Export Module in Node.js

The module.exports is a special object which is included in every JavaScript file in the
Node.js application by default. The module is a variable that represents the current
module, and exports is an object that will be exposed as a module. So, whatever you
assign to module.exports will be exposed as a module.

Let's see how to expose different types as a module using module.exports.

Export Literals

As mentioned above, exports is an object. So it exposes whatever you assigned to it as
a module. For example, if you assign a string literal then it will expose that string literal
as a module.

The following example exposes simple string message as a module in Message.js.
Message.js

module.exports = 'Hello world"';

Now, import this message module and use it as shown below.

app.js

var msg = require('./Message.js');

console.log(msg);

You must specify ./ as a path of root folder to import a local module. However, you do not
need to specify the path to import Node.js core modules or NPM modules in
the require() function.

Export Object

The exports is an object. So, you can attach properties or methods to it. The following
example exposes an object with a string property in Message.js file.

Message.js
exports.SimpleMessage = 'Hello world';

//or

module.exports.SimpleMessage = 'Hello world';

In the above example, we have attached a property SimpleMessage to the exports object.
Now, import and use this module, as shown below.

app.js
var msg = require('./Messages.js');

console.log(msg.SimpleMessage);

In the above example, the require() function will return an object { SimpleMessage
'Hello World'} and assign it to the msg variable. So, now you can
use msg.SimpleMessage.

Run the above example by writing node app.js in the command prompt and see the
output as shown below.

In the same way as above, you can expose an object with function. The following
example exposes an object with the log function as a module.

Log.js

module.exports.log = function (msg) {
console.log(msg);

}s

The above module will expose an object- { log : function(msg){ console.log(msg); }
} . Use the above module as shown below.

app.js

var msg = require('./Log.js");

msg.log('Hello World');

You can also attach an object to module.exports, as shown below.

data.js

module.exports = {
firstName: 'James’',
lastName: 'Bond'’

}

app.js

var person = require('./data.js');

console.log(person.firstName + ' ' + person.lastName);

Export Function

You can attach an anonymous function to exports object as shown below.
Log.js

module.exports = function (msg) {
console.log(msg);

s
Now, you can use the above module, as shown below.

app.js
var msg = require('./Log.js');

msg('Hello World');

The msg variable becomes a function expression in the above example. So, you can
invoke the function using parenthesis ().

Export Function as a Class

In JavaScript, a function can be treated like a class. The following example exposes a
function that can be used like a class.

Person.js

module.exports = function (firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;
this.fullName = function () {

return this.firstName + ' ' + this.lastName;

}
}

The above module can be used, as shown below.
app.js

var person = require('./Person.js');

var personl = new person('James', 'Bond');

console.log(personl.fullName());

As you can see, we have created a person object using the new keyword.

In this way, you can export and import a local module created in a separate file under
root folder.

Node.js also allows you to create modules in sub folders. Let's see how to load module
from sub folders.

Load Module from the Separate Folder

Use the full path of a module file where you have exported it using module.exports. For
example, if the log module in the log.js is stored under the utility folder under the
root folder of your application, then import it, as shown below.

app.js

var log = require('./utility/log.js');

In the above example, . is for the root folder, and then specify the exact path of your
module file. Node.js also allows us to specify the path to the folder without specifying
the file name. For example, you can specify only the utility folder without
specifying log.js, as shown below.

app.js

var log = require('./utility');

In the above example, Node.js will search for a package definition file
called package.json inside the utility folder. This is because Node assumes that this
folder is a package and will try to look for a package definition. The package.json file
should be in a module directory. The package.json under utility folder specifies the file
name using the main key, as shown below.

./utility/package.json

Copy
{
llnamell : Illogll’
"main" : "./log.js"
}

Now, Node.js will find the log.js file using the main entry in package.json and import it.

Demonstrates the “http” module and “url” module
The Built-in HTTP Module(creation of nodejs server)

Node.js has a built-in module called HTTP, which allows Node.js to transfer data over the Hyper
Text Transfer Protocol (HTTP).

To include the HTTP module, use the require() method:

var http = require('http');

Node.js as a Web Server

The HTTP module can create an HTTP server that listens to server ports and gives a response
back to the client.

Use the createServer() method to create an HTTP server:

Exa mp|e(Get your own Node.js Server)

var http = require('http');

//create a server object:

http.createServer(function (req, res) {
res.write('Hello World!'); //write a response to the client
res.end(); //end the response

}).1listen(8080); //the server object listens on port 8080

The function passed into the http.createServer() method, will be executed when someone tries
to access the computer on port 8080.

