this with the Google engineers,
and it was a very hands-on/practical course with
great advice from industry. I would love to have
more classes with outside perspective!
CS 131: I love programming languages. I liked
learning about logic programming, which I had
no idea even existed beforehand!
CS 132: Compilers is a great culmination class for
CS, since it's a combination of many different
parts of the curriculum (and I feel like I'm using
everything I learned). In addition, Palsberg's
approach to grading is extremely fair: having the
grading framework published with instantaneous
feedback makes me feel like I know what I'm
being graded on. The LL(1) Academy (a set of
online practice modules that exactly mimics the
midterm) made it easy for me to prepare for the

exams.
CS 161: Darwiche is a very engaging lecturer, and
I also enjoyed quite a few of the projects (esp the
A* one). It was great having an AI class that
wasn't just ML!
CS 239: Quantum programming is just so cool!
Would love to see more opportunities to learn
cutting-edge technology; the partnership with
Google/IBM was a once-in-a-lifetime experience.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 35L/97 -
Software Construction Laboratory, CS M51A -
Logic Design of Digital Systems, CS 111 -
Operating Systems Principles, CS 145 -
Introduction to Data Mining, CS 180 -
Introduction to Algorithms and Complexity

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 143 -
Database Systems

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture

I thought they were very well-structured, solid
introductions to Computer Science and
Computer Organization. In addition, my
professors Smallberg, Nachenberg, and Reinman
were all very great lecturers and were great at
answering any questions students had about the
subject material.

CS 1 - Freshman Computer Science Seminar, CS
31 - Introduction to Computer Science I, CS 32 -
Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS
35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles, CS 118 -
Computer Network Fundamentals, CS 131 -
Programming Languages, CS 132 - Compiler
Construction, CS 180 - Introduction to Algorithms
and Complexity, CS 181 - Introduction to Formal
Languages and Automata Theory

I think huge credit has to go to the professors
and teaching staff for making the course content
interesting.
The courses were "paced" well in the sense that
the prerequisites made sure we were prepared
for the courses.
The lectures, content and assignments were
especially interesting.

CS 32 - Introduction to Computer Science II, CS
M146 - Introduction to Machine Learning, CS 161 -

Fundamentals of Artificial Intelligence, CS 180 -
Introduction to Algorithms and Complexity, CS
188 - Special Courses in Computer Science:
Introduction to Computer Vision

CS 32 - Introduction to Computer Science II, CS
111 - Operating Systems Principles

Jon Eyolfson made CS 111 super enjoyable, with
all the projects being submitted via a git push and
test cases built into the vm, and the flexible late
days. CS 32 was fun because of the content and
Carey Nachenberg.

CS 30 - Principles & Practices of Computing, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS 111 -
Operating Systems Principles, CS 145 -
Introduction to Data Mining, CS 180 - Introduction
to Algorithms and Complexity The Professor

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS 35L/97
- Software Construction Laboratory

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS M51A -
Logic Design of Digital Systems, CS M151B -
Computer Systems Architecture, CS M152A -
Introductory Digital Design Laboratory

Good lecturers, interesting content, and
projects/homework assignments that were
challenging but doable. Many of the assignments
helped me reach a deeper understanding of the
material, as I applied concepts learned in class.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS 35L/97
- Software Construction Laboratory, CS M51A -
Logic Design of Digital Systems, CS 111 -
Operating Systems Principles, CS 118 - Computer
Network Fundamentals, CS 143 - Database
Systems, CS 145 - Introduction to Data Mining, CS
M146 - Introduction to Machine Learning, CS 180 -
Introduction to Algorithms and Complexity, CS
181 - Introduction to Formal Languages and
Automata Theory

CS 32 - Introduction to Computer Science II, CS

M146 - Introduction to Machine Learning, CS 180 -
Introduction to Algorithms and Complexity

CS 1 - Freshman Computer Science Seminar, CS
31 - Introduction to Computer Science I, CS 32 -
Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS M51A -
Logic Design of Digital Systems Interesting assignments, clarity in teaching.

CS M51A - Logic Design of Digital Systems, CS 143
- Database Systems, CS M151B - Computer
Systems Architecture

For 143: professor Cho's teaching style made
materials easier to comprehend by examples. For
M51A (prof Abari): less exam pressure. The class
pace didn't make me feel overwhelmed.

CS 32 - Introduction to Computer Science II Usefulness, enthusiasm of the professor

CS 31 - Introduction to Computer Science I
Professor Smallberg paces the course well and
teaches in an easy to understand manner.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II, CS 33 -
Introduction to Computer Architecture, CS 35L/97
- Software Construction Laboratory, CS M51A -
Logic Design of Digital Systems, CS 143 - Database
Systems, CS M148 - Introduction to Data Science,
CS 181 - Introduction to Formal Languages and
Automata Theory Professor

CS 32 - Introduction to Computer Science II
interesting or useful content without an
overwhelming amount of work

CS 32 - Introduction to Computer Science II, CS
M51A - Logic Design of Digital Systems, CS 143 -
Database Systems, CS 161 - Fundamentals of
Artificial Intelligence, CS 174A - Introduction to
Computer Graphics, CS 180 - Introduction to
Algorithms and Complexity, CS 181 - Introduction
to Formal Languages and Automata Theory, CS
188 - Special Courses in Computer Science:
Introduction to Computer Vision

Blend of interesting subject matter and
challenging but enjoyable difficulty level

CS 35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles, CS 118 -
Computer Network Fundamentals, CS 143 -
Database Systems, CS M146 - Introduction to
Machine Learning, CS M148 - Introduction to Data

Science, CS 180 - Introduction to Algorithms and
Complexity, CS 181 - Introduction to Formal
Languages and Automata Theory

CS 32 - Introduction to Computer Science II, CS
131 - Programming Languages, CS 161 -
Fundamentals of Artificial Intelligence, CS 181 -
Introduction to Formal Languages and Automata
Theory, CS M184 - Introduction to Computational
and Systems Biology, CS 188 - Special Courses in
Computer Science: Introduction to Computer
Vision

Interesting topics, clearly presented. I think the
course topics are the dominant factor in my
enjoyment of these subjects.

CS 31 - Introduction to Computer Science I, CS 32
- Introduction to Computer Science II Great professors!

CS 32 - Introduction to Computer Science II, CS
M51A - Logic Design of Digital Systems enthusiastic professors

Courses that students think need revamping

Which course(s) do you think needs
revamping?

What exact changes would you make to the
courses you selected above, if any?

N/A: I haven't taken any of these courses

CS 131 - Programming Languages, CS M152A -
Introductory Digital Design Laboratory, CS 174A -
Introduction to Computer Graphics

CS 32 - Introduction to Computer Science II, CS
111 - Operating Systems Principles, CS 131 -
Programming Languages

CS 32: Cover modern C++ (e.g. smart pointers)
and the implementation of data structures like
self-balancing trees. CS 111: Have students
implement an operating system themselves
instead of just learning about how it works. CS
131: Have students implement a programming
language themselves (e.g. an interpreter) instead
of just learning about how it works.

CS 35L/97 - Software Construction Laboratory, CS
M146 - Introduction to Machine Learning, CS
174A - Introduction to Computer Graphics CS 35L could have split into two courses

None

CS 111 - Operating Systems Principles, CS M152A
- Introductory Digital Design Laboratory

CS 35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles, CS 131 -
Programming Languages

Standardize eggerts exams so they’re not as
chaotic

CS 145 - Introduction to Data Mining

145: Focus less on specific methods and
algorithms and more on different types of data
and mining on those

CS M51A - Logic Design of Digital Systems, CS 145
- Introduction to Data Mining, CS M146 -
Introduction to Machine Learning, CS M148 -
Introduction to Data Science, CS M151B -
Computer Systems Architecture, CS M152A -
Introductory Digital Design Laboratory

CS 145, CS M146, CS M148 are 80% the same
class

CS 1 - Freshman Computer Science Seminar, CS
31 - Introduction to Computer Science I

I wish CS31 was more interesting. I think that the
lectures could be made more interesting.

CS 111 - Operating Systems Principles, CS M152A CS M152A: unfair grading

- Introductory Digital Design Laboratory

CS 35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles

The classes are too time-consuming w.r.t. their
number of units.

CS 1 - Freshman Computer Science Seminar, CS
33 - Introduction to Computer Architecture, CS
35L/97 - Software Construction Laboratory

The first portion of CS 33 data/bit manipulation
felt very overwhelming because it was covered
very briefly despite it being a fundamental to the
rest of the course. I think more focus on that
portion in the first few weeks would be beneficial
to the learning experience for the rest of the
course. I do not think that there needs to be
multiple lectures on OpenMP, but data
manipulation probably does warrant more focus.
CS m51a also goes more in depth on bits and
bytes so recommending students to take m51a
alongside 33 might be a good compromise.

I have mixed feelings on 35L. I really appreciate
that we have a course that covers miscellaneous
software tooling topics and skills but the way it is
presented (wide variety of topics crammed in a
very short period of time) can be very
overwhelming which compromises the learning
experience. Assignments can still maintain the
"learn on your own" attitude because I agree that
that is a very effective way to learn quickly but
they should all have a "tutorial" or "hold your
hand" section to ease students into the
assignment. For example, Assignment 3 has us
follow an official React tutorial before asking us
to expand our knowledge by then solving a more
difficult problem. This process made me feel a lot
more comfortable and confident in React and
ultimately strengthened my learning experience.

CS 1 - Freshman Computer Science Seminar, CS
35L/97 - Software Construction Laboratory

CS 1 just didn't feel very effective as a course
since some speakers talked to us as if we had
prerequisite knowledge of what they were talking
about so I just didn't know what was happening
some days, but also I don't know if it'd be
interesting if everything got "dumbed down". The

homework was beyond the scope of the class
sometimes.

