
Joseph Spens - Case Studies
I’ve worked on a number of systems over the years, and each system
classification comes with its own joys and challenges. The purpose of
this document is to highlight a set of challenges and how the chosen
system design addressed those challenges given the available
resources.

Application Data Model - Level
At Level I designed an application data model for our customer experience teams that
decoupled them from our backend data teams, facilitated faster iteration of feature
development for the application teams, and reduced risk of action at a distance with
schema changes for our backend data teams. This data model was identified through
novel approaches to defining application features, and encoded into backend protobuf
APIs. I then embedded in backend teams to push the technical debt down the stack into
the data layer where a new data model directly supported our application use cases.

Rights Management System - Spotify
At Spotify I designed a rights management system meant to consolidate all the recording
and publishing rights known to Spotify about its catalog of 80 million tracks and derive
licensing and market insights for our litigation and licensing teams. We derived the initial
comprehensive music domain model for our organization, prototyped multiple entity
resolution systems with Dataflow pipelines in Scala, built resilient React web
applications in TypeScript, layered gRPC services in Java, and robust PostgreSQL and
ElasticSearch datastores.

Background
The litigation team at Spotify is responsible for responding to litigation claims made
against the streaming catalog by alleged rights holders of the catalog content. In order to
determine the validity of those claims, the litigation team (non technical lawyers) data
dive across many disjoint datasets of unstructured raw data ingested from third party
providers. This process takes, on average, about 7 months to assemble sufficient data to

https://en.wikipedia.org/wiki/Action_at_a_distance_(computer_programming)

respond to claims, and this data is almost always untrustworthy and contradictory
(multiple rights holders each claiming 800% ownership).

Spotify created a company bet (a highlighted company objective defined in its Rhythm
planning system) to design a tool for the litigation team to surface these licensing
insights automatically.

Challenges
1.​ Create a centralized and canonical understanding of of rights information

scattered across the company

2.​ Identify rights for content at the scale of Spotify’s catalog, which at the time
contained around 80 million musical tracks (recording) described by hundreds of
millions of fragmented musical works (publishing)

3.​ Align the signals we collected from disparate sources around a shared domain
model to derive emergent insights

4.​ Process this information across a historical context to understand what Spotify
knew at a specific date in the past

5.​ Over time we acquired new customers on the licensing team, whose use cases
involved using licensing and market insights to negotiate contracts with rights
holders

Solutions
To address these challenges we assembled a number of Dataflow pipelines to pull data
together into centralized Avro datasets, which we used to populate an Elasticsearch
datastore and a PostgreSQL database. That effort required so much resource
investment we ended up creating a new squad from that workstream solely to manage
publishing ingestion. We added some Java gRPC services to vend the ingested data to a
React web application used by our licensing and litigation teams.

A key feature of this system was deriving a licensing insight about our content. Given a
musical track, a date, and a territory, to what degree was that track licensed in that
territory on that date? Our approach was to introduce an event based construct called a
licensing event which represented a change in the licensing of a track on a specific date,
which we derived in our pipeline jobs. With that new entity added to our domain model,
we were able to quickly and efficiently build timeline visualizations and search
capabilities to visualize the change in licensing over time.

https://blog.crisp.se/2016/06/08/henrikkniberg/spotify-rhythm

The system we built shortened the time litigators spent data diving from 7 months to 24
hours.

Our investment into a unified domain model across recording and publishing domains
laid the foundation to what would eventually evolve into a more broadly used music
ontology and Spotify’s first knowledge graph.

Content Annotation Platform - Spotify
I also designed a content annotation platform to platformize access to ground truth
training and evaluation data for machine learning engineers and data researchers, to
which we successfully provided tens of thousands of human annotations each month.
We derived the initial comprehensive human-in-the-loop domain model for our
organization, facilitated ETL processes through Flyte pipelines in Python, and enabled
rapid development iteration of highly precise machine learning models through active
learning, transfer learning, and measuring training dataset quality.

Background
Investment in machine learning has been a core company strategy for years, and one of
the largest impediments to quick and effective model development (not to mention
monitoring once in production) is the availability of ground truth datasets for training and
evaluation.

The Content Intelligence product area consisted entirely of squads building binary
classification ML models for entity resolution in order to produce canonical datasets for
our novel knowledge graph. The availability of ground truth datasets for the models in our
domain were particularly sparse, so we were chosen to adopt the mission to platformize
access to ground truth training and evaluation data, initially in service of squads within
our product area as a prototype. The long term goal would be to provide the same ease of
access to annotations for other use cases across the company including, but not limited
to, audio intelligence, content moderation, personalization, and podcast advertising.

Challenges
1.​ Simplify and streamline the access to human annotations for customer teams

2.​ Create a shared understanding of common annotation needs across machine
learning and data research teams

3.​ Measure the quality of annotations and deliver high quality annotations to
models needing ground truth datasets

4.​ Provide tools to annotator managers to efficiently load balance annotators across
annotation projects

Strategies
We were a small team and identified at the start that we’re not in the business of building
and maintaining annotation tools. The domain is complex and there are many solutions
in the industry.

One day our journey might have led to an in-house annotation tool, but for the foreseeable
future our mission could be achieved through acquisition of managed annotation tools.
For that reason, we adopted a key strategy of buy over build.