Save the code above in a file called "demo_http.js", and initiate the file:
Initiate demo_http.js:

C:\Users\Your Name>node demo_http.js

If you have followed the same steps on your computer, you will see the same result as the

example: http://localhost:8080

Add an HTTP Header

https://www.w3schools.com/nodejs/nodejs_server.asp
http://localhost:8080/

If the response from the HTTP server is supposed to be displayed as HTML, you should include an
HTTP header with the correct content type:

Example

var http = require('http');

http.createServer(function (req, res) {
res.writeHead (200, {'Content-Type': 'text/html'});
res.write('Hello World!");
res.end();

}).listen(8080);

The first argument of the res.writeHead() method is the status code, 200 means that all is OK,
the second argument is an object containing the response headers.

Read the Query String

The function passed into the http.createServer() has a req argument that represents the
request from the client, as an object (http.IncomingMessage object).

This object has a property called "url" which holds the part of the url that comes after the domain
name:

demo_http_url.js

var http = require('http');

http.createServer(function (req, res) {
res.writeHead (200, {'Content-Type': 'text/html'});
res.write(req.url);
res.end();

}).listen(8080);

The Built-in URL Module

The URL module splits up a web address into readable parts.
To include the URL module, use the require() method:
var url = require('url');

Parse an address with the url.parse() method, and it will return a URL object with each part of
the address as properties:

Example

Split a web address into readable parts:

var url = require('url');

var adr = 'http://localhost:8080/default.htm?year=2017&month=february’;
var g = url.parse(adr, true);

console.log(q.host); //returns 'localhost:8080'
console.log(q.pathname); //returns '/default.htm’

console.log(qg.search); //returns '?year=2017&month=february’

var qdata = qg.query; //returns an object: { year: 2017, month: 'february' }
console.log(qdata.month); //returns 'february'

Demonstrates the Node.]s File System
Node.js as a File Server

The Node.js file system module allows you to work with the file system on your computer.
To include the File System module, use the require() method:

var fs = require('fs');

Common use for the File System module:

Read files
Create files
Update files
Delete files
Rename files

Read Files

The fs.readFile() method is used to read files on your computer.
Assume we have the following HTML file (located in the same folder as Node.js):

demofilel.html

<html>

<body>

<h1>My Header</hl>
<p>My paragraph.</p>
</body>

</html>

Create a Node.js file that reads the HTML file, and return the content:

Example

var http = require('http');

var fs = require('fs');

http.createServer(function (req, res) {

fs.readFile('demofilel.html’, function(err, data) {

res.writeHead (200, {'Content-Type': 'text/html'});
res.write(data);
return res.end();

s
}).listen(8080);

Save the code above in a file called "demo_readfile.js", and initiate the file:

Initiate demo_readfile.js:

C:\Users\Your Name>node demo_readfile.js

If you have followed the same steps on your computer, you will see the same result as the

example: http://localhost:8080

Create Files

The File System module has methods for creating new files:

e fs.appendFile()
fs.open()
e fs.writeFile()

The fs.appendFile() method appends specified content to a file. If the file does not exist, the
file will be created:

Example

Create a new file using the appendFile() method:

var fs = require('fs');

fs.appendFile('mynewfilel.txt', 'Hello content!', function (err) {
if (err) throw err;
console.log('Saved!");

s

The fs.open() method takes a "flag" as the second argument, if the flag is "w" for "writing", the
specified file is opened for writing. If the file does not exist, an empty file is created:

http://localhost:8080/

Example

Create a new, empty file using the open() method:
var fs = require('fs');

fs.open('mynewfile2.txt', 'w', function (err, file) {
if (err) throw err;
console.log('Saved!");

s

The fs.writeFile() method replaces the specified file and content if it exists. If the file does not
exist, a new file, containing the specified content, will be created:

Example

Create a new file using the writeFile() method:

var fs = require('fs');

fs.writeFile('mynewfile3.txt', 'Hello content!', function (err) {
if (err) throw err;
console.log('Saved!");

s

Update Files

The File System module has methods for updating files:

e fs.appendFile()
o fs.writeFile()

The fs.appendFile() method appends the specified content at the end of the specified file:

Example

Append "This is my text." to the end of the file "mynewfilel.txt":
var fs = require('fs');

fs.appendFile('mynewfilel.txt"', This is my text.', function (err) {
if (err) throw err;

console.log('Updated!");
1

The fs.writeFile() method replaces the specified file and content:

Example

Replace the content of the file "mynewfile3.txt":

var fs = require('fs');

fs.writeFile('mynewfile3.txt', 'This is my text', function (err) {

if (err) throw err;
console.log('Replaced!");

s

Delete Files

To delete a file with the File System module, use the fs.unlink() method.

The fs.unlink() method deletes the specified file:

Example

Delete "mynewfile2.txt":

var fs = require('fs');

fs.unlink('mynewfile2.txt"', function (err) {

if (err) throw err;
console.log('File deleted!");

s

Rename Files

To rename a file with the File System module, use the fs.rename() method.