CS 35L doesn't let you go in depth in any of the
topics covered since you go through so many :(

CS 33 - Introduction to Computer Architecture

the content in cs 33 is completely new to the vast
majority of students, and therefore it takes a bit
longer for information to sink in. personally, i felt
that while the content in cs 33 was not very
challenging, it took a long time to actually
understand & learn, and I felt that the pace of
the course was too fast.

none of the above

CS 31 - Introduction to Computer Science I

CS31 was not lenient on partial credit and it
made me, a non-CS major, loose enjoyment in
CS. Because I misread one sentence in the specs,
I got a 30% even though I did everything else
correctly.

CS 35L/97 - Software Construction Laboratory

CS 35L has too much content everywhere, in my
opinion. I think that it should focus more on a
few topics, rather than spread out so much over
so many. Maybe remove python + lisp and focus
more on html, javascript, node/react, shell, and
git since these things are what people will
primarily use for their group project.

CS 111 - Operating Systems Principles, CS 131 -
Programming Languages

111: Integrate some of its early content into CS
111 or 35L, Remove the beaglebone based
assignments, 131: Reorder course content so
that students understand that main principles
behind developing a programming language
early on and THEN discuss each language on a
case by case basis (explaining the choices made
in that languages design and how it works), make
programming assignments simpler - it's not
reasonable to expect us to write a parser with 2
weeks of OCaml knowledge (maybe put that at
the end of the quarter, might be helpful with
prepping for the final)

CS 35L/97 - Software Construction Laboratory, CS
M51A - Logic Design of Digital Systems, CS 111 -
Operating Systems Principles

CS 35L: Slow down the pace of the curriculum so
students can actually learn these topics instead
of just skimming the surface.
CS 111: Focus on core ideas for a few languages
rather than trying to squeeze in a bunch of
languages that are difficult to learn in 10 weeks.

CS 33 - Introduction to Computer Architecture,
CS M151B - Computer Systems Architecture

CS 33: This class is so ridiculously boring and
difficult that it sucks any possible enjoyment out
of it. I'd rather cover lesser material and actually
enjoy it than span so much material and learn
nothing.
CS M151B: Why do I have to take this class and
why is the material so niche and obtuse? I
understand the need to acquaint oneself with
the hardware but I really think this should be an
elective, because I have no interest whatsoever
in pursuing anything remotely related to the
material covered in this class, and I was able to
decipher that after taking CS 33 and CS M51A.

CS 35L/97 - Software Construction Laboratory

I would remove Emacs from the course and
possibly cover it in a later or upper division
course. Currently, I think there's too much
information being covered in the course of 10
weeks and while Emacs takes 2-3 weeks to cover,
I find that NodeJS, Python, Bash, React, Git, and
other technologies are a far more valuable use of
that time.

CS 111 - Operating Systems Principles

CS 111: Very disconnected material. I felt like I
was taking two 4-unit classes within one class.
This was because the lecture material (and all the
readings) seemed tangentially related to the very
difficult projects.

CS 35L/97 - Software Construction Laboratory

CS 130 - Software Engineering
Scrum process is not utilized to its full potential
in the tiny projects done over a quarter of cs130.

CS M51A - Logic Design of Digital Systems

CS M51A: Was a good class, but the workload is
high to the point where much of the homework
feels like busywork and not testing my

understanding of the course.

CS 130 - Software Engineering

I think the project section is rather inflexible in
terms of the type of project students can choose
to work on. Due to the requirements and format
of the project, it's much easier to do some sort of
web or mobile app than some sort of standalone
project like machine learning or video game. This
is worsened by the disorganized team formation,
since I at least personally found it difficult to find
a team since almost every team planned on
making some sort of web or mobile app and
therefore and I had no marketable skills to
convince others to add me to their team. I don't
know what improvements would actually fix
these issues, but I would like to see them
addressed.

CS 131 - Programming Languages, CS M152A -
Introductory Digital Design Laboratory

CS M152A: remove this class from the
curriculum, if possible. Otherwise, do as
recommended and remove Verilog while adding
Arduino C programming.
CS 131: teach the programming language of
choice before the project of said language is due.
Clarify specifications of homeworks.

CS 111 - Operating Systems Principles, CS 118 -
Computer Network Fundamentals, CS M146 -
Introduction to Machine Learning

111: Would've liked to see an implement
scheduler, implement malloc, or implement mini
OS project like at top CS schools such as
Berkeley. Some info was out of date such as
optimizing for hard drives (kudos to Reiher for
skipping some of that stuff though.)
118: Would've liked to see a project relating to
link/network layer (something with BGP or WiFi
would've been really cool) in addition to TCP. The
Wireshark project was very surface level. I did
not feel prepared to work on network-related
stuff at a company after taking this class.
M146: Too basic. Would like to see a class for
engineers interested in applications and not just
proving bounds, but also not struggling with the
mathematical concepts.

CS 174A - Introduction to Computer Graphics
The extensions of 174A should be offered more
often.

CS 131 - Programming Languages, CS 174A -
Introduction to Computer Graphics

CS 131: I feel that the amount of content covered
in this class is fundamentally not possible to
learn within the span of a quarter. The
expectations that are given to students by the
professors of this course are significantly higher
than those of any other course, and while the
content can be interesting, often lectures lag
behind on the required information needed to
complete projects. On top of this, there is a
major disconnect between the content covered
in lecture and the skills required to effectively
complete any of the assignments. CS 174A: The
content of this course feels outdated given how
rapidly modern computer graphics have
developed. While I understand this is meant as
an introductory course, using old libraries to
render images feels clunky at best and is not a
great way to learn where one can actually go
with computer graphics.

CS 111 - Operating Systems Principles, CS 161 -
Fundamentals of Artificial Intelligence

CS 111: offer more up to date projects that
weave better with the readings and lectures

CS 161: standardize the information taught and
dabble more into less outdated information

CS 35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles, CS M152A -
Introductory Digital Design Laboratory

I'm not sure what should be cut from 35L and
111, but both courses seemed impossibly full of
information at the time I took them; so much so
that there was no way I could retain any or even
most of it. For M152A, removing Verilog and
adding in Arduino sounds like a great idea.

CS 35L/97 - Software Construction Laboratory, CS
130 - Software Engineering, CS 131 -
Programming Languages introduce more formal methods to COM SCI 131

CS 111 - Operating Systems Principles, CS 131 -
Programming Languages, CS M152A -
Introductory Digital Design Laboratory

CS 35L/97 - Software Construction Laboratory
CS35L/97: Make this class 5 units or allow more
time for discussions.

CS 32 - Introduction to Computer Science II, CS
35L/97 - Software Construction Laboratory

CS 111 - Operating Systems Principles, CS 131 -
Programming Languages, CS M152A -
Introductory Digital Design Laboratory

I took 111 with Harry Xu and I do not know if it is
better now with Eyolfson, but I felt that the
projects and lecture were not very relevant to
each other. I appreciate it much more when the
projects actually help me think that I'm applying
some lecture principle. (Especially if the project is
not the focus of the course, unlike John Cho's
144.)

With 131 assignments, I also thought that the
lecture was unrelated, although maybe less so. I
think the projects could be less difficult especially
since they are implemented in new paradigms of
programming languages. The second OCaml
project (about language rules??) was that hard
and for what????

And with CS M152A, please replace Verilog with
something else.

CS 31 - Introduction to Computer Science I, CS
M51A - Logic Design of Digital Systems

CS 35L/97 - Software Construction Laboratory, CS
M152A - Introductory Digital Design Laboratory

CS 1 - Freshman Computer Science Seminar

CS 1 - Make a weekly seminar speaker series
over Fall quarter with open attendance so all
years can come if they are interested, and we are
not required to go to seminars which we are not
interested in

CS 180 - Introduction to Algorithms and
Complexity

CS 1 - Freshman Computer Science Seminar

CS 1 - There needs to be more effort put into this
seminar. Professors coming once a week, and
TAs giving homework that scales from easy to
needing to perfectly understand the material

(which the professors said was okay not to
understand) and quizzes that were just copy
pasted from the slides. Why have the quizzes in
that case? And since it's a seminar, why not have
more effort in discussion to delve on the topic?
What is the point of grading that class? It's
supposed to be an exploration into possible
topics. Maybe do Homework during discussions
as exploration. I would've learned more that way
than having to self teach the entirety of the
content in order to do a single homework
assignment

CS 33 - Introduction to Computer Architecture,
CS 35L/97 - Software Construction Laboratory, CS
131 - Programming Languages, CS 161 -
Fundamentals of Artificial Intelligence

CS 131 - Programming Languages

CS 131: I wish the lecture content could line up
with the projects; the projects were pretty
difficult and took so long to do so I had to start
early, but I didn’t have any context from lecture
since we didn’t cover it yet. So doing the
homework vs going to lecture felt a bit disjoint;
also the homeworks were so long I didn’t feel like
I got to enjoy the strengths, weaknesses,
differences between all the languages. Except
Prolog, that homework was a good length and
helped me understand how Prolog was useful.

CS 1 - Freshman Computer Science Seminar, CS
35L/97 - Software Construction Laboratory, CS
M51A - Logic Design of Digital Systems, CS 111 -
Operating Systems Principles, CS 131 -
Programming Languages, CS 145 - Introduction
to Data Mining

CS 1: this class has so much potential, but in its
current state I feel that it's not very helpful. I
would like to see lectures that are slightly more
interactive or directly focused on what students
can do in a field; the discussions should be actual
discussions.
CS 35L: I still think the workload / unit count for
this class needs to be reevaluated. I appreciate
the changes made with 97, but I think more still
needs to be done.
CS M51A: I think this class would benefit
significantly from some sort of interactive

example (ex being able to "play" with state
machines or explore the material with real
hardware).
CS 111: In taking this with Reiher, I think there's
quite a bit of disjointness between the lectures
and the labs. I've heard that Eyolfson's class is
great, and we should take the approach of more
hands-on labs that are directly tied to the course
material; similar to CS 33 labs!
CS 131: while I really enjoyed this class, I really
think that the homework is extremely
overbearing. Homeworks should be assigned
after the language is taught in class (instead of
being the mechanism to learn the language), and
I would appreciate it if large projects were
broken up into smaller disjoint pieces.
CS 145: this class has too much overlap with
CSM146. I would like to see a larger focus on
non-ML methods, and/or a deeper exploration of
the course content.