We were in early discovery of identifying customer personas and use cases, therefore
without specific annotation tool requirements, so we also adopted the strategy to remain
tool agnostic.

Our third strategy was platformization, which was identified explicitly in the mission and
aligned with broader company strategy.

Solutions
These strategic principles guided us towards prioritizing the facilitation of unlabeled data
in and unlabeled data out of annotation tools, and we adopted an initial set of OKRs to
define facilitation success. We implemented a set of Flyte pipelines in Python to move
data in and out of our annotation tools, with some light pre and post-processing for our
customers. Customers could manage these ETL workflows by interacting with an API
gateway through one of several client libraries, a pipelines library for model developer
customers and a command line interface for model researcher customers.

Our next set of objectives measured ways for us to improve the quality of annotations,
which we achieved through educating our customers in unlabeled data sampling,
annotation task design, and annotator agreement heuristics. Customer education and
guidance was a low risk, low cost proof of concept that informed future platform
capabilities.

To serve our third customer persona, annotator managers, we added pipelines to feed our
annotation data into Looker Studio dashboards and created data visualizations. Those

visualization platform features derived insights into annotator workflows and annotation
quality that would inform annotator managers when assigning annotators to projects.

Snapshot Ingestion System - Ticket Evolution
At Ticket Evolution I designed a snapshot ingestion system using an event-driven
microservice architecture. This system scaled up our capabilities to ingest 1 billion daily
records and alleviate the top risk to the business of skipped snapshots and stale data on
the platform. The new Ruby microservices were designed to use a Redis cache instead
of the main Postgres database, which enabled them to horizontally scale indefinitely
using an AWS elastic load balancer. Creates, updates, and deletes were sent back to the
Rails monolith through SQS queues to be written directly to the database.

Background
Ticket Evolution is a B2B marketplace for brokers to buy and sell live event tickets in
groups. The platform ingested over 1 billion ticket groups in batched snapshots of
inventory at regular intervals, the interval depended on the broker, performed over 2.5
million price updates daily, and its API handled 150 requests per second. The batch
ingestion involved a broker sending us a file containing a snapshot of the broker’s current
inventory. Our platform reads that file and makes the corresponding changes to the
current inventory represented in the database.

The platform was designed as a Ruby on Rails monolith, a single deployable artifact that
did all the processing and read/wrote to the Postgres database. This means the same
service that supported the end user application interfaces also managed the heavy batch
ingestion processing. This processing also included reading from the database for each
file in order to diff the snapshot against the latest information.

Challenges
1.​ A limited database thread pool limited the degree to which we could scale up our

service nodes.

2.​ Our ingestion process throttled our service infrastructure, tied up database
connections, and negatively impacted unrelated web application performance.

3.​ The inventory live on the platform became stale and out of date, which was the
top risk for the company.

4.​ Active Record side effects used for monitoring ingestion and creating alerts for
the customer support team are extremely complex, resulting in the inability to
predict what alerts would be created for a given ingestion

Solutions
My first priority was to disconnect the ingestion process from the database, which was
the primary bottleneck to scaling the service and handling the increased throughput. I
designed an event-driven microservice architecture using AWS EC2, ELB, and SQS. The
microservices were greenfield services written in Ruby without Rails, and would
communicate with the legacy Rails monolith through the event queues.

This solution was designed to roll out in parallel to the existing ingestion system, where
ingestion files are processed the old way and sent to the new microservices. Instead of
the monolith writing the new system updates to the production database, it would log
them, enabling us to verify consistency between systems and measure performance.
Once we were satisfied with the performance, I began cutting over customers in groups
to use the new system, then deprecated the old ingestion process.

Microservice
The entrypoint for receiving inventory snapshots remained unchanged, it instead sent the
snapshot files to an inbound SQS queue, where a load balancer (ELB) would scale up the
new microservice nodes indefinitely to handle the load.

The microservice is responsible for processing the file, which involves sharding the file
into multiple sections and processing each in parallel. It uses a number of hashing and
diffing strategies, and interacts with a Redis cache which contains the previous snapshot.
Once the differences in a file are identified, the resulting CUDs (creates, updates, and
deletes) are streamed into an outbound SQS queue and processed by the Rails monolith.

Monolith
The Rails monolith then reads in the CUDs and writes them directly to the database. The
new database writes for ingestion are very simple and performant, eliminating additional
load on the database beyond normal operational use.

The big challenge came with processing the inventory changes into customer support
alerts. These alerts are the result of many independent rules applied against each change
to the inventory, and are meant to highlight potential fraud or any other notable change.
The rules are complex and the resulting alerts are unpredictable, neither the engineering,

product, or customer support teams could confidently predict which alert(s) would be
created from an inventory snapshot.

To fix the alerting issue, which was holding up full rollout of the new system. I worked
directly with the lead customer support rep and walked through each rule to refactor the
side effects into explicit and colocated rules, resulting in a complex yet predictable
process.

Administrative Operations Platform - Ticket Evolution

	Joseph Spens - Case Studies
	Application Data Model - Level
	Rights Management System - Spotify
	Background
	Challenges
	Solutions

	Content Annotation Platform - Spotify
	Background
	Challenges
	Strategies
	Solutions

	Snapshot Ingestion System - Ticket Evolution
	Background
	Challenges
	Solutions
	Microservice
	Monolith

	Administrative Operations Platform - Ticket Evolution