The fs.rename() method renames the specified file:

Example

Rename "mynewfilel.txt" to "myrenamedfile.txt":
var fs = require('fs');

fs.rename('mynewfilel.txt', 'myrenamedfile.txt', function (err) {
if (err) throw err;
console.log('File Renamed!");

s

What is express.js .how to create Express. Js server with code

Express.js is a minimal and flexible web application framework that
provides a robust set of features to develop Node.js based web and
mobile applications. Express.js is one of the most popular web
frameworks in the Node.js ecosystem. Express.js provides all the
features of a modern web framework, such as templating, static file
handling, connectivity with SQL and NoSQL databases.

Following are some of the core features of Express framework —

e Allows to set up middlewares to respond to HTTP Requests.
e Defines a routing table which is used to perform different
actions based on HTTP Method and URL.
e Allows to dynamically render HTML Pages based on passing
arguments to templates.
The Express.js is built on top of the connect middleware, which in
turn is based on http, one of the core modules of Node.js API.

Node.js Server

connect middleware

Installing Express

The Express.js package is available on npm package repository. Let
us install express package locally in an application folder named
ExpressApp.

D:\expressApp> npm init

D:\expressApp> npm install express --save

The above command saves the installation locally in the
node_modules directory and creates a directory express inside
node_modules.

Hello world Example

Following is a very basic Express app which starts a server and
listens on port 5000 for connection. This app responds with Hello
World! for requests to the homepage. For every other path, it will
respond with a 404 Not Found.

var express = require(‘express');
var app = express();

app.get('/', function (req, res) {
res.send('Hello World');

})

var server = app.listen(5000, function () {
console.log("Express App running at http://127.0.0.1:5000/");

})

Save the above code as index.js and run it from the command-line.

D:\expressApp> node index.js

Express App running at http://127.0.0.1:5000/
Visit http://localhost:5000/ in a browser window. It displays the
Hello World message.

806 127.0.0.1:8081
Ll s I'_L'.r'f; | + | 3 127.0.0.1:8081 ¢ ader || Q)]
17 8% What Are Pa..mar lesson) Apple. Disney ESPN Yahoo! f.[.

Hello World

Application object

An object of the top level express class denotes the application
object. It is instantiated by the following statement —

var express = require(‘express');

var app = express();

The Application object handles important tasks such as handling
HTTP requests, rendering HTML views, and configuring middleware
etc.

The app.listen() method creates the Node.js web server at the
specified host and port. It encapsulates the createServer() method
in http module of Node.js API.

app.listen(port, callback);

Basic Routing

The app object handles HTTP requests GET, POST, PUT and DELETE
with app.get(), app.post(), app.put() and app.delete() method
respectively. The HTTP request and HTTP response objects are
provided as arguments to these methods by the NodelS server. The
first parameter to these methods is a string that represents the
endpoint of the URL. These methods are asynchronous, and invoke
a callback by passing the request and response objects.

GET method

In the above example, we have provided a method that handles the
GET request when the client visits '/' endpoint.

app.get('/', function (req, res) {
res.send('Hello World');

})

e Request Object — The request object represents the HTTP
request and has properties for the request query string,
parameters, body, HTTP headers, and so on.

e Response Object — The response object represents the HTTP
response that an Express app sends when it gets an HTTP
request. The send() method of the response object formulates
the server's response to the client.

You can print request and response objects which provide a lot of
information related to HTTP request and response including cookies,
sessions, URL, etc.

The response object also has a sendFile() method that sends the
contents of a given file as the response.

res.sendFile(path)
Save the following HTML script as index.html in the root folder of
the express app.

<html>

<body>

<h2 style="text-align: center;">Hello World</h2>
</body>

</html>

Change the index.js file to the code below —

var express = require(‘'express');
var app = express();
var path = require('path’);

app.get('/', function (req, res) {
res.sendFile(path.join(__dirname,"index.html"));

})

var server = app.listen(5000, function () {

https://www.tutorialspoint.com/nodejs/nodejs_request_object.htm
https://www.tutorialspoint.com/nodejs/nodejs_response_object.htm

console.log("Express App running at http://127.0.0.1:5000/");

})
Run the above program and visit http://localhost:5000/, the
browser shows Hello World message as below:

[[B tocahost5000 % | = m] x
- O (i) localhost:50 N 0 m s o
Hello World

Let us use sendFile() method to display a HTML form in the
index.html file.

<form action = "/process_get" method = "GET">
First Name: <input type = "text" name = "first nhame">

Last Name: <input type = "text" name = "last_name">

<input type = "submit" value = "Submit">

</form>

The above form submits the data to /process_get endpoint, with
GET method. Hence we need to provide a app.get() method that
gets called when the form is submitted.

app.get('/process_get', function (req, res) {
I/ Prepare output in JSON format
response = {

first_name:req.query.first_name,
last_ name:req.query.last name
b

console.log(response);

res.end(JSON.stringify(response));
})
The form data is included in the request object. This method
retrieves the data from request.query array, and sends it as a
response to the client.