CS 1 - Freshman Computer Science Seminar, CS
131 - Programming Languages

CS 35L/97 - Software Construction Laboratory, CS
M51A - Logic Design of Digital Systems, CS 111 -
Operating Systems Principles, CS M146 -
Introduction to Machine Learning, CS 180 -
Introduction to Algorithms and Complexity

CS M152A - Introductory Digital Design
Laboratory

Good suggestion in the question itself! C
programming would be a welcome change from
Verilog although my complaint with CS M152A is
not so much with the programming language but
in the manner the course is administered.
We need lectures from professors! Our TA's are
mostly great and helpful but it sucks to just be
working on labs without gaining a better
understanding of what's going on underneath.
Everyone tends to be very clueless when taking
this course; neither the TA nor the students
seem to know what's going on.

So more professor involvement with even one
lecture a week would be beneficial imo.

CS M152A - Introductory Digital Design
Laboratory

CS M152A if kept at all should do a better job of
actually teaching Verilog and skills needed for
the labs.

CS 111 - Operating Systems Principles, CS 118 -
Computer Network Fundamentals, CS 161 -
Fundamentals of Artificial Intelligence 161: revamping of the projects

CS 1 - Freshman Computer Science Seminar, CS
M51A - Logic Design of Digital Systems

CS 1: It feels like the speakers and the professor
are never on the same page. This process needs
to be more unified and coherent.
CS M51A: I know people dislike verilog, but I
would appreciate some form of digital circuit
design software to submit through rather than
going through things by hand.

CS 111 - Operating Systems Principles
CS 111: Make labs relevant to course material, or
at least touch on some of the concepts in class.

CS 1 - Freshman Computer Science Seminar, CS
131 - Programming Languages, CS 161 -
Fundamentals of Artificial Intelligence

CS 161: More python, less LISP. CS 1: More
variety in guest lecturers. CS 131: lower workload

CS 35L/97 - Software Construction Laboratory, CS
M152A - Introductory Digital Design Laboratory,
CS 181 - Introduction to Formal Languages and
Automata Theory

Verilog is actually an okay language, but the
instructions are vague and the time to self-study
is too much compared to its units. Also replacing
it with a new, more practical hardware language
is not a bad idea.
35L/97: The problem of this class is it's too brutal
for students who just getting started with CS
(especially for transfers). The workload is too
much and the exams made students felt like they
learn nothing from it. This class should be
divided to 2 small lab classes so students can
have more time to absorb the materials.

CS 35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles

CS 35L/97: Relate the lectures to the
homework/projects.

CS 111: Remove the need for a Beaglebone and
revamp the projects accordingly.

CS 1 - Freshman Computer Science Seminar CS 1: Not that I don't like AI, deep learning and

machine learning, but at least five or six of the
lectures we had were on some form of the these
topics. I also think the general structure of the
discussion sections, in which the TA essentially
repeats what was said during the lecture and we
take a five question open note quiz is more or
less just a waste of time, not really offering
anything substantial.

CS 35L/97 - Software Construction Laboratory

I don't understand why CS35L includes a group
project on top of a normal amount of
assignments and tests. I feel like the tests and
assignments significantly detract from the
amount of effort I wanted to put into the group
project.

CS 131 - Programming Languages, CS 145 -
Introduction to Data Mining

145/M146: Make 145 more different from M146
131: Go slower and/or make the projects less
difficult/more incremental

CS M51A - Logic Design of Digital Systems, CS 118
- Computer Network Fundamentals

CS M51A: More opportunities to design and
analyze circuits to aid understanding. I feel like
my understanding is kind of surface level without
this practice.
CS 118: More opportunities to interact with
networking systems and tinker with them to gain
a more intuitive understanding of how the
systems work, rather than just reading the slides
/ textbook.

CS 35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles, CS 180 -
Introduction to Algorithms and Complexity

CS 180: Add assignments that give practical
meaning to the algorithms that we learn (more
actual code rather than pseudocode only)

CS 33 - Introduction to Computer Architecture
CS 33, make the assignments not take 20 hours
every week.

CS 35L/97 - Software Construction Laboratory, CS
111 - Operating Systems Principles

reduce workload by pruning material or
spreading out across multiple classes.
alternatively increase unit counts

New Courses that students want to see added

Are there any CS classes or topics you'd like to see added to the curriculum?

Generally more modern and practical courses - web design, python, UI/UX

Yes.
Functional programming: this is briefly covered in 131 but does not include much about the type
system or more advanced topics such as modules or monads.
Data structures and algorithms: the current topics covered in 32 and 180 are quite basic and do not
include things like the implementation of self-balancing trees for instance.
Operating systems: 111 only covers the concepts of OS and I would like a more advanced class
where students implement an OS from scratch themselves (CS 235 seems to involve this but it
doesn't seem to have been offered in more than 10 years).
Programming language theory: 231 is an introductory PLT class but there are no further classes in
this area.
Compilers: 132 is an introductory class and there are no further classes in this area.
Constructive logic and category theory: this might belong to the math department but these topics
are useful in programming language theory.
Programming language design: CS C137A/B have not been offered in many years.

app development

search engines, distributed systems

Optimization

Probabilistic Programming & Relational Learning

Classes related to fintech, a discrete math class that is dedicated to CS (has more topics related to
CS, or can easily see CS application). Also I would be interested in further theoretical computer
science classes (after 181)

Computer Animation

Courses about UI/UX design, a more beginner/accessible web development course - CS 144 has a
lot of prereqs to learn basic skills like HTML/CSS (maybe w/ just CS 31/32 prereqs instead of a whole
chain of upper div requirements). I noticed that CS 144 isn't even offered this year :(

Mobile App Development

Blockchain technology, API design

Distributed Systems, Cloud; Web and App Development

I know there's a 188 class for this, but it'd be cool if Natural Language Processing was offered more
often!

Can we get some more classes on video game related technology?

Game Engines or Game Physics Simulations

Game Development

A second class on algorithms and complexity following 180, a more rigorous version of 231,
blockchain class, more ml, performance engineering

no

Game Development Classes (either creating or working with existing engines) through an
engineering focus (linear algebra, physics simulations)

Game Development

Additional classes in computer graphics and its applications especially in video games. I think that's
an area of computer science that hasn't been explored in the current CS curriculum at UCLA since
game development contains challenges that require interdisciplinary knowledge from physics and
mathematics.

Computer Vision

We need a course on video game development. As a previous student leader for UCLA ACM Game
Studio, I've seen firsthand the enthusiasm that a portion of the CS community has for game dev.
Right now, ACM is the only resource aspiring game developers have at UCLA, and I would love to
see that change.

representation learning

green computing

EC ENGR: C147 should be added to CS, not EE department

More offerings for the 174 track, game development

I would love to see more game development related offered! The lack of game dev courses at UCLA
had made me almost attend USC over UCLA.

I'd love to see some undergrad level classes on quantum computing. Even just a seminar would
help

Greater focus on software engineering and less on theoretical concepts

Game-related classes, more proof based algorithm classes, actual Software Engineering focused
classes

Distributed Systems

CS 134 !!!!!!!!!!!! more software engineering stuff, I liked the 188 scalable internet services; more 188
classes taught by software engineers or people who founded startups. honestly any of the old 188s
all sounded super cool, but I was too busy taking my required classes.. I don’t think I’m into CV or
NLP

Functional programming, game development, in-depth web applications, quantum computing
(undergrad), computational mathematics

Computer Vision, Web/Mobile/Full-stack development

Operating Systems Projects/Implementation

Reinforcement Learning, Deep Learning (should really have a CS offering instead of EE147),
Robotics

Computer vision

Computer Music, Physical Modeling, Debugging,

Game development, web development

More classes on computer vision, natural language processing (would be great if they were offered
more frequently). The topic of virtual reality would be interesting to be added to the curriculum.

Computer gaming,

web development;

Computer vision, web applications,

Distributed Systems

I think the content of ECE C147 (deep learning) should be added to the CS curriculum as well. The
content of CS 238 Quantum Programming would be nice in the undergrad curriculum. Also, robotic
manipulation and deep generative models.

HCI, UI/UX, Deep Learning, VR/AR

Courses that students want to see removed

No, but in case anyone else says 131 I want to say that I think 131 is highly relevant and should NOT
be dropped

Physics series, math 33b

Yes. CS M51A and CS M152A should not be required for CS majors as they are irrelevant for
software work (CS M151B is enough). People who want to focus in that area can still take them if
they want.

Ethics

CS97 :(

CS M152A

CS M152A

CS 1

cs m51a and onwards

M51A, M151B, M152A

CS M151B

CS35L

Engr 183EW, at least its current contents have nothing to do with its title.

181 might be good for students interested in theory, but it is too niche for all C's students to have to
take, in my opinion.

CS M152A

M151B - Happy the class exists, don't think it should be a requirement

no

I feel that some of the physics requirements could be loosened, particularly the physics lab
requirement.

engineering ethics

M152A M152A M152A M152A M152A M152A

Not necessarily irrelevant but I hope they can work more javascript into lower divs

M152A

CS 181 - seems completely not useful for industry/real world, simply a history of computation class,
should be an elective if students are interested in computation
CS M152A - should be an elective, too close to hardware/low-level to be a requirement for all
students

CS 1 - Make a weekly seminar speaker series over Fall quarter with open attendance so all years can
come if they are interested, and we are not required to go to seminars which we are not interested
in

CS M152A (CS M51A is enough knowledge for pure CS, I don't know many CS alums who could
readily do M152A things, but all remember M51A level material)

152a

I don't think 152A needs to be dropped, but I do think it needs to be significantly reworked.

M51A. Logic Design of Digital Systems, M152A. Introductory Digital Design Laboratory

None that I think are irrelevant, but I think it would be good to break up CS 35L into a couple more
dedicated classes towards the subject material covered in that class

CS M152A: Major EE vibes

CS M152A, CSM151B

M152A

Digital Design

verilog

Physics 4AL!!!!!!!!! CS M152A; CS M151B

CS M152A

Are you aware that undergraduate students are allowed to take
graduate-level courses?