The complete code for index.js is as follows —

var express = require(‘express');
var app = express();
var path = require('path’);

app.use(express.static('public'));

app.get('/', function (req, res) {
res.sendFile(path.join(__dirname,"index.html"));

})

app.get('/process_get', function (req, res) {
I/ Prepare output in JSON format
response = {
first_name:req.query.first_name,
last_ name:req.query.last name
b
console.log(response);
res.end(JSON.stringify(response));

})

var server = app.listen(5000, function () {
console.log("Express App running at http://127.0.0.1:5000/");

})
Visit http://localhost:5000/.

First Name:

Last Name:
Submit

Now you can enter the First and Last Name and then click submit
button to see the result and it should return the following result —

{"first_name":"John","last_name":"Paul"}

POST method

The HTML form is normally used to submit the data to the server,
with its method parameter set to POST, especially when some
binary data such as images is to be submitted. So, let us change the
method parameter in index.html to POST, and action parameter to
"process_POST".

<form action = "/process POST" method = "POST">
First Name: <input type = "text" name = "first_ name">

Last Name: <input type = "text" name = "last_name">

<input type = "submit" value = "Submit">
</form>

To handle the POST data, we need to install the body-parser
package from npm. Use the following command.

npm install body-parser —save

This is a node.js middleware for handling JSON, Raw, Text and URL
encoded form data.

This package is included in the JavaScript code with the following
require statement.

var bodyParser = require('body-parser');
The urlencoded() function creates
application/x-www-form-urlencoded parser

var urlencodedParser = bodyParser.urlencoded({ extended: false })
Add the following app.post() method in the express application code
to handle POST data.

app.post(‘/process_post', urlencodedParser, function (req, res) {
// Prepare output in JSON format
response = {
first_ name:req.body.first name,
last_name:req.body.last name
i
console.log(response);
res.end(JSON.stringify(response));
})

Here is the complete code for index.js file

var express = require(‘express');
var app = express();
var path = require('path’);

var bodyParser = require(‘body-parser’);
// Create application/x-www-form-urlencoded parser
var urlencodedParser = bodyParser.urlencoded({ extended: false })

app.use(express.static('public'));

app.get('/', function (req, res) {
res.sendFile(path.join(__dirname,"index.html"));

})

app.get('/process_get', function (req, res) {
I/ Prepare output in JSON format
response = {
first_name:req.query.first_name,
last_ name:req.query.last name
b

console.log(response);

res.end(JSON.stringify(response));

})

app.post("/process_post",)

var server = app.listen(5000, function () {
console.log("Express App running at http://127.0.0.1:5000/");

})

Run index.js from command prompt and visit
http://localhost:5000/.

First Name:

Last Name:
Submit

Now you can enter the First and Last Name and then click the
submit button to see the following result —

{"first_name":"John","last_name":"Paul"}
Serving Static Files

Express provides a built-in middleware express.static to serve static
files, such as images, CSS, JavaScript, etc.

You simply need to pass the name of the directory where you keep
your static assets, to the express.static middleware to start serving
the files directly. For example, if you keep your images, CSS, and
JavaScript files in a directory named public, you can do this —

app.use(express.static('public'));
We will keep a few images in public/images sub-directory as follows

node _modules

Let's modify "Hello Word" app to add the functionality to handle

static files.

var express = require(‘express');
var app = express();
app.use(express.static('public'));

app.get('/', function (req, res) {

res.send('Hello World');

})

var server = app.listen(5000, function () {
console.log("Express App running at http://127.0.0.1:5000/");

})

Save the above code in a file named index.js and run it with the

following command.

D

\expressApp> node index.js

Now open http://127.0.0.1:5000/images/logo.png in any browser

and see observe following result.

200 logo.png 31191 pixels o
Lai> D et) + @ 127.0.0.1:8081 ¢ | Reades || Q)]
(11 =2 WwhatAre P._.mar lesson) Apple Disney ESPN Yahoo! ﬁ:‘

§gi>tutorialspoint

To learn Express.js in details, visit our Express]S Tutorial
(Express]S)

https://www.tutorialspoint.com/expressjs/index.htm

	The Built-in HTTP Module(creation of nodejs server)
	Node.js as a Web Server
	Example(Get your own Node.js Server)

	Add an HTTP Header
	Example

	Read the Query String
	The Built-in URL Module
	Example

	Node.js as a File Server
	Read Files
	Example

	Create Files
	Example
	Example
	Example

	Update Files
	Example
	Example

	Delete Files
	Example

	Rename Files
	Example

	Installing Express
	Hello world Example
	Application object
	Basic Routing
	GET method
	POST method

	Serving Static Files