Are you satisfied with current technical breadth offerings?

If not [satisfied with current offerings], which additional technical
breadth offerings would you like to see?

Political Science

I'd rather we just excluded sci-tech courses altogether, and let CS students graduate earlier or at
the very least deal with a slightly lighter courseload.

Game development classes!

DESMA used to be considered for sci-tech. For students interested in game development, removing
this option has been very upsetting because the only game courses currently taught at UCLA are in
DESMA.

English classes should be allowed for sci-tech

for sci-tech: English, Gender Studies, LGBTQ+ Studies

I would love if the DESMA track was brought back.

I understand DESMA was removed because of the bandwidth of that department, but it would be
great if that were still possible as a tech breadth.

philosophy

Philosophy, English, Tech Ethics, more humanities in general

Statistics

Tech breadth: Computational biology (specifically the dynamic modeling track courses). Also, a tech
breadth or sci-tech in quantum information could be interesting.

It's not fair and makes no sense that I can't take additional tech management classes for my
sci-tech if that's my tech breadth. I'm super interested in entrepreneurship and it's strange the
department is dissuading me from being able to include this learning for my degree.

Design Media Arts

Are you aware that undergraduate students are allowed to create an
ad-hoc track for their tech breadth requirement?

Are you satisfied with how we teach ethics in the computer science program? Why or why not?

Replace physics series with more classes related to ethics

Yes, one course of ethics is enough and manageable

No, I would prefer not having the ethics requirement and working it in small portions into other
classes instead

Less about writing, more about actual case studies and collaboration

I think it would be more useful if ethics was sprinkled into our classes where it can be applied so
that it is more clear where ethical boundaries exist. For example in the AI class or operating systems
we could talk about where ethics is important

No, no practical knowledge. No one is interested.

I wish that ethics were more integrated into all of our computer science courses instead of being
separated into its own course. The separation makes it seem as if ethics is a side topic that should
only be considered in parallel to software development when in reality ethical and accessibility
considerations play into every component of the final application and by extension the development
process. Having a writing course is good, I just wish that the discussion of ethics was integrated
more thoroughly in the CS curriculum.

No, though I haven't taken the course, I haven't heard good things about it.

Ethics should not be a class that students take only once. It should be integrated into the curriculum
of every CS class, where applicable. For example, Professor Sarrafzadeh talked about how data
science might be used to mislead people or cause negative outcomes in the first few lectures of CS
M148.

No. I think that the ethics class should be revamped and also less centered around writing. My ethics
class felt like two different classes. One where we read and write and one where we look at case
studies. I think the focus should definitely be solely around ethics than the writing portion.

Nope. I'm in my 3rd year of college and I haven't even had a chance to take the ethics course
because it fills up so quickly. What good is an ethics course after I've already taken so many CS
classes and started working? I should be wrangling with those ethical questions while I work not
after the fact.

N/A - Have not taken ethics

did not take ethics yet

No. Engr 183 at least is boring and scares people away from the topics it covers.

No, I don't like how so much of the course is spent on teaching writing practices, and how early in
the morning the class is.

No. There seems to be little practical application in using these ethical frameworks when everyone I
know forgets they exist after taking the class. They are treated as abstract ways of thought that are
not to be used in your career. The overall message of the class seems to be "be ethical" but doesn't
provide relevant cases to most of our careers. Obviously, the failure of a large company to do some
task is bad but it doesn't relate to our careers, where it is more likely we will see someone claiming
credit for someone else's code or embezzling.

No. I took 185EW. The main thing I learned from that class was how to divide up team project work.
Some stuff on avoiding killing people by reporting faulty products. Nothing on how to think about
negative societal consequences of my work. Perhaps better suited to Aero/Mech/Civil than CS.

N/A -- have never taken engineering ethics

I took the new ethics course that focused on computer science topics and felt that it was a very good
use of my time. While I can't speak to the other ethics courses myself, from what friends have said
my class was a lot more streamlined and relevant to topics that would actually affect me as opposed
to, e,g, a computer science student discussing the morals of a skyscraper.

No. It's a huge waste of time in its current iteration

I took the experimental ethics course that was geared toward Computer Science specifically, and I
think that is a great improvement over the generalized engineering ethics course which has little
relevance for CS students. However, I also think bundling the engineering writing requirement into
the same course as ethics is a bad idea because the course tries to teach you BOTH writing
techniques and ethics which are not really related. It was like two courses in one.

No, it's not engaging or relevant. We should integrate ethics into every class.

No, because the ethics we teach are strictly neoliberal (predictive policing doesn't need more diverse
datasets, it needs to not exist in the first place) and Western/Capitalism-focused. Also stop putting
the reform of engineering ethics on unpaid students who have enough to deal with.

No. There are too many cheaters.

No. For context, I took 183EW with Donald Browne and Gershon Weltman. The course definitely
demonstrates more-so the failures of managers/executives to respond to when engineers found
issues with the product, rather than failures of the engineers themselves. Also, learning ethics is
essentially equivalent to learning when to tell something is "good" or "bad," which I believe at this
point in life we should already be able to tell that ourselves. Either 1) stop masquerading an Ethics
course as an Engineering Ethics course OR 2) Teach us ways to organize in order to stand up for
what we believe is right. How should we discuss our actions with other engineer co-workers? How
should we consolidate power to override our executives? How do we navigate the line between
preserving ourselves within the system vs. wanting to oppose a part of the system? Maybe we could
instead study engineers who were whistleblowers. What were the consequences? Did they find allies
or were they shunned? What laws protect whistleblowers and how effective are they?

In conclusion, the older engineering ethics could definitely be revamped because there are so many
more interesting questions we could be exploring about an engineer's social responsibility.

Yes

N/A

no, there should be a dedicated class for this.

No; although I haven't taken the class (and won't because of petitions), everyone hates the class

There should be more emphasis and explicit mentions during classes.

Yes

Yes I took 182 with Villaseñor and I thought it was interesting+eye opening.

No. I think the generic EW classes are too disjoint from computer science majors and the problems
they will face in academia and in industry. The CS-specific offering of the class (which I took) still
didn't reach the level of depth I was looking for; I felt like it focused too much on "obvious" ethical
judgements (ex: don't lie about building a stable bridge), and less on trickier ethical situations (ex:
predictive policing, data privacy). I also felt like the discussions were very poorly used, and the
inclusion of Writing II is not done very productively (there is not as much focus on developing
specific writing skills, and it's completely removed from the course material).

I think it would be nice if ethics were introduced in every class rather than just having one
ethics-oriented class. For example, CS m146 is a great class to incorporate ethics into, but we don't
cover that.

I am taking ENGR 183EW currently and I think the class has been good so far.
I guess instead of doing a lot of writing, we could probably work more on problems as teams.
Instead of doing ethics worksheets, I think in person team scenarios where teams of students are
asked to solve problems while applying ethical principles would be much better . Basically, a more
"hands-on" approach. A fun class which allows us to explore ethics and actually understand by
applying them without the burden of solving worksheets and writing papers.

No, the ethics class is not very informative and does no require students to think much about
impacts of the specific technologies they learn about or will be building.

Have not taken it, but have not heard good things.

No, nobody takes the requirement seriously and it's all crammed into one quarter

Not sure.

Haven't taken the ethics course yet, but have heard from others that it is uninspiring

I feel that the discussion section in ethics is much too long, and the class is more of a writing +
ethics class than an ethics class.

Yes

If it were more embedded into the topics we learn rather than a separate class that'd be better.
Showing the potential bad effects of technology while learning it would be more effective.

no, engr 185ew was one of the worst classes I've taken here.

If you sought help from the HSSEAS academic office or counselors,
how helpful was the support?

UCLA CS compared to peer institutions

How does UCLA Computer
Science compare with the
curriculum offered at peer
institutions?

In particular, what is your
opinion on our coverage of
data science and machine
learning classes in
undergraduate courses?

How can the UCLA Computer
Science department further
improve the curriculum?

I think the coverage could be
better; it seems like other
universities offer more DS/ML
courses as undergraduate
options, while UCLA CS has 2 or
maybe 3 at best (with a lot of
overlap). Working with the ECE
department to cross-list some of
their courses like C143A and

C147 would be a good step, as
would developing seminar
courses that can be taught
concurrently with grad-level
courses.

I think UCLA CS is much less
rigorous than the CS programs at
many other institutions. For
instance, I took the equivalent of
CS 31+32 at Carnegie Mellon
University during one summer in
high school before coming to
UCLA. There we covered formally
proving properties about
programs, the implementation of
AVL trees and union-find, the
mathematical definition of big-O
and proving complexity of
algorithms, memory layout, and
did much more programming in
projects and labs compared to in
CS 31+32 at UCLA (which I was
required to take anyways). Also,
UCLA CS lacks advanced classes
in many areas of CS (taking into
account graduate courses as
well), including functional
programming, programming
language theory, operating
systems, compilers, and logic. Sufficient.

- Allow students who have
enough programming and
computer science experience to
skip CS 31 and 32 (perhaps by
offering some sort of qualifying
test, even if they do not have
credit for a formal course
equivalent to those). I did not
learn anything in those two
classes.
- Increase the amount of
programming in assignments for
most CS classes. I think there is
way too little programming for
most classes currently for
students to adequately
understand the material; the
only class that is somewhat
programming heavy is CS 132.
Too many topics are only
covered conceptually in class and
not implemented.
- Allow programming projects to
be submitted to a grading server
to be run on test cases and
receive a score, as many times as
students want before the due
date (again, the only class I have
taken that does this is CS 132).
This is more reflective of real
programming. This could cause
scores to increase so it could be
balanced out by making the
programming projects harder as
mentioned above.

- Add an honors program and
honors versions of courses,
similar to what the EE
department does, for students
who want more challenging
material.
- Add more CS courses so that
students can better specialize in
certain areas of CS.

can have machine learning in
other aspect except genetic

recording lectures, sharing
excellent projects in class

 Could be more

Good
Too many of the same material
being retaught Recording lectures

I think that UC Berkeley teaches
discrete math (CS70) as a cs class
with content that we do no
cover. I think that this content is
important for algorithms and
data structures.

Available grading scripts for
projects, recording lectures,
livestreamed lectures

 good
recording lectures, more theory
classes like cryptography

UCLA CS courses tend to be
more theoretical than courses
taught at other institutions

There seems to be a lot of
different data science related
courses, but I am still unsure as
to what the difference between
all of them is ie why should I take
Intro to Data Science instead of
Intro to Data Mining or vice
versa?

i feel that there aren't any
courses that go beyond the level
of machine learning that m146
covers, which is not a ton

recording lectures, more
structured lecture

I think we should not strive to
cover more data science and
machine learning in CS
undergraduate courses. After all,
there exist graduate classes or
undergraduate classes in other
departments (math, stats, ECE)
that cover a wide range of topics
in this fields already. More effort
should be devoted to making
students aware of these classes
rather than just copying them
over to the CS catalog.
Concretely, it would be good if
the CS department can more
closely work with ACM AI since
this committee of ACM already
does so much to interface with
undergraduates interested in
machine learning and data
science.

CS33 and CS M51A both teach
integers and floating-point
representations in the machine,
but I think only one class really
needs to.

Personally, I think UCLA CS is
slightly better in curriculum
offering because schools like
Berkeley and Stanford start off
with teaching Python and how to
apply Python to make "cool
things". Berkeley also has made
several classes like OS(111)
optional which is quite
problematic (understanding
concurrency and scheduling
especially is really important)

Quite good - By the time you
have taken CS 131, you will be
able to learn any new
programming language really
easily and that includes R. We've
also learned a good amount of
Python by then as well and know
how to use Python libraries. I
also think our lower level math
requirements are completely
reasonable in this context as
they give you sufficient
knowledge to understand the
theory behind ML. From

Don't reuse projects so much -
we work really hard on our class
projects and it's unfair that we
cannot show them to potential
employers to showcase our skills
without the dept calling it
"cheating". It would be also nice
if courses provided lecture notes
or make "READMEs" with
somewhat of a transcript of the
lecture - for some of us, reading
through can help more than
listening or "coding along"

personal experience, after taking
these classes and no outside
training/tutorials, I started
working in a lab where my duties
largely entail using data
science/ml approaches to solve
problems. The learning curve
was completely reasonable and I
was able to grasp whatever I
needed with 2 months time.

I think these needs to be more
coverage of data science in the
CS curriculum. Whether that
means it is weaved into current
classes's curriculums or there
are new classes offered.

Providing grading scripts for
projects would be extremely
useful.

I'm unimpressed. Stanford has
an iOS development course that
is incredibly popular, and we
have no equivalent to that. USC
has game design courses, and
again we have no equivalent to
that (or at least not one that
specifically entails to that genre).

Two years in, haven't had a
chance to take a single one. Why
aren't these classes mandatory
instead of some of the more
pointless low level ones,
especially given the direction
software and the world are
moving in.

Recording lectures is incredibly
helpful, I hope that continues.
Recording one discussion section
too is very helpful.
Sticking to timed, open-book
tests that were implemented
during covid, as they were much
better tests of knowledge and
required just as much effort on
the professor's part as our own.
Prof. Eggert actually did a great
job of that in CS 97 in the winter.

I would say that UCLA computer
science spends too much time
on theory rather than hands-on
practice. The Berkeley
curriculum for CS tends to be a
lot more hands-on and even for
their first-year classes, because
they spend so much more time
on hands-on application and
what exists in the real world,
they are able to cover much

N/A - Have not taken any data
science or ML courses yet

Use Git rather than zip files for
uploading code! Use GitHub
organizations to track who
pushed code and for students to
see what commits were made.
Use Gradescope for grading
assignments and to be able to
give feedback on written
assignments/hoemwork.

deeper, much more practical
topics in computer science
before UCLA students cover
them. I would say that UCLA CS
curriculum is also somewhat
outdated: for example, Stanford
teaches JavaScript for their intro
to CS courses and I believe that
teaching JavaScript or Python in
CS31 and CS32 would be a more
practical and pragmatic exercise
than teaching C++ which is no
longer as mainstream or widely
used as JavaScript/Python/Java in
building general purpose
software.

I took both M146 and M148. I
think these two classes went very
well together, since m146 gave
me the mathematical foundation
needed to really do well in m148,
where the implementation was
the main focus. I think before
m148 was added as an official
class, I thought the coverage was
lackluster.

Available grading scripts for
projects

IDK

Please add something related to
graphics, physics simulation, or
game engines in general. These
are complicated enough to be
taught in class and useful
enough to either push
technological development or
help students land a job in the
industry.

USC has several 2d/3d
interactive application courses,

such as ITP-380 and ITP-485. Of
the ~900 CS and CS-Games
majors at USC, 65 are taking
ITP-380 this semester. Because
of the limited graphics-centered
courses offered at UCLA, courses
similar to these would contribute
greatly to UCLA's CS electives,
and it would help broaden the
scope of the CS program here.

I think the UCLA computer
science curriculum is lacking
courses covering subjects related
to game development. It would
be great if the department could
offer a course similar to CS 113
Computer Game Development at
UC Irvine, or any of the 17
game-related courses in the
computer science department at
USC.

I think the machine learning side
has really good coverage, but
based on my internship
experience I think more
emphasis on the data science
part could be helpful for
students looking to work in
industry. In particular, the data
science courses could focus
more on data engineering,
extracting useful information
from "messy" data, and
augmenting data with additional
data sets. This would also help
differentiate the various data
science and machine learning
courses a bit more since there
would be a bit less overlap in
topics covered.

UCSD offers much more
computer vision and graphics
classes to their undergraduates,
while our computer vision class
is still experimental. There are
two graphics classes now, better
than last year but a far cry from
UCSD's many courses.

We need more computer vision
courses to be competitive in the
job market.

Create basic testing scripts for
students so they can check if
they are on the right track.

I'm not very happy with M146
and I've heard 145 and M148 are

very similar

UCI and USC offer much stronger
game development programs
through their CS departments. I
believe that, with video games
rising as an industry and many
game dev. giants like Riot Games
close to campus, UCLA should
also be developing a competitive
program to feed into this
growing industry.

Concepts are too similar
between 145, 146, 148. Add game development classes.

One of my largest gripes with the
UCLA Computer Science
curriculum was its lack of focus
on content geared towards
computer graphics and game
development that would be
relevant for a job in such a field.
The game development
experience I was able to gain was
entirely through student
organizations, which while
engaging and enjoyable, were
not a suitable replacement for a
rigorously designed coursework.
I am aware that other
institutions, such as USC, have
entire departments dedicated to
game development, and having
been part of ACM Studio for 3
three years, I can say that there
is an equally large community at
UCLA that would love to take
advantage of such resources.

Significantly audit all classes to
make sure at least some up to
date material is covered

I really like what Professor Majid
and Mirzasoleman are doing
with M148. It's taught in a very
accessible fashion and is a great
entry way into the world of ML

More transparent grading. I
know Cho and Palsberg publish
their autograder

and data science.

USC offers game development
courses and an entire game
development minor. Students
like me who are exclusively
interested in entering the games
industry are at a huge
disadvantage at UCLA where we
have no access to game dev
courses in the curriculum.

I do not have strong opinions
about it.

I think Covid showed a lot of us
that recorded lectures are a
convenience that should be the
norm. I also would like to see
UCLA implement a few more
self-guided projects where
students can make something of
their own choosing, outside of
just CS 130. A big strength of CS
174A in my opinion was a project
where students had to make the
graphics for a game or video of
their own creation. At Berkeley,
students work on apps of their
own design even in introductory
classes, and at UCLA students
have to turn to ACM and other
extracurriculars for their more
practical self-guided projects.

I like how theoretical it is.

I think the ML classes could be
more theoretical and
proof-heavy.

make grading scripts available
for projects

i saw a school (i forgot which one
L) that offered data science in
the context of afrofeminism. I
would probably be dead before
UCLA even considered offering
that class in the engineering
school (although it would
definitely be offered in L&S).

We need more machine learning
classes.

Reducing overlap between
classes.

I wish to learn more about
machine learning I think we need
more.

Reduce overlap and probably
different pre reqs for 35L if it is
not changed, also allow for
curves and make it more
accessible for those who did not
previously have a background in

CS and want to start learning

I took the Intro to Machine
Learning class but I don't think I
learned anything. It would be
more interesting if there was a
project-based class that helped
us apply the concepts to a
project of our own design?

- grading scripts for projects
would be nice
- recording lectures is great;
when it has auto-cc it's even
better
- more project-based classes that
teach industry skills??
- 2-unit technical interview prep
crash course?????

USC has a premier game
development and game design
tech breadth program that I
think I would have benefited
from majorly. Despite being able
to work in the game industry, at
times I still feel vastly
under-equipped in terms of hard
skills, like proprietary engines
and what core topics to study,
and all of the progress I have
made is by myself or with
student-led organizations.

There aren’t as many game
development classes at all

Continuing to record lectures
would be super helpful

I've heard that Berkeley has
much more CV/ML course
offerings than we have.

We should have more breadth of
coverage on ML topics instead of
just 1 algorithms course and 1
data science course that have
large amounts of overlap in
contents.

For specifically recorded lectures
- Implement Dr. Palsberg's
method of having a TA/student
dedicated to reading the Zoom
chat for questions. Many times in
other classes the professor is not
able to both read chat and cover
material, and will end up
ignoring/disabling chat, which is
detrimental to students who ask
questions through there.

I am a Ling and CS major and we
have not touched anything
relating to machine learning.

not enough data science
required for ling/cs

Although it's a weeder class at
Berkeley, their EECS16 series
provides lower-div exposure to
building hardware. It's required
for both EECS and CS majors.
Our closest equivalent I'd say is
M51A, but the course is based on
pure design rather than
implementation. I've heard that
we do more hardware stuff in
our 151 sequence, but that's an
upper-div which most people
don't take until late sophomore
or junior year, while my friends
at Berkeley are taking EECS16
during their first semester of
sophomore year. Have not taken them

As a very vague statement,
introduce topics in a way that
promotes the mindset that
they're good in themselves
rather than promoting the
mindset of how useful it is with
respect to SWE and industry

USC provides Game Making
classes. Game companies would
value this over a pure CS degree
with no exposure.

I'm not interested in these topics
but I know people would be
more interested in having more,
especially data science.

Available grading scripts for
projects (not just a basic tester,
the FULL tests should be
available to students. This is
supposed to encourage learning
and understanding)
Make hardware classes more
high level.
ALL LECTURES SHOULD BE
RECORDED GOING FORWARD.
A lot of professors should learn
from Smallberg's online exams
and Eyolfson's exams for testing.

I think it’s lacking compared to
institutions like Berkeley, CMU,
MIT and Stanford. When
planning courses, I noticed a
much smaller emphasis on
distributed systems and
infrastructure related topics Sufficient

Have more undergraduate
distributed systems classes

compared to theirs.

We don’t have distributed
systems class this year

I think there is a lot of coverage;
we have Intro to Data Science
and Intro to ML and then data
mining

Recording all lectures!!! Recorded
lectures have helped so much
with my time
management+being able to
follow along in lecture, slow
down when I need to take my
time to digest the material,
speed up when the material is
review so I don’t lose focus.
I also really like take home
exams because it’s a lot less
anxiety inducing; I don’t have to
worry about external factors like
getting a bad middle seat in
Dodd where the desk is slanted
forward so my exam is falling off
the desk, the student next to me
is left handed so they’re basically
taking their exam in my lap, and
it’s an open note exam so I have
45 pages of notes stuffed under
my elbow, feeling really
claustrophobic… Caltech has all
take home exams, and I feel like
it would allow us to actually do
our best on the exams and use
them as a learning experience
rather than an anxiety inducing
one.

I would love to see more
student-led classes like UC
Berkeley's DeCal program. UISE
is not sufficient (since it doesn't
allow enforced prereqs).

Other colleges (ex Stanford, MIT,
UC Berkeley) are more
aggressive with offering
experimental classes (their

I think there should be a clearer
path of what classes to take
when. CS 145 and M146 have too
much overlap in their content
(about 6 weeks), and my peers
have complained that Math 33A
does not adequately prepare
them for the class. We should be
cross-listing more advanced
classes in the EE department,

Available grading scripts for
projects is a great idea. Palsberg
and Cho doing it in their classes
makes the class much more
enjoyable and grading more fair.

Course materials and websites
should be more accessible to
those with visual impairments.
This includes screenreader

version of CS 188), often bringing
in lecturing professors. I'd like to
see more of that on topics that
are popular but not necessarily
research interests of UCLA profs
(ex game development,
differential privacy,
computational modelling).

and working more closely with
the math department to make
our offerings consistent. I think
CS M148 is a great step in the
right direction!

accessibility, higher contrast for
colorblind students, and when
possible, recording lectures.

I would like to see more
collaboration with other
departments; joint classes
between CS and the Info Studies,
Math, Public Policy, etc.
departments is a much better
use of UCLA as an academic
institution!

Why are most CS class lectures 2
hours? They are so dense that it
is hard to retain everything, I
would do much better with more
frequent 50 minutes or 1 hours
lectures. I also feel that all
lectures should be recorded--it
makes things more accessible.
Why do CS majors have to take
so many physics classes? It
makes no sense at all. There are
also a lot of low-level computer
engineering-like classes which
don't seem relevant for CS
majors, but more so for CE
majors. Also, the CS curriculum is
very theoretical at UCLA--I would
love to have more practical
classes which would better
prepare me for industry.

I have yet to take the courses,
but from what I heard, CS M146
is very mathematical in nature. I
feel like project-based courses
for Machine Learning and Data
Science would be great, but I am
happy that UCLA does have
these classes offered, even if

Recording all lectures would
definitely be great! In addition,
reducing overlap would be good
as well, particularly with
discussion sections.

maybe there were things to
improve upon.

We can have our Discrete Math
and Probability requirements
offered as CS courses taught by
computer scientists from the CS
department instead of other
departments. I am comparing
this with UC Berkeley who have
CS 70 to teach discrete math and
probability and Stanford has CS
103 and CS 109 which cover
discrete math and probability
respectively. I guess it would
help create a more tightly knit CS
community and allow us to tailor
the courses to make them most
relevant for CS topics.
CMU has 15-410 which is
Operating System Design and
Implementation, which gives
crucial project experience in
systems programming which is
hard to learn on our own
compared to stuff like game
development or machine
learning for which there are
clubs. Would love to see a CS 111
"part 2" where all we do for a
quarter is a project
implementing an OS or parts of
it. CS 132 does this pretty well for
compilers by the way.
Also, please bring back CS 134:
Distributed Systems! Very
interesting topic and course,
which seems to not be offered
anymore sadly :(
Also, can we revise the Math
requirements to not require

Create a separate School of
Computer Science which runs on
a semester system.
Now that would help us go next
level.

Math 32B and 33B of every CS
major? UCSD has done away with
those requirements for CS
majors, and they can be taken by
those CS majors who intend to
use those topics in their upper
divs. We could better spend that
time learning logic, more discrete
math or more from the CS 33
topics or even just another
elective.

Stanford, Berkeley, and MIT all
have much richer choices of
electives.

Current coverage is poor. We
are missing permanent NLP,
Reinforcement Learning,
Unsupervised Learning,
Roboitcs, and more courses.

 Needs to be a little more unified

We should cover it more early
on. We in general, I feel like our
projects for lower division
classes can be revamped to be
more sampler-esque.

One thing I really enjoy about CS
161 with Professor Van den
Broeck is how he uploaded all of
his Zoom lectures from a
previous quarter. This gives a lot
more flexibility in my schedule,
as I can go to class or decide to
watch the appropriate recorded
lecture on my own time.

I would love more classes
dedicated to ML

Recording lectures +
discussions, available grading
scripts for projects

UCLA CS curriculum is overall
more theoretical. A lot of other
schools will have more
application and programming

Recording lectures and reducing
overlap with other classes will
be very useful. More
applications for courses such as

involved. For example, UC
Berkeley has a "Full Stack Deep
Learning" course with a group
final project at the end, which is
useful since it provides a
comprehensive introduction to
integrating the stack with
artificial intelligence while
providing practice and freedom
for student's to explore other
topics when generating their
final project idea.

CS180 or ones more
theoretically based.

I took Data Science class. It was
really helpful understanding the
myth behind the ML/DS field.
(and to realize I wasn't that
interested in them)

cs143 auto grader is really
convenient. Other classes
should have that as well so
students won't be confused
about edge cases.
More practical projects, less
theoretical exams. I think most
engineers and CS learn by
examples and mistakes while
doing but not just hearing from
lectures.

Grading scripts for projects,
recording lectures always.

 Pretty good! alter physics requirements

Having recorded lectures has
been very helpful

UIUC integrates more recent
technologies and applications
into their introductory
computer science classes. One
example that stood out to me
was that one of the projects in
their CS32 equivalent was based
on simple handwriting symbol
detection. I feel that classes like
M146, M148, and the 188 series
really allow students to get

Having audited a few classes
from both, I really enjoy M146
and M148 but wish there was a
way to incorporate those
concepts more into the core
curriculum instead of having
them be an elective focus

excited about real-world
applications like those
mentioned above, but it would
make the curriculum so much
richer overall if projects in core
classes (e.g. 32, 111) also
touched on more recent
interesting applications.

I feel our coverage is quite good
and broad. I've taken 145, M146,
and M148 and received A's in all
of them. I also know we now
have NLP and Computer Vision,
which means we have 5 data
science/machine learning
courses, which is more than
ample enough .

Available grading scripts/test
cases for projects
Recording lectures

I believe Stanford and UC
Berkeley offer a more
comprehensive set of deep
learning / machine learning
courses.

I believe they are insufficient for
what I wanted to learn, and I
frequently am going outside of
class to get information in
machine learning / deep
learning. Data science is ok I
think.

I think I would internalize class
concepts better if there were
more opportunities to generate
or interact with the systems that
we are studying. For example,
making more circuits in M51A,
analyzing simple networks on
the command line in 118, and
writing algorithms in 180. There
are sometimes big projects in
these courses, but it would be
nice if the homeworks
incorporated more practice of
these skills.

Limit hours of homework every
week. Professors seem to have
the mentality of "well I've been
through it so they should have
to as well," this greatly increases
the anxiety and depression
levels among students who
have to undertake the work.

I think the addition of 148 is a
big improvement. I don't know
how I feel about 145 and 146,
they seem to overlap in a lot of
material. I'd like to see a non
graduate level deep learning
class offered by the CS
department itself, as well as
more classes on cutting edge
ML research like graph neural
networks, vision transformers
etc.

standardized requirements for
project specs

CS Research

If you are already involved in CS Research, how did you find this opportunity? If you are not
yet involved but are interested, what is the primary roadblock?

I'm not sure where to start. It's intimidating to cold-email a professor or graduate student at a lab
when I feel like my knowledge as an ungrad just doesn't measure up, but I don't see any listings for
positions specifically for undergrads, so I don't know how else to get involved.

Research portal lists few opportunities, not hearing back from profs

I emailed a professor.

Finding avenues in to meet profs

Professors don’t want me

Reached out directly to professor

Lack of undergraduate openings.

I am developing technical solutions for UCLA Health but am not part of a formal research lab. I want
to try joining a lab at some point, but am unsure as to what all the labs are, which one take
undergraduates, what they do, etc.

i knew an upperclassman who introduced me to the lab she was working in

I emailed people in the CS department to ask for research opportunities.

I think the primary roadblock is just experience, especially early on in the major.

I have no idea how to get into it, and the corporate world of internships just seemed more appealing
(and paying) so I haven't worked to rectify that.

I found it by cold emailing professsors until I found one that was intereste din taking me into the lab.

I don't know where to get started. Also, because most of my peers were focused on going into
industry, I hadn't even considered the research path until now (I am a third year). Feeling "late" to
research makes it harder to get started.

Not enough time

seems I should take some more relevant classes before getting into it

n/a

through CS 1

internet research initiative - howevver i want to get involved in research that combines CS and other
disciplines but barely anything in the CS dept offers this

I joined a biology lab that uses computer science for research.

´The main roadblock with everything in my life: I don't know where to start and the activation energy
for the chemical reaction that leads me to start is extremely high

Time, approachability of professors I've never met

Undergraduate research portal. However, I wanted to find distributed systems research, but can’t
find any even with outside googling around.

too busy :/ and it's hard to find what research opportunities are available, lab websites, research
portal, etc. are all outdated!

I found the opportunity through a lot of google searches.

A lack of guidance on how to apply to CS research labs.

Emailing professors

The roadblock is being able to talk to some of these professors since they teach upper division
courses not all undergraduates can enroll in early on.

I don't think I'm qualified

I don't have a lot of experience right now, but am interested in finding new opportunities to learn
more

Although I am very interested in research, most of the areas I'm interested in happen to be in ECE -
so not necessarily a problem with CS research per se

Academic Honesty

Suggestions on how the CS department can mitigate cheating

If you have any other thoughts about cheating at UCLA CS or suggestions on how the CS
department can mitigate cheating, please leave them here.

Online proctoring solutions quite frankly suck, and don't disincentivize cheating. Online
non-proctored (or Zoom-proctored) tests are fine if they're open note, but proctored tests should be
in-person.

Don't reuse the same assignments every quarter, and make assignments and exams harder

The culture of cheating sucks and is part of what makes UCLA a second rate CS school (below
Berkeley/Stanford/MIT/CMU) in my opinion

while this requires effort in the part of the professor, it would be great to have fresh
exam/assignment questions every time. i understand it might take a lot of effort to do this, but it
eliminates the possibility of students cheating. also, when it comes to exams, it then gets rid of any
unfair advantage some students might have from access to old exams.

I personally dont think cheating can be eradicated having experienced online school

Prof. Cho's projects/specs are a good example of a reasonable assignment that can be done without
90% of the students using GitHub. They include clear directions, specific links to tutorials,
reasonable expected work, and good connection to course content

Knowing my peers are cheating on exams is a big factor in curved classes. Putting honest students
at a direct disadvantage seems very unfair. Sometimes, the professor isn't clear about the curving of
the class, which prompts more people to cheat as well.

I don't hear about people cheating on exams, just the projects because of the heavy workload.

Cheating is rampant in the UCLA CS community, and far too often people discuss it as if the people
who are cheating are morally corrupt or hindering their own learning by doing so. The truth is, the
CS curriculum is so demanding that cheating becomes a necessity for many if not most students.
Each time I cheated, I would look at an online posting of a previous student's solution in order to
help better understand a given homework assignment and one of its possible solutions. Cheating
like this could save me anywhere from one hour to an entire day, and despite saving time like that I
still never felt I had enough time at any point throughout college. The amount of time that
professors demand from their students in completing coding assignments is frankly unacceptable in
my eyes, and that will need to change before we see any improvement with CS academic dishonesty.

People who copy code from github for projects should be publicly humiliated in front of their
parents, and then expelled.

Please give students time and respect their mental health. Also giving assignments so students can
practice what they actually learn in class could help instead of giving hard assignments where we
have never learned or talked about how to do it.

Regarding "How much do you think your professors have considered your mental well-being," I think
having a hard policy on not allowing any late assignments is a sign of not considering mental
well-being. I appreciate Eggert's late policy. I appreciate when profs say "Hey you can turn stuff in
late, just notify us and we can work something out. You don't need to explain" because sometimes
you're just In The Thick Of It and it's painful to explain. Obviously on the opposite side is the
TAs/graders/profs who have to deal with late assignments. (how about we abolish the idea of grades
whatsoever)

Placing such a large emphasis on projects massively encourages cheating. Perhaps each project

could be broken down into modules which are then tested and graded as smaller things(eg: The
game we make in CS 32 could be broken down into components such as rendering, physics, etc.)?
You could still collect the project at the same time, but I think that students really cheat because
they don't want to get a failing grade on a large assignment.

dont give assignments on random things we did not learn @eggert

Make project requirements more reasonable and based off of what was covered in class.

I've never even thought about cheating in classes where the projects are interesting to me, or if I can
at least see the end-goal. When projects become outdated, tedious, and confusing, the temptation
to cheat grows

My personal reasons for cheating (only ever on assignments) have been lack of time and/or how to
start the project was never discussed in class. I believe the biggest culprits of this are 111 and the
old 35L, where I understood the theory behind the project, but had no idea how to start or translate
the abstract ideas I learned in class into code. For 131, I believe that the class goes much too
fast-paced (learning a new language every ~2 weeks is quite ridiculous to me), especially since the
projects are not simple and would be fairly difficult in other languages. For 131, I believe the class
should be slower, project difficulty lowered, and/or having more of a difficulty buildup for learning
each new language.

On a personal level, I'm morally fine with cheating on homework, but am not and have never
cheated on a test. To me, homework and projects are to help aid and reinforce the student's
understanding of the subject, and tests are meant to test them. Thus, I'd much rather cheat on a
homework and understand the material (thus achieving the goal of the homework) rather than be
completely lost, fail the homework, and not understand the material (opposite goal of homework).
To mitigate this cheating from my ethical standpoint, professors should: lower the weight of
homework, make homework only based on completion, and/or release the solutions for the
homework after the due date (or even before! if a student uses the solutions and thus understands
the homework, didn't the homework achieve its goal?).

Diversity and Inclusion

Implicit bias in the CS community

If you answered yes, please share your experience with implicit bias, if you are comfortable
with doing so

I have experienced implicit bias on multiple occasions from professors and TAs in my CS courses at
UCLA. These incidents have been based on my gender. I have been talked down to and treated
differently than my male counterparts in multiple instances.

As a female student, I get treated very differently from my male peers, both from professors and
other students. They assume a lower level of competence from me. In several group projects, I have
been consistently talked over or my ideas ignored. In general, professors tend to refer to any
generic student as male. Sometimes, they remember to add a "or she" to a usage of "he" with a
statement on how it is possible for anyone to be a generic student. It's not great to see a female
name pop up once on a test when the rest of the example programmer names are male. Female
students are not seen as a default possibility.

being talked over / ignored in a group setting

stable matching in 180

Male students and professors are less respectful to female and non-binary students.

Some male students have expressed that they believe women in CS are naturally inferior. A male CS
student, unaware that I am in CS, told me they thought women were handed internships at big tech
companies simply because they are women. This discounts the work I put in to earn my internship
offers and makes me believe that I did not earn the internship purely off of my own merits.

Implicit bias in the clubs

If you answered yes above, please share your experience with feelings of exclusion, if you
feel comfortable doing so

some committees in acm are pretty intimidating. other cs clubs like devx make me wonder what im
doing with my life

ACM did not make me feel welcome as a low income student

IEEE

There are cults, aka "fraternities/sororities" that waste people's time and energy.

Some groups take pride in rejecting many club members/being an "elite" community. I think this is
an uninclusive way of running a club. Prime example is DevX!

Feeling welcomed because of clubs

If answered yes above, please share your experience of feeling welcomed, if you feel
comfortable doing so

In ACM they made a point to give all minorities in CS an interview, regardless of previous
experience, which I appreciated. It allowed us to show our current skills, whereas I feel a lot of one's
success in CS is usually contingent on things that you studied, worked on, or participated in in
before college, either directly or indirectly.

despite some committees in acm being intimidating, i LOVE acm and i am so glad i came to ucla
because of it

ACM

Society of Women Engineers

ACM is very welcoming and friendly

ACM's gay events <3

Learning Assistant Program

Bruinwalk was really inviting to me as a freshman

ACM is welcoming of all backgrounds.

ACM - it has been a great way to meet other people in the CS community, and learn about different
fields that I hadn't heard about before!
Creative Labs - I like how they take interdisciplinary approaches to tech seriously, and it's good to
meet people outside the CS major!

ACM is very welcoming.

ACM

Mainly extra curricular clubs that are very welcoming. The no judgement towards people with less

experience, the help provided, and the kind attitude.

Specific moments of feeling excluded

Are there any other specific moments where you felt excluded? If you feel comfortable
sharing, tell us about what happened

Nothing specific can be done to address this, but a clear gender imbalance/being only 1-2 females
in a room can feel really really really overwhelming and prevent an individual from enjoying an
event to the fullest

Many cs/tech student orgs on campus are very industry-focused, which makes sense, but as
someone who wanted to pursue grad school/research, this continuously created a sense of
self-doubt from the lack of relatability.

There should be a crackdown on cults.

I think the specific moment is when I look around my 200+ lectures and there is no one else that
looks like me or when I look at the professors for my classes and TAs and I dont see any that look
like me. The field as a whole needs revamping though.

I feel unsafe with Professor Gafni, a racist and misogynistic person (this isn't for debate, there are
more than enough evidence points to back this claim up), leading the department. It's bad for the
image of the CS department. I don't feel like I belong as a result.

Gafni's comments made me feel excluded as a Chinese-American.

There's a lot of elitism around how smart you are. People have looked down on me when I've asked
for help or expressed confusion around me. It wasn't just that they said no to helping, but they
acted like I was some weirdo for needing help.

Shoutouts to people that included you

On a more wholesome note: is there a specific person(s) (a professor, TA/LA, student leader,
peer) who has made you feel particularly included? What did they do?

Matt Wang! (President of ACM.) He always makes it clear how important diversity and inclusion is to
him, both in words and policy, so I trust that he is working on systemic changes.

Yes! George Varghese, John Cho, & Pradeep Dogga. They were extremely inclusive and supportive
while taking their classes. They really value mental health and inclusion and it shows!

My 181 TA, Hadley Black, really helped me in trying to pursue grad school. He was very
approachable and understanding of my situation, and I felt comfortable asking for help.

John Cho made me feel very included in CS 143, he took student feedback very seriously

Carey Nachenberg has made me feel more at home as a queer student in computer science. I
attended QWER Hacks a few years ago and even though he had to call in sick for his keynote
speech, we still got to see his slides and it felt good to see someone who I already looked up to
owning his identity as an LGBTQ+ computer scientist. Also, shout out to the students who
organized QWER Hacks for giving us a space like that.

Kai-Wei Chang has a very inclusive and supportive lab!

Shoutout Reinman for being the only professor I saw to say Black Lives Matter!

Dr. Eggert and Dr. Yang have been phenomenal.

I just love Carey Nachenberg for making CS 32 fun, which is probably a way to be inclusive

Tim Hunter, professor of Ling185A

Carey brought lots of people from varying backgrounds in during his lectures, which gave a nice
tone to the class

Smallberg and Carey are quite possibly the greatest people in the CS department. I want to shout
out Jon Eyolfson as well, although he isn't part of the CS department officially. He's such an amazing
instructor as well and makes me feel included in the class.

Miryung Kim has been so welcoming to students, especially in her advising sections and for inviting
international students to thanksgiving with her! Plus, she's just so nice, and it's very refreshing
(especially since other professors can be ... distant).

I really look up to Arjun, Sharvani, and Yvonne in ACM. They all did a great job of making diversity
and inclusion a focus for the club.

Carey Nachenberg, John Cho

A lot of people especially the officers of UPE and leaders of Bruinwalk have made me feel extremely
included. Their sincere attitude to help students, and encouragement is very appreciated coming
from a student who did not have a strong background in CS before college.

Carey Nachenberg does a wonderful job of making sure women's voices are heard during his
lectures! He makes an effort to use varied pronouns when using examples instead of "defaulting" to
just using he/him pronouns.

Specific moments of feeling included

Are there any other specific moments where you felt included? Tell us what happened!

When professors (I remember examples from Carey, Smallberg, and Sarrafzadeh, my STATS 100
prof) sometimes describe an example person/computer scientist during lecture and use "she" or
"them" instead of "he," I am always slightly surprised because male is usually the default. Waiting
for the day when we get an example person who uses neopronouns~

Imposter Syndrome

Feelings of inadequacy

Have you ever experienced feelings of inadequacy while at UCLA? Please share your
experience if you are comfortable with doing so

Yeah, constantly and deeply! There isn't really a specific experience I can point to... it is probably
more of a personal issue than anything else.

Yes

internships. i hate the internship application process in general and am lowkey considering putting
all my effort into research just so i dont have to deal with that bs

I constantly feel inadequate. I will be graduating soon and I feel like I have no job prospects ahead
of me and everything is downhill from here.

Yes I feel like people think my achievements were handed to me more/easier because I am a
woman and have had people say things to me about how I got my internship/research

The whole attitude towards internships in general! It's really common for people simultaneously to
be endlessly thinking about/applying for/leetcoding and then just casually bringing up that they got
into an internship as if its the easiest thing in the world (spoiler alert: it's not!) There are factors
other than technical abilities that play a role and here, if you feel like you're not willing/able to go
through the internship grind, there's an underlying attitude where you are looked down on by your
peers.

This mainly came from the overwhelming pressure for getting internships / going into industry.

Not having an internship during my 2nd year summer

I absolutely have felt extremely inadequate in UCLA computer science. I have been surrounded by

high-achieving students who are going to work at FAANG companies, and this environment causes
me to feel like I'm not good enough. I made the decision early on that I didn't want to take a heavy
tech job or one at a huge corporate company, and even with my confidence in that decision I
constantly felt a pressure from my peers that a Facebook or Amazon tech job should be what I'm
striving for and achieving.

Have felt like my research output was insufficient to get into grad school

yeah literally all the time i was doing really bad during recruiting season and everyone else seemed
to have their sh** together

I made a typo and almost quit a class on the first day because I could not find the typo.

I am a ling and cs major who wants to transfer into the CS major and I feel as though there is way
too much pressure on grades, and it stresses me out to much to the point where I have too much
anxiety to even start my hw. I always feel inadequate compared to my peers because I feel like
everyone is so far ahead of me.

Ayo those internships tho!!!! 4th year and I haven't done a single one :)))))) It's mostly my fault but I
would probably feel more supported if our classes taught us industry skills and there was a 2 or
3-unit class that just covers interview prep

Always

I feel uncomfortable when people ask me what companies I've interned at as I have not done an
internship yet.

I have often felt inadequacy, especially when comparing my experiences with the experiences of my
peers. This mainly includes the topic of internships (many have had prior internship experience)
and general knowledge.

In pretty much every class I feel like an imposter, I feel this is largely due to the fact that the
professors make almost every class I've had in the CS department super hard and time consuming.
They expect you to pick things up fast and don't give much leeway.

UCLA CS and accessibility

Do you have any comments on UCLA CS and accessibility?

Most content (ie for classes) is not visually accessible at all. Also there seems to be a clear split
between professors who are nice and open to answering questions and those who would make you
feel like you know nothing if you try to answer a question

The strict deadlines set by many of the professors in the department are not very accommodating
to students with health conditions. For example, I have a health condition that ensures I effectively
cannot think for around 4 days a month. If one of those days happens to be before a CS project
deadline, I have lost valuable time and need to crunch projects in time, as there aren't flexible
deadlines. The same goes for any other student who is ill for any reason, or dealing with emotional
or mental health issues. Eggert's usage of a late deadline has been extremely helpful to me and
other students in that regard, allowing us more time to understand our progress but recognize the
delay with the percentages cut off from our grades.

UCLA CS should record all lectures and make slides available before class.

We should have all CS classes be remote whenever possible. Our major is to be stuck behind a
screen.

Certain classes require so much time and effort that it doesn't feel like the class is accommodating
to individuals who require working a part time or have certain disabilities.

Course websites and powerpoints should be visually accessible! Also, having all classes be recorded
is super helpful for disabled students, especially if physically getting to class is very hard.

How can the CS Department further improve their focus on
diversity and inclusion?

How can the CS Department further improve their focus on diversity and inclusion?

Please replace Professor Eli Gafni as chair of the department.

I don't know how realistic this is, but I would love to see more diversity among professors.

not have someone who clearly does not care about diversity and inclusion as the department chair
: D

Reassess the way they present themselves to students (both in person and online)

I have not taken a single class with a female professor. I feel like having a female professor in one of
my earlier classes would have helped me feel like I belonged more and decreased my sense of
imposter syndrome.

It's really hard for me to believe that the CS Department can have a focus on diversity and inclusion
when its current chair has used terms like "Wuhan Virus" then justifies this behavior by bringing up
that "he has a Chinese wife" and "loves Chinese" with a wink face emoji. This language alone makes
me feel unsafe in interacting with CS faculty and department leadership.

His apology was also inadequate. Student's aren't stupid, we can tell that half of Gafni's apology
wasn't even written by him.

By actually publicizing and supporting D&I work done by students while it's happening instead of
inhibiting it and taking credit for it afterwards. Also stop relying on unpaid student labor.

They do not need to.

more diverse faculty, people with different experiences

As a freshman I joined organizations because of my minority identity, but I had to put in the work to
seek those out. I think it would be helpful if upon being admitted to UCLA CS, every student gets
mailed and emailed a brochure of CS/engineering orgs they could join. Then, orgs for minorities
could be highlighted. However, this also costs money so we know it's not gonna happen :)))

Being receptive to initiatives brought about by student orgs

I would like to see professors and administrators put in a better effort to understand student
problems. I have never (in my 4 years here) been asked by a professor or administrator on how
they can do better, and to me that's quite upsetting. In addition, the department needs to do a
better job of showing actionable steps taken from feedback!

How can professors further improve their focus on diversity and
inclusion?

How can professors further improve their focus on diversity and inclusion?

I suppose, assume as little prior knowledge as possible?

Use gender-neutral words when referring to made-up people. Do not treat female students
patronizingly and treat them like they are any different from the rest of the CS student body.

Treat student feedback more seriously, tell us what changes have been made from such feedback
(like end of quarter student course evaluations)

Treating everyone "equally" is not enough :/ make sure to acknowledge the ways you and the
school are trying to support Black, Latinx, and Indigenous students, LGBTQIA+ students, and
neurodivergent people. Make your service diversity and inclusion-oriented. Stop placing the burden
of mentoring minoritized students on minoritized professors. Talk about how your research
impacts diversity and inclusion. Recruit minoritized students to your lab.

They do not need to.

Something I really like is when professors offer more opportunities for feedback throughout the
quarter (I've heard that John Cho and George Varghese both do this). Profs should do this more!

If you have any other thoughts about diversity at UCLA CS, please
leave them here

If you have any other thoughts about diversity at UCLA CS, please leave them here

Diversity is not just a "pipeline" problem!

	CS Town Hall F21 Survey Responses
	Curriculum
	Courses that students enjoyed
	
	Courses that students think need revamping
	
	New Courses that students want to see added
	
	Courses that students want to see removed
	
	Are you aware that undergraduate students are allowed to take graduate-level courses?
	Are you satisfied with current technical breadth offerings?
	
	If not [satisfied with current offerings], which additional technical breadth offerings would you like to see?
	Are you aware that undergraduate students are allowed to create an ad-hoc track for their tech breadth requirement?
	If you sought help from the HSSEAS academic office or counselors, how helpful was the support?
	UCLA CS compared to peer institutions
	
	CS Research

	
	Academic Honesty
	Suggestions on how the CS department can mitigate cheating

	Diversity and Inclusion
	Implicit bias in the CS community
	
	Implicit bias in the clubs
	
	Feeling welcomed because of clubs
	
	Specific moments of feeling excluded
	
	Shoutouts to people that included you
	
	Specific moments of feeling included
	
	Imposter Syndrome
	
	Feelings of inadequacy
	UCLA CS and accessibility
	
	How can the CS Department further improve their focus on diversity and inclusion?
	How can professors further improve their focus on diversity and inclusion?
	If you have any other thoughts about diversity at UCLA CS, please leave them here

